JOHN ROACH, OF NEW YORK.

HIS SHIP-BUILDING AND HIS VIEWS
'The Pilgrim, now in process of construction by Mr . John Roach for the Fall River Line, is the largest steamboat ever built. The company required the most commodious steamer, with the bighest power and speed attainable, and this will in a few months be completed and delivered by the builder. Our engravings illustrate the forging of the shaft, one with the end in the furnace, for the "finishing beat," and the other " under the hammer."
This sbaft is the largest ever constructed. And itmust be borne in mind that the illustration represents only the half shaft. The other half is to be connected with it amidship by the crank, and is, of course, of the same length. Each measures 39 feet 6 inches in length, and is $281 / 4$ inches at its largest, and 26 inches at its smallest diameter, and weigb each 81,000 pounds. This enormous shaft implies the size of the engine, and also the size and power of the boat, thougb in respect to the stability and Wer of the boat, thougb in respect to the stability and of blooms piled upon the opposite side of the "scarf" speed of the latter, otber conditions are to be considered of \mid These are then carried into the furnace, brought to a weldwhich we will make mention bereafter In considering this statement, many will think of large side-wheel steamers, includsteamers, including the Great Eastern, but
they must also they must also
remember that remember that
each of her wheels is driven by a separate engine, which calls for a smaller chaft it haft as it does for a smaller en-
gine, while in gine, while in
this case, one engine drives both wheels, and is intended to do so at the higbest speed and attainable power. Hence the necesHence the neces-
sity of a large sity of a large
piece of machinery. It is said, witbout fear of contradiction, that no other shop in this shop in this country could turn out such an engine, or forge a sbaft of such magnitude. The capacity of a forge for such work for such work depends upon the power of the steam hammer, and this one, though perbaps not the largest, has proved equal to turning out the larg. est piece of work yet produced. The hammer itself weighs not less than seven teen thou sand pounds, and in its fall, driven down by steam power by steam power representsablow
of not less than sixty-six thous and pounds. But
certain it is that,
in this case, a mass of iron at a forging beat,tbree feet in thickness, was pounded into shape. The anvil and block rest on a massive foundation, and this on a foundation of piles, in all some twenty to thirty feet deep, and the force of the blow is felt in the ground at a distance of several blocks. Tbe metbod of working the steam hammer is illustrated in tbe engraving.
The process of forging was not different from that in somewhat smaller work, but, of course, called for the exer cise of special skill, in consequence of the peculiar difficulty of the task. To begin at near the beginning, " blooms" are prepared from "scrap iron." This "scrap iron" consists of an endless variety of wrought iron scraps, such as horse sboes, bolts, rods, nails, boiler iron, etc., etc. These are in the blacksmith shop welded together under a small steam hammer into bars, somewhat of the shape of bars of pig iron. The iron thus prepared is better for this purpose than any other, being tough and fibrous, and the product is known as
a " bloom." In building the shaft begins with the " porter bar," on the end of which are piled the "blooms" for that beat. Tbis "porter bar" is designed only for the purpose of carrying the first " blooms" into the furnace for a welding beat, and carrying them out again under the hammer. But inasmuch as it becomes incorporated in the sbaft in part, it is carefully weighed, as are the "blooms," to ascertain how much material is used in the work. Afterward the sbaft grows to a length sufficient to carry the blooms for its increasing length.
The process of hammering naturally increases the length of the mass of iron while it is being reduced to its proper thickness, and this increased length is hammered into two flat surfaces above, and below, known as a "scarf." On this "scarf," for the next beating, are piled from fifteen to twenty blooms, which are carried into the furnace, brought to a welding heat, and then put under the hammer and welded into one mass. The shaft is turned over and a new supply ing heat, put under the hammer, and welded. After anotber heating this whole mass is rounded into the desired size and sbape. And so the process goes on of piling on the blooms, heating, forging, sbaping, building up the scarf, and piling on more blooms. And the shaft goes on upon the cold shaft with a grip making it impossible ever to separate them and the two pieces are now one piece of iron. Considering that these pieces are of many tons in weight, the diffculty of the job and the requisite skill of the men become apparent.
Mr. Roach em ploys in this yard, where be builds most of his machinery foot of East Ninth street, New York, from eight hundred to nine hundred men. The industries fostered, indirectly, by his enterprise are perbaps tenfold greater in number of men employed.
He builds bis great iron ships at Chester,Pennsylvania, and there, alongside the unfinisbed ironclad Puri tan, lies the Pilgrim on the ways. Here, as in the machine in the macbine hop in New York, the entire
work of building work of building
the ship is done, from its incep tion in the mind of the construct or to its launcbing and fitting up. Here is the furnace for smelting tbe iron; there the rolling mill for rolling plates and armor platand armor plat--BILDING WORKS OF JOLN increasing in lengtb. To do this work on each balf shaft ing; and there the and iron timbers, so to speak, of an
 upwards of twenty men. This is, of course, apart from the of this yard, which is much larger than that in New work of preparing blooms, tending the furnaces, running the York. crane engines, handling material, the extent and cost of which are perbaps only known to the members of the firm and the book-keeper of the works. After each half shaft is completed in the forge, it is taken into the shop and then turned. This turning is done as perfectly and as neatly as if the ron, 39 feet 6 inches lngg, and not far from one yard in bickness, were intended for a gold watch. The macbinery, ppliances, and sk
What is-implid by the size of the shaft is carried out in all parts of the engine. The cylinder is 9 feet 2 inches in interior diameter, with 14 feet stroke, and was cast in the same works. The working beam from center to

The general subject of ship-building is familiar to most of our readers, but we will insert here a brief reference to what is done in the yard at Chester. The constructor designs his miniature ship in wood, and therein exercises his peculiar talent and creative faculty, somewhat as the sculptor creates in his art. From this a sectional drawing of the same size is made, and from that again a larger scale draw ing, and from that a table is constructed showing the measurements of all parts of the bull in feet and to the fraction of an inch.
The "displacement" of the ship, loaded and unloaded, calce and so of is this ascertained that the constructor has been known to draw a chalk line
on the bull of his ship before launching which showed ber the beginner with fifty dollars now has a property representexact water line when launched. The water line of the ing millions. The secret lies within the man. Extraordinary ship in every possible position is known, and consequently her stability. From the table of proportions the shape of the cross sections or frame at any given point is laid out on the ! " mould loft" floor with great accuracy, in the actual size of the ship to be built. And from this wooden patternsare made to correspond with every part of the frame. These patterns are now in turn placed upon an iron floor, covered all over with square holes intended to receive iron pins, and its curvature accurately marked in aud out among the holes, which are then supplied with pins and bolts. The angle iron intended for that particular rib or part of the frame is brought from the furnace at a red heat, and after being drawn into this curved line, is bolted down until it cools into permanent shape. Two are made alike, corresponding for the opposite sides of the ship; so of every part of the frame from stem to stern. The iron plates are rolled in the mill, with equal care, into the required curvature for each part of the ship, sharp or gradual as to the position required. Each plate has its number and place to which it is brought ready shapen to be laid in place, where and when alone it can be placed, and then riveted to the frame.
The drawing room of this yard presents tothe visitor per haps a more perfect idea of the extent of the works than any other part. It has the appearance almost of an art gallery of marinesubjects. Every object the eye rests upon is a reminder of ships. The walls are covered with pictures and models of every form of ocean steamer, steamboat, and yacht built or now building, these models beautifully executed, while the cases are filled with working drawings of every part of the ship, finished in the most elaborate manner. The party for whom the ship is to be built indicates generally what is to be her carrying capacity, and possibly expresses some fancy as to her lines, but beyond this the constructor designs the ship, whether as to practical considerations or matters of fancy.
On annther page we give a sketch of the City of Peking, the largest ship yet built by Mr. Roach, turned out of this yard, and of a desigu in construction which has been largely followed, and has received very general commendation. There are in process of building here six or more iron ships, designed for foreign trade, the work as well done as can he produced in any shipyard in the world. The United States ironclad, Puritan, lies on the stocks in an unfinished condition. It seems incomprehensible that the Government should leave so magnificent a ship in an unfinished condition for so many years. Near by, on the stocks, and almost complete, is the Pilgrim. She is built with a double hull, that is, two iron hulls, one somewhat smaller and inside the other, braced together. This gives increased strength on the principle of the tubular bridge, and safety in case of injury to the outer hull. Her length over all is 390 feet, 87 feet beam outside the guards amidship, and 12 feet draught, with a proposed speed of twenty miles an hour. The American ensign, presumably in proportion, is to be 30×20 feet. She appears on the stocks like an iron mountain, and that, too, without saloons or deck bouses. As the shaft implies the engine, so the work turned out implies the magnitude of the works, the capital, skill, and enterprise of its organizer, as well as the labor, skill, and materials utilized. The average number of laborers in this yard is 1,800 to 3,000 .
During the past ten years the firm of John Roach $\&$ Sons has built and delivered over one hundred iron steamers. Thai is to say, ten per year on an average, that is, one in a little over a month each-building the ship and the machinery; these representing contracts with the South American States, Spain, and our own people.
Ship building in Chester was practically unknown until Mr . Roach established his yard there, some ten years since. And now, as we have said, he finds employment for 1,800 to 3,000 men, with all that is incidental to such employment for the benefit of a place.
The story of the career of this man, who is the father of American iron ship-building, has that simplicity which attiaches to the lives of most eminent men, an oft told tale, but in his case one of almost unparalleeded success. He commenced business life as a boy in the foundry of the Allaire Iron Works, in New York, as a moulder, at a time when the best workmen received a precarious compensation of one dollar per day, and it may be easily conjectured what a poor boy must have received. He there learned his trade, passing through the daily experience of young men in that capacity.
Subsequently, when he had acquired sufficient knowledge lished a foundry one has said. But it grew, though at first no one would have believed it to be a foundry, until it became to be the celebrated "Etna Iron Works." Commencing with small castings, the contracts grew to large castings, then a machine shop, and boiler shop. During his early days it is not recorded that be was one of the strikers, but after he started his little foundry he continued to be one of the hard workers. It is pleasant to know that since then he has bought out some of the tools, machinery, and appliances of the Allaire works, in which he was emplnyed as a boy. About the year 1868 he came into occupation of what is known as the "Morgan Iron Works," and about 1872 purchased most of his property at Chester. It bas often been predicted
by companies, in his line of business, that he must fail, hecause one man could not succeed where a corporation could not prosper and often has failed. But be bas prospered, and
physical and mental energy, at work night and day from year to year, frugal in hahits and democratic in feeling, practical, strictly reliable in all bis engagements, he is a representative man of a thrifty and enterprising age. And with it all be is kindly and charitable. No one complains of bis being rough and coarse, and many can testify to his considerateness. One who bas known him for years remarked, and the figures prove it, "If Mr. Roach should die to day it would be a calamity to New York and to Chester." Many ings have heen said about him in reference to "monopoly" and "protection," but it would seem that a man who has industry such as this is, is qualified to judge of the needs, of the country in ship-building, and to give "protection" to the hundreds for whom be finds employment. The portrait of Mr. Roach that accompanies our sketches gives an idea of bis personal appearance.
Mr. Roach is known to be a man of decided opinions in respect to the promotion of American industries, and our sketch would be quite incomplete did we not give our readers some notion of his ideas relating thereto; these, naturally, form the second branch of our subject, and are so extensive and interesting that we present them in a special article

It consists of a series of shallow thin lead trays, L, ahou ne-fortieth of an inch thick, pressed and hammered into sbape in a wooden mould. These trays are arranged one over another in a wooden frame, S. The trays are kept at an equal distance from each other by pieces of wood, which slide up and down in the stand, the ends of the slides being shown at D. The dotted lines in the bottom of the tray represent layers of red lead, or oxide or reduced lead. On
this is poured an acid solution of sulphate of copper, just deep enough to immerse the bottom of the tray above. The trays should be varnisbed all around the edges with Brunswick black,
some other acidresisting var-
nish. Wires for nisb. Wires for poles are soldered to the hottom of the boltom tray, and to the top of the top tray. The battery may, of
 course, consist

of a greater num- ber of trays, and

together.

The advantages of this form of battery are, the oxide of lead can always be kept at the most advantageous thickness. The plates or trays can also be arranged at the most advantageous distance from each other. No diaphragm of any kind is required, and therefore, however long in action, no reduced lead can weaken its action. The battery must always be kept level. Of course, it could not be used in tramcars, etc.
In making batteries on a large scale it would be well, perhaps, to cas the trays in an iron mould, and then it would be well to bave one corner of each cell cut off; and let this supply of alternate sides, to facilitate the inspection and supply of liquid. It would be well then to mix antimony
with the lead to harden it. Possibly the trays may be made of carbon.-W. Symons, F. C.S., in English Mechanic.

The Census of Canada.

The first volume of the Canadian Census Statistics of 1881 have just been submitted to the Dominion Parliament by the Hon. J. H. Pope, the Minister of Agriculture, and contains various interesting schedules, among which are those relating to the religions and nationalities of the population. With regard to the former the particulars are as follows: Roman Catholics, 1,791,983; Preshyterians, 676,155; Adventists, 7,211; Baptists, 225,236; Free Will Baptists, 50,055; Mennonites, 21,234; Brethren, 8,831; Church of England, 574,818; Congregationalists, 26,900; Disciples, 20, 193; Episcopal (Reformed), 2,596; Jews, 2,393; Lutherans, 46,350; Metbodists, of all classes, 742,981; Pagans, 4,478; Protestants, 6,519; Quakers, 6,533; Unitarians, 2,126; Universalist, 4,517; no religion, 2,634; other denominations, 14,269 ; not given, 86,769 . Total, $4,324,810$. The population of Canada includes the following nationalities: Africans, 21,394; Cbinese, 4,383 ; Dutch, 30,412 ; English, 881,301; French, $1,298,929$; German, 255,319; Icelanders, 1,009; Indians, 108,547; Irish, 957,403, Italians, 1,849; Jews, 667; Russians, 1,227; Scandinavians, 4,214; Scotch, 699,863; Spanish and Portuguese, 1,172; Swiss, 4,588; Welsb, 9,947; all others, 43,587. Accordingto nativity, the population of the Dominion stands thus: Natives of England, 169,504; Ireland, 185,526; Scotland, 115,062; Ontario, 1,467,988; Quebec, 1,227,809; Prince Edward Island, 101,047; Nova Scotia, 420,038; New Brunswick, 288,265; Britasb Columbia, 32,775; Manitoba, 19,590; Territories, 58,430; other British possessions, 10,368; France, 4,389; Germany, 25,328; Italy, 7777 ; Russia, 6,376; Spain, 215; Sweden and Norway, 2,076; United States, 77,753 ; other countries, 14,169 . The male population of Canada number $2,188,854$, and the females, $2,135,956$;
married, 1,380,084; wid owed, 160,330; unmarried, 2,784,396. Canada was divided for census purposes into 192 districts, and 2,139 sub-districts.

Train Brakes for Freight Cars

The committee on train brakes for freight cars, appointed by the Master Car Builders' Association, reported at the late meeting that very satisfactory progress has been made in the last three years.
The Reed train brake has been considerably simplified in construction during the past year, and is doing good work on the Harlem Division, where it has been in operation for nearly two years.
The American Brake Company report having their train brake in successful operation on 500 cars on the St. Louis and San Francisco Railway, and that for cbeapness, efficiency, and durability it is all they claim for it. Reports from the above railroad company give some 500 cars equipped with this brake running over a period of some fifteen months, and in that time several bad wrecks have been avoided by its use. The weight of the brake applied to one truck is 140 pounds per car, and the first cost $\$ 11.75$, while the annual cost of repair is very small.
The Tallman train brake, which has been working successfully on the Harlem Division for nearly two years, is also running on ten cars of the New York Live Stock Express Company between Cbicago and New York. At two trials of this brake in February, on the Central Railroad of New Jersey, excellent stops were made, some of them as folows:
Speed 20 miles per hour, down grade, stopped in 360 feet n 18 seconds; speed 25 miles per hour, down grade, stopped in 450 feet in 22 seconds; speed 35 miles per hour, down grade, 23 feet to the mile, stopped in 1,080 feet. A trial of this brake on the Cbicago, Rock Island, and Pacific Railroad proved quite satisfactory. Exact data not given.
The Pennsylvania Railroad has some 75 stock care equipped with the Westinghouse air brake, but are not yet satisfied in regard to its practicability for freight service.
There bave been two new brakes brought out since the last annual meeting of the association, which the committee think worthy of mention. The Fuller and Salvadge mittee think worthy of mention. The Fuller and Salvadge
brake is in successful operation on a construction train brake is in successful operation on a construction train
on the Grand Trunk, Georgian Bay, and Lake Erie Railway. This brake is independent on each car, being operated by compression of draw-bar. The cost is about $\$ 20$ per car.
Also the Stowe brake, which is of peculiar construction, requiring neither air, steam, compression, nor electricity to operate it, for which the following is claimed: A short chain between the cars sets the brake automatically on all cars equipped with it, which are connected together. Where a train breaks in two, and should the brake be out of order on one or more cars, it does not affect the efficiency of the others, each car taking care of its own slack chain while transmitting the power unimpaired to its neighbor, and when the brake is applied, and the train brought to a stop, the power is automatically stored up on each car ready for the next stop.

A Novel Balloon.

A New steerable balloon, the invention of Herr Baumgarten and Dr. Wälfert, was recently tried at Cbarlottenburg. It is of huge size, having a capacity of about 473 cubic yards, and is ellipsoid in form, the longer diameter being about 58 feet. It differs in principlefromall other aerostats in tbat, although inflated with bydrogen, it has no ascensional force; its total weight is about 21.5 lb . above that of the air it displaces. The means of displacement in the borizontal or the vertical direction are a helical system of vanes actuated by machinery in the car. Hence, in making land, the balloon does not require to be partly emptied, and on reaching the ground it has nearly the same quantity of gas as when it rose.
Another novelty consists in the mode of connection of the car. This is rigid. Thus the dangerous bounds or jerks to which the ordinary balloon-car is liable in landing are to some extent avoided. The car being usually suspended by ropes, the system is suddenly relieved of its weight when it touches the ground, so that the balloon shoots up again, giving a series of violent shocks. With a rigid connection the total weight cannot be thus temporarily diminished. The mechanism has a double action, one belix of vanes, or screw propeller, driven in one direction or the opposite, produces ascent or descent, while a couple of screws give horizontal propulsion; in a pretty calm atmosphere the borizontal direction may be modified by working one of the couple alone. The first experiments, it appears, were quite successful. The weather was exceptionally calm. In a second trial a slight accident ruptured the envelope of the balloon, and the car mechanism was also injured. The experiments are soon to be resumed. The motor, it may be mentioned, has a force of 4 horse power and weighs 80 lb . The cost of charging each time the balloon is filled anew is about $\$ 100$.

Fast Speed from China to London.

The new steamship Stirling Castle, from Hankow, China, lately reached Iondon, after a run of 29 days 22 hours, the fastest on record. The distance from Hankow to London is 11,250 miles, so that the Stirling Castle made an average of more than 375 miles a day, making no allowance for detention at eoaling ports and time occupied in passing through ithe Suez Canal.

a Weekly Journal of practical information. art. ScIEnce. mechanics. Chemistry and mandfactures.

SHIP-BULLDING WORKS OF JOHN ROACH \& SONS.-FORGING THE GREAT SHAFT FOR THE PILGRIM.-[See.page 19.]

