JACQUET'S WATER METER.

The Jacquet water-meter, shown in the accompanying engravings, consists of three very distinct parts:

1. A cylinder, whose capacity and number of pisto strokes determine the volume of the liquid that has traversed the apparatus.
2. A system of valves that changes at each extremity of the piston stroke the direction of the distribution of water.
3. An ordinary dial-train, which, actuated by the endless screw of the arbor of a ratchet-wheel, registers the quantity of water measured by the meter.
Fig. 1 is a perspective view of the apparatus. Fig 2 is a vertical section. Fig. 3 is a horizontal section of the distributing box, and Fig. 4 is a transverse section of this same box.

The cylinder consists of a cast iron box, having in side of it a thin brass cylinder in which moves vertically a piston formed of two pieces of leather held back to back by two disks of copper and galvanized sheet iron. The distributing box, which is also of cast iron, is bolted on to the cylinder. It is divided by vertical partitions into four chambers-one communicating with the bottom of the piston, a second with the top, the third with the inlet, and the fourth with the outlet. These compartments communicate with each other through four transverse orifices, traversed two by two by iron axles, each carrying two circular valves. These axles are connected by means of a crosspiece containing a rectangular aperture in its center. The axles, crosspieces, and valves form together a rigid whole, capable of being moved in a longitudinal direc tion, so that if two of the valves are closed, the two others are of necessity open, and reciprocally; or, in other words, if the inlet and the top of the piston are in communication, the bottom of the piston necessarrily communicates with the outlet, and vice versa. In the center of the distributing box there is fixed a bracket of hard bronze, which holds in a lower groove a knife whose back serves as a bearing point for a stir rup-shaped spring. The center of rotation of this spring, which consists of six strips of Prince's metal, is in the vertical axis of the knife. Owing to such an arrangement, the knife, rolling at one side in the bracket, and at th other on the spring, is always pushed to the right or left
without ever resting in the median position, which is one of

Fig. 2.- VERTICAL SECTION OF JacQUET'S WATER METER.
through its action on the knife-arm, an opposite effect, but one that is identical with that just described. Finally during the ascent of the piston, a pawl carried by the latter

Fig. 1.-JACQUET'S WATER METER.
pring might compensate for the wear 'on these parts, the ventor desired to obtain certain data in regard to this point. So, with a file, he executed the work of time on the e, and, with thirteen pieces worn away each a half millimeter more than the other, he undertook a series of experiments on meters of 0.02 of a meter orifice. The subjoined table shows the results of these trials under a pressure of water, at the inlet, of 30 meters:

Height of Knife In Milli meters.	Power of Springin Kilo grammoters.	Discharge in liters per bour.	Observations.
23 (Nermal).	4k.(Normal).	8,000	Operation good
22.5	3.7 k .	8,000	"
22	3.6 k.	8,000	"
21.5	2.25 k .	8,000	"
21	1.8 k .	8,000	"
20.5	1.4 k.	8.000	"
20	1.2 k .	8,000	"
19.5	0.9 k .	8,000	"
19	0.75 k .	8,000	"
18.5	0.65 k .	8,000	"
18	0.4 k .	8,000	Expansion less
17.5	0.3 k .	8,000	
17	0.2 k .	8,000	Meter stops; the water does not flow.

These proofs are conclusive, and the more so in that these same experiments, repeated with a pressure of 3 meters of water, led to the same results. In practice the meter under trial at the City Laboratory has already registered $4,000,000$ liters without the least evidence of its giving out, and it is to be presumed that, as regards duration, this apparatus may be classed among the best.-Revue Industrielle

Explosions without Fire and with Fire. Two interesting cases of explosion are described by Herr Pfaundler in a recent number of Wiedemann's Annalen:
A closed glass tube, two-thirds filled with liquid carbonic acid, was inserted a few centimeters deep in a bath of carbonic acid and ether, brought to a temperature of $-100^{\circ} \mathrm{C}$., in order to get crystallized carbonic acid. Beautiful crystals in order to get crystallized carbonic acid. Beautiful crystals
were soon formed in the immersed part of the tube, and a layer of the liquid acid remained above. The tube was
then raised by its upper part into the air, and in a few minthen raised by its upper pàt into the air, and in a few min

Fig. 3.-HORIZONTAL SECTION
As regards the length of time that the Jacquet
As regards the length of time that the Jacquet that provision is made against wear by a sandbox placed at the inlet to the apparatus, and which prevents gravel and other solid bodies from entering the distributing chambers; and, as regards all plastic impurities, such as mud, carbonate of lime, etc., that the water might hold in

Fig. 4.-TRANSVERSE SECTION.
suspension, no deposit of these is to be feared. The piston, in fact, working vertically, deposits could only occur on the bottom of the cylinder or the top of the piston, with out ever being in contact with the parts in friction.
Finally, the knife, which, with the spring, is the delicat part of the meter; is made of bronze of a hardness equal to that of steel. Moreover, although the great elasticity of the
tes it exploded violently. This tube had often before orne a rise of temperature to 31°. The explosion is attribated to thermal expansion of the solid carbonic acid (as more likely cause than vapor-pressure on glass rendered brittle by a low temperature).
In the second case, a large sheet zinc bell-gasometer, used xclusively for keeping oxygen gas, was concerned. It had stood about six months unused, containing a little of the gas. When the issuing gas was being tested with glowing match, an explosion occurred, shattering the apparatus. Any entrance of bydrogen or coal gas is out of the question. It is supposed that the water had gradually absorbed acid vapors from the air of the laboratory, and that the zinc had been thus attacked yielding hydrogen. The zinc was in fact somewhat corroded. It is recommended that the zinc in such cases be coated with a lac.

Pura Hydrochloric Acid

Giudice prepares the pure acid, whether gas or liquid, for experimental purposes, by the action of sulphuric acid on sodium chlorî̀e, but adds to the former some oxidizing substance like potassium bichromate or permanganate, or the black oxide of manganese. The gas is passed through mercury, contained in a Liebig's potash bulb, or other suitable apparatus, before it is passed into water or used.

