PLANE GUIDE

This deviee, which may be used on an ordinary work bench, is particularly adapted for use with the dado plane in cutting gains transversely or obliquely, and is so constructed that, after one piece is gained, any desired number of duplicates may be made without being previously "laid out.'
The plane guide-which may be eight or ten feet in length -is placed on an ordinary work-bench for use. A nadjust able guide, B, is hinged at the rear to the pivoted bar, A, and capable of being opened or raised vertically to facilitate the placing and removal of the stuff to be worked. The guide can also be adjusted to suit material of different thicknesses
C is a sliding gauge, which may be set at any desired position on the graduated plate or rule, D , and serves to mark the length between the gains to be cut.
In operation, the guide is opened to a vertical position, the material placed in position, the guide closed down and fastened, thus securing the material in position and furnishing a guid to direct the plane in cutting the groove. Th guide, in connection with the pivoted bar, ma be set at any desired angle and secured by the thumb-screw.
With this device, window frames, door frames etc., may be accurately gained in less time than is required to lay them out for gaining in the usual manner with saw and chisel ; besides, the work may be done by an unskilled workman. When not in use, the device, being hinged at H, may be folded up and placed in any conve nient place in the shop. Further particulars may be obtained by addressing the patentee, Mr. Wm. II. Stinson, Scandea, Kansas.

Artificial Goms.

P. Weiskopf gives in the Diamant the following formulæ for the frit or mass used in Bohemia for making imitations of some of the precious stones:
Imitation agates.-10 kilos quartz, 17 kilos red lead, 3.2 kilos potash, 22 kilos borax, and $0 \cdot 1$ kilo arsenic. The quantity of chloride of gold added is equal to that obtained from 0.4 of a ducat.
Agate glass. - 10 parts of broken glass is melted, and to it are added 0.15 part suboxide of copper, the same quantity of the oxides of chromium and of maganese, 0.02 part each of oxide of cobalt and nitrate of silver, 001 oxide of uranium 04 red argols, 0.3 part bone meal. Each oxide is added alrne and at intervals of ten minutes. After beating the mixture for an hour, 03 or 0.4 part of fine soot is put in.
Red marble -80 parts of sand, 40 of potash, 10 of lime, 2 of table salt. 1 of saltpeter, and $n \cdot 1$ of arsenic. The mixture is melted, and then 25 parts of suboxide of copper and 1 part of saftpeter mixed in
Artificial turquoise are made in Paris and Vienna that can not be distingüished by external appearances from the natural product, and when artistically made can only be distinguished by means of the file, being usually softer. They are made from phosphate of alumina and phosphate of copper mixed together and subjected to hydraulic pressure Even in chemical composition it resembles the natural mive ral, which is a hydrated plosphate of alumina with 2 per cent of oxide of copper

Artificial Vanilline.

Some six or seven years ago, the discovery of a method for the preparation of artificial vanilline, the odorous principle of the vanilla bean, was announced. Its production as a commercial article was soon begun, and high hopes were entertained that it would be a financial as well as a scientific success, but as yet its use is very limited and its price very bigh. Several methods for its production bave since been discovered and patented; the most recent is the subject o a patent taken by Meister, Lucins, and Brüning. Althougb a very simple one, the names of the products made use of enjoy the advantages of long names. The meta form of amido benzaldehyd is first converted into the diazo com pound, in the usual manuer, and by decomposing with water it forms meta oxyl-benzaldehyd. This is nitrated and methylated, and thus converted into para-nitro-meta-meth oxyl-benzaldehyd, $\mathrm{C}_{6} \mathrm{H}_{3} . \mathrm{NO}_{2} . \mathrm{OCH}_{3}$. CHO . By reducing th nitro group to an amido group, converting into a diazo com pound and decomposing that with water, they obtain vanil line, $\mathrm{C}_{6} \mathrm{H}_{\mathrm{s} .} \mathrm{OH} . \mathrm{OCH}_{3 .} \mathrm{CHO}$, the full scientific name of which is para-oxy-meta-methoxyl benzaldehyde. Whether this new and simple process will be any more successful than those hitherto tried is doubtful, to say the least.

Tin in Colorado.

A promising discovery of tin is reported in a Deriver Colorado, paper. The lode is said to be situated in the American basin, on the lake fork of the Gunnison, in Hins dale county, just beyond the San Juan county line, Col A poor prospector commenced work on the mine in 1874 The ore is of two kinds-leaf tin and English or silver tin carrying also fifty ounces of silver and five ounces of gold The vein is 12 feet wide, and shows on the surface for 1,500 feet. The ore is pronounced by experts in Denver, Pueblo, and Washington the richest tin ore ever discovered in thi country.

IMPROVED HOT AIR ENGINE.

The "vertical" bot air engines, it will be observed, diffe from hot air engines that bave already been introduced into the market in the arrangement of the cylinders. The air cylinder is placed outside the casing, offering thereby greater facilities for cleansing and lubricating, also fo examining the different parts. This cylinder is fitted with a metallic piston, and the shape of the cylinder enables this type of engine to be made as compact as possible. The action of the engine may be described as follows: After the fire is made the retort becomes heated to a dull red beat. This rise of temperature expands the small amount of air inside, which then forces the piston in the air cylinder downward. After this expanded air bas done duty, the downward. After this expanded air bas done duty, the
displacer, which is actuated from the crank, forces the air
stinson's adjubtable dado plane guide.

In answer to this query, propounded by Mr. Herbert Brown in a recent number of Knouoledge, a decided affirm tive may be returned. The toad is venomous, though not in the way that is implied by the general acceptation of that erm, as is commonly believed. Nothing can be more barmless than the bite of the common toad-if it can be said to bite, for it has no teeth. But the glands contained n the papillæ and rugosities of the skin covering the back, ad especially those which can be plainly seen in the form of two bean-like eminences just behind the head, secrete a milky, bighly acrid fluid, which is exuded profusely on ritation. Indeed, if it were not for this poisonous secre ion, the poor toad would fall an easy victim to many enemies, having neither the agility of the frog or lizard to enable it to make its escape, nor the teeth an claws of other reptiles wherewith to defend itself. Cats, which are eager hunters of frog for food, spit and foam at the mouth when they pick up the wrong batrachian by mistake, and pice often affected in a similar manner to aur are ofte affected in similar manner to Mr Brown's St. Bernard; frog-eating snakes, too detect the difference, and will not take toads, as a rule. When a snake, greatly pressed by bun ger, swallows one, it usually rejects it again immediately afterward, and not unfrequently dies. Those frogs which prey upon their own kind (as most frogs do) despise their ugly relative from an alimentary point of view ; and, curiously enough, certain toads which devour frogs share the same antipathy to their race Except with very small anim the pois pears to act an
which bas been condensed against the cold sides of the top part of the cylinder back to the bot end of the retort. A the piston performs its stroke, due to the expanded air in the cylinder, a small air valve is kept closed by the pressure, but as the piston makes the return stroke a small valve on the top of the cylinder opens for a sufficient length of time to permit air to enter the cylinder to replace any which has been permitted to escape through any defect in packing so that it will be seen that not only is it automatic in receiv ing the proper supply of air for expansion, but it is also automatic in its lubrication, for wherever this down strok is made a small amount of oil is drawn into the cylinde for lubricating the metallic piston. The manufacturer claim in this type of hot air engine that the design admits
of the engine being made mucb cheaper, as well as afford-

ing great facilities for examining, lubricating, and repairing, thau is the case with any other hot air engine. It is being made in considerable numbers by Messrs. Bailey \& Co. Salford, London.-The Engineer.

DUring a recent tornado in Brewer, Me., a plank was blown with such force against a cistern with wooden walls an inch and a balf thick, that the board penetrated some distance throngh the wall into the water. It was found that the board was wedged in so closely that the water did not leak, and the owner simply sawed the plank off, leaving the wall in the cistern all right.
toxæmic agent, it has no effect upon the sound skin, bu will cause any abraded surface to inflame to extensive ulceration, while great pain results from its application to the coujunctiva or internal mucous membranes. Any one who can overcome bis repugnance to the creature suffi ciently to put his lips or tongue against the skin of an angry oad will experience an intensely acrid taste; be should shut his eyes in making such an experiment, as the postoccipital glands sometimes emit their secretion in a jet. Mr. Frank Buckland quotes a case which occurred in Oxfordshire, where a drunken brute bit a toad's head off Happily, his teeth went right through these glands, and his mouth and throat immediately became swollenand inflamed to such an extent that his life was in jeopardy for some bours. These characteristics are much more strongly marked in many of the tropical Bufonidæ. My giant toads (Bufo agua) used to swelter venom when they were taken in the bands in such abundance that it would pour off their backs and drip from them, before they became tame; and I was thus enabled to collect a large amount. This species feeds on rats, and it is possible that thi copious exudation may serve to prevent their pres from biting them when seized by the leg, or otherwise awkwardly caught. I once put a "cribo" snake (Dromicus fugitivus) into a box with three of these toads for a single night, for lack of other accommodation; it was a fine, active speci men, five or six feet long, and its movements during the night so disturbed them that in the morning I found the floor of the box all awash with fluid. The snake wa lying on its back, apparently dead; and, though it recov ered somewhat on being plunged into a bath, it survived only a few days.-Arthur Stradling, C.M.Z.S., in Knowledge.

Photograph of an Explosion.

The United States Engineers recently photographed the explosion of a wreck, which was blown to pieces by submarine cbarges of dynamite, to ascertain, among other things, how long the spectacle really lasted. The result was exceedingly interesting. There were six cameras em ployed, and the instant of the explosion, as also the severa instants when the exposures were made by shutter, were electrically timed by a chronograph.
A photograph taken one-tenth of a second after the explo sion showed the vessel broken, and a column of water 70 feet high; a photograph secured 1.5 seconds after the iustan of explosion showed a column of water 160 feet high; third photograph, taken 23 seconds after, showed the column at its full beight of 180 feet, while fragments of wreck age were in the air, but none bad fallen to disturb the sur face of the water; a fourth picture, taken 3.3 seconds a ter showed the column falling, and the surface of the wate disturbed; while a fifth photograph, secured 4.3 seconds after, showed that all was over.

Height of Buildings.

In the Insurance Cyclopedia, Mr. Walford mentions the Swedish law which came into force in 1875, and which pro bibited the erection of buildings in cities and towns of a height more than five feet above the width of the street on which they are built. A wise precaution, says the Ameri can Exchange, to secure proper ventilation and avert the spread of conflagrations, and which somewhat qualifie Capt. Shaw's rule that the safety or saving of the individual gnited building is indirectly in the ratio of the height to rea or cubic content under equal combustible conditions otherwise. This is part of the question, whether we shal in the future build cities, or continue, as in the past, to build capricious individual structures.

