
a WeEkli journal 0f Practical inforvation. art. SCIENCE. MECHANICS, CHEMISTRY and MANUFACTURES.
NEW YORK, OCTOBER 28, 1882.

MACHINE FOR FIXING THE THREADS OF FABRICS.
The machine shown in the accompanying engraving is designed to effect one of the principal operations that have to be performed before the dyeing and finishing of cashmere merinos. The object of fixing is to render stable each filament composing the fabric, so as to keep the threads of the ment composing the fabric, so as to keep the threads of the
warp, like those of the woof, in the position that has been given them in weaving, and to prepare them to undergo the successive operation without the fabrics fraying or breaking. It is a moist finishing performed at a temperature equal to that which the fabrics will again have to withstand. In weaving, the threads of the woof, in crossing those of the warp, assume a wavy form that results solely from the tension that the latter have received. If a thread of the woof be removed from the fabric it will imperceptibly tend to assume its original form. It results from this that if the operations of dyeing were proceeded with before the fabric had been submitted to fixing, the woof th reads would become easily displaced and form frays. In the second place, as manufacturers of fabrics size the warp threads so as to give them greater firmness, it is necessary before proceeding to the fixing to remove this dressing, which exists in the proportion of 8 to 10 per cent, and which dissolves in water raised to a temperature of 40° to 50°
Fixing, then, consists of two very distinct operations: (1) the removal of the sizing, which is done with water heated to 40° or 50°; and (2) fixing, properly so-called, which is performed with water raised in this case to a temperature varying between 70° and 80°.
The new machine under consideration permits of performing the work continuously, and of obtaining a uniform treatment of the fabrics as well as a complete nixing of all give a certain tension to the fabric when it is passing from the
first into the second vat, or from the latter to the squeezer Rotary motion is transmitted to the receiving roller by means of a driving gear, acting progressively, and of a coupling sleeve. These mechanisms also actuate the roller of the second vat, through the medium of an endless chain. On leaving the first vat; to pass in to the second, the fabric passes over a guide-roller, for which there may be subsi tuted a widening bar or a stretching cylinder.
A maneuver similar to the preceding is performed in the second operation; so that, counting five minutes for the winding of a piece, the latter afterward remains for thirty minutes in each of the vats before being carried toward the squeezer.
The rollers are arranged for the reception of two pieces of roods of 100 meters each in length, but experience has shown that it is preferable to treat but one piece at a time. In this way there are prevented any irregularities that might otherwise occur in the selvages.
On its exit from the second vat, each piece descends into a reservoir containing tepid water, and afterward passes between the squeezing rollers of the drying apparatus. One of these rollers has a copper surface and the other is covered with India-rubber. The requisite a mount of pressure is given them by means of a pedal at the base, connected by levers with the parts above. It varies according to the nature of the fabrics and the degree of dryness that it is desired to obtain.
When the first piece begins to leave the squeezers, the operation proceeds afterward in a continuous manner. Thus, during the winding of a piece over the roller located in front, the back roller unwinds, and its fabric then winds about the first roller of the next tank. At the same time,

the fabric on the very last roller disengages itself, passes into the reservoir of tepid water, and then goes to the squeezing appàratus.
The mechanical movement of the folding machine draws the fabric on to the table, where it is properly arranged in folds, and from whence it is next taken to undergo the operations of scouring, rinsing, mordanting, and dyeing.
The same machine, arranged with perforated rollers and a pump for the circulation of liquid through the fabric serves likewise for the ungumming of silks and the rinsing and scouring of cotton and woolen fabrics.-Revue Indus trielle.

Hints to Swimmers.

When a swimmer gets chilled the blood ceases to circulate in the fingers, the finger nails become a deathly white color, the lips turn blue, and should he persist in staying in the water after these symptoms develop he is sure to have cramps. So long as the swimmer can discern spots on his finger nails he knows that his blood is in good order, and that he is safe and free from chills. I have been remark ably free from chills, and feel most at ease when in the salt water under a hot sun. Salt water seems to attract the heat, and, no matter what the temperature of the water, under these circumstances I feel warm. I bave on some occasions swum so as to keep my body under water, but even in such instances on coming out I have found my back and limbs blistered. This shows the penetration of the heat from the rays of the sun on the water. On one occasion, since I was here last, I swum for $£ 400$ at Scarborough, staying in the water seventy-four hours. I use a preparation of porpoise oil, which I rub all over my body even my face. The oil fills up the pores of the skin and keeps the salt water from permeating my vitals. All pro fessionals now use oil.-Captain Webb, in Boston Herald.

Albumen in Cows, Milk.

Dr. Schmidt, Mülheim, has been investigating the nitrogenous bodies in cows' milk, about which so much diversity of opinion has hitherto prevailed. He says that three albuminoid substances are regularly present in the milk, viz. caseine, albumen, and pepton. The average of seven analyses gave 2.43 per ceut of caseine, 0.38 per cent of albumen and 0.13 per cent of peptons. Under certain circumstances the amount of albumen may increase until it equals that of the albumen. The pepton is formed from the caseine by fermentative process; this ferment is destroyed by a boiling temperature, but its activity is not destroyed by salicylic or carbolic acid, so that in this respect it resembles the fermen that digrests the albuminoids. Since milk, on long standing, may lose 10 per cent or more of its caseine by its couversion into peptons, it should be made use of as fresh as possible when employed for making cheese

Sulphocyanide of Barium

The adulteration of this substance is carried to such a degree that in some French specimens only 80 per cent of the pure salt, $\mathrm{Ba}(\mathrm{SCN})_{2} 2 \mathrm{H}_{2} \mathrm{O}$, was found, the impurities consisting largely of barium chloride.
Dr. J. Tscherniac gives the following simple test. The sulphocyanide of barium is completely soluble in absolute alcohol, while all the barium salts that can be profitably em ployed for adulteration are insoluble in it, or very slightly so. Hence it is only necessary to shake a sample of the salt with two or three times its weight of alcohol, and then wash, dry, and weigh the insoluble residue, to determine the quan tity of impurities.

Remarkable Surgical Operation

The Paris Academy of Medicine was yesterday informed by the operator that the young man on whom an operation was performed for the extraction of a spoon from bis stomach has completely recovered from the effects of the hazardous operation, and is now enjoying bis usual health. Interesting particulars are given of this operation, which was performed by Dr. Felizet. By the use of the Faucher tube introduced through the mouth the stomach was cleansed prior to the novel operation, which prevented the risk of peritonitis. An incision was then made in the epigastric region. In order to render the coat of the stomach easily accessible, M. Felizet employed the following contrivance: To the end projecting from the man's mouth he fitted a spherical vessel containing ether. This he heated by submersion in water of sixty degrees tempera ture. The ether vapor rushing through the tube filled the stomach, which, becoming distended, was brought forward to the wound effected by the operator's knife. The spoon was thus readily found and extracted. It measured over nine inches. It had been accidentally swallowed by the man, a waiter at a café, in the attempt to imitate the feats of the famous sword-swallower.-Paris Correspondence of the London Standard, October 7.

The northernmost place in the world where rye and oats mature is at Kengis, in the Swedish province of Norrbotten forty-nine miles to north of the Polar circle, whereas the northernmost spot where corn is grown is at Muoniovara ninety-eight miles to north of the circle.

The Bell patent would, it is considered by those compe tent to form an opinion, be cheap at $\$ 10,000,000$. The con solidated telephone interests of the United States are estimated at from $\$ 100,000,000$ to $\$ 150,000,000$.

srientifir Gmoriam.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors. published weekly at
No. 261 BROADWAY, NEW YORK.

o. D. MUNN.

A. E. Beach.

TERMS FOR THHE SCIENTIFIC AMERICAN.
One copy, one year nostage included.. 160
One copy, six months postage included
 Same proportionate rate. Postace
Remit Ly postal order. Address

MUNN \& CO., 261 Broadway, corner of Warren street, New York

The Scientific American Suppiement is a distinct paper from the SCIRNTIPIC A AMERICAN 'THE SUPPLEEMENT
is issued weekly. Every number contains 16 octavo pages, uniform in size

Sclëntifl American Export Edition
The ScilvNific Amivrican Export Edition is a large and splendid peri

worla
to
noun
pun

NEW YORK, SATURDAY, OCTOBER 28, 1882.
Contents.
(Illustrated articles are marked with an asterisk.)

TABLE OF CONTENTY OF

THE SCIENTIFIC AMERICAN SUPPLEMENT IVO. 356,

For the Week ending October 28, 1882

Price 10 cents. For sale by all newsdealers.
解 House, Washington.

QUEER DOINGS IN OIL

The summer of 1882 must pass into history as having wit nessed the most memorable doings in the annals of the petroleum trade of Pennsylvania. In the Scientific American for July 22, 1882, reference was made to the re sults which followed the opening, in May, of the new oil deposits in Warren county, Pennsylvania. A most ruinous policy was followed by the producers, who succeeded in 7 obtaining a lease upon the prolific sand rock. Five wells to the acre were pierced in the heart of the rock, and when signs of weakness were no ted in the flowing of these wells, nitroglycerine torpedocs, of 40 quarts each, were exploded in the bottom of the well. The latter, in a number of cases, yielded when first struck 2,500 barrels every twenty-fou hours; at least one produced 3,000 barrels, and a 500 barre well was regarded as a small affair. Other and older oi regions were comparatively deserted, and in August last the new field, from less than 200 wells, was yielding 25,000 bar rels of oil daily, bringing up the production of the entire oil regions to the unparalleled figure of 105,000 barrels daily, and sending the price below fifty cents per barrel. But it was the fable of the killing of the goose that laid golden eggs modernized and enacted on a stupendous scale.
Early in September, after the best wells had been "shot" by torpedoes repeatedly, they suddenly ceased producing in a way that caused a revulsion of feeling and intense excite ment among all interested in producing petroleum. By October 1st the daily production had, in all the regions, fallen off nearly 25,000 barrels, and for the first time in five years, production and consumption nearly approached each other, namely, 70,000 barrels per day. Prices advanced, and the excitement at the Oil Exchanges of Pittsburg, Oil City, Titusville, Bradford, and New York City was so great,

