NATIONAL TELEPHONE ASSOCIATION.

The fourth convention of the National Telephone Associ ation of the United States met at tbe Hotel Vendome, Bos ton, Sept. 5. The attendance was large. The American Bell Telephone Company, of Boston, made every provision for the comfort and entertainment of delegates. Hon. Marshall Jewell, ex-Governor of Connecticut, was chosen president of the association.
At a Nantasket Beach dinner, President Forbes, of the American Bell Company, expressed, in a brief address, the kindly feeling of the parent company toward the various exchanges throughout the country. Gov. Jewell responded for the association, paying handsome and deserved compliments to President Forbes and General Manager Vaile.
Mr. Gardiner G. Hubbard, of the original Bell Telephone
Company, and who is the father-in-law of Prof. Graham Bell, the inventor of the telephone, followed in an address, reviewing the history of the development of the telephone. He divided the history of the telephone into epochs. The first was eight years ago, when Professor Bell, rising from a piano where he was seated, declared himself convinced that the sound of the human voice could be carried in tone waves upon electrical wires. Another epoch was later, when one day the professor entered his room and handed him a piece of iron attached to a wire. Placing it to his ear he was amused at hearing articulate sounds. The next was when he stood among others, with the Emperor of Brazil, at the Centennial Exhibition, in Philadelphia. The telephone had been mounted, and was on exhibition. The Emperor, placing the instrument to his ear, started back, exclaiming, "My God, it speaks!" Another epoch was the establishment of the first telephone exchange. Still later and marked periods were when the present management of the American Bell Telephone Company took the control of affairs, and when the Western Union Telegraph Company besame identified with its interest
Out of about 600 exchanges, the whole number of exchanges reporting was only 81 , covering about 30,000 telephone subscribers.
Of exchanges having more than 1,000 subscribers, the Metropolitan Telephone and Telegraph Company, of New Yorik City, comes first, with 2,873; the Law Company, of the same city, has 578; Chicago has 2,596; Cincinnati, 2,056; Providence, 1,906; San Francisco, 1,294; Boston, 1,186; Detroit, 1,110; Albany, 1,100; Buffalo, 1,047; Louisville, 1,024 ; Baltimore, 1,017 . The smallest number of subscribers in any exchange reporting is ten.

During the year there has been a general increase in the number of subscribers.
Mr. Babcock, of Evansville, Ind., reported that his exchange had 700 miles of No. 14 wire, and that in building one of the lines, 45 miles long, the lineman got drunk and neglected to put on any insulators, merely tying the wire to t.le poles. After the wire was up, he could see no difference between its working and that of others that were insulated, and they had built some of their other lines also without insulators, and they had worked well. The exchange now has 400 miles of lines which have been working for a year without insulators. He was not an electrician himself, but those who claimed to be electricians had told him that, although the lines might work in dry weather, he would be unable to do anything with them in wet weather; he had not, however, found that this prediction had come true. On an 81-mile line he has often whispered over it of an evening, and the whisper has been heard distinctly at the other end, allhough on twenty miles of it there are no insulators. The exchange has two 40 -mile lines running parallel, the one insulated and the other not, and no one can tell by the working which one he is on.

DAIRY INTERESTS OF ITALY.

In our issue for June 10, 1882, a valuable description of Italian cheeses and the processes of their manufacture was reprinted from the Journal of the society of Arts.
We have siuce learned that the information given by the Journal was drawn entirely from a report on the Dairy Interests of Italy, by Thos. C. T. Crain, U. S. Consul at Milan, to whom all the credit should be given. Mr. Crain's report was printed in the issue of "Commercial Reports" (Department of State, Washington), for August, 1881. In addition to the matter quoted, Mr. Crain gives a considerable amount of information with regard to other dairy interests in Italy, dairy associations, cheese factories, and so on.
The account of butter making is quite interesting. Families having little milk use cylindrical churns, in which the cream is shaken by movement of the churn handle. Factories use large cylindrical churns on trestles, in which are wings turned by machinery. In Pavia, round boxes called "puraggie" are used. Each box has a spoon fastened to an axle which is turned with a crank by two men. Some use a cradle churn, which saves labor and produces equally good butter. In Cremona, an American machine is in general use. It is a horizontally fastened tub, in the interior of which is a reel similar to that used in silk-making. The dairyman of Parma beats the milk with a cream-whipper, and skillfully lets the floating cream, which gathers in the bucket, overflow into a fine edged wooden bowl, and thence into the churn. The temperature of the cream is always kept from 10 degrees to 15 degrees Reaumur (55 degrees to 65 degrees Fahr.).
In churning two men alternately beat the cream with a butter beater joined to a straining frame, raising and cover-
quarters of an hour. When it is necessary to hasten formation, water is added; where advisable to retard it, ice. If made before the time mentioned, the butter is soft; if after, hard and set. When prepared it is taken from the churn, worked with the hands, formed into blocks, and left to
drain. The skimmed milk is used for the ricotta cheese. In Cantanzaro butter is made with the old fashioned churn. The butter is kept by inclosing in small bladders in which it can be conveniently kept and carried about without danger of change.

At Modica, where the butter is delicious, it is not made directly from the cream but from the "ricotta," which is obtained by boiling the "small " milk after extracting the caseine. The butter maker of Sardinia puts the "ricotta" in a bowl of cold water, and shakes and presses it with his fingers. In half anhoura whitescum appears on the surface of the water; and by continued movement and pressure of the "ricotta" the scam increases during the succeeding balf hour. This scum is the butter of the ricotta.
Mr. Crain finds that darry associations and the factory system of cheese making have existed since remote times in Savoy, the French Jura, and on the Alpine slopes.
Where land is owned in small plats, as in the mountain ous parts of Upper Italy, large dairies are impossible, and cheese making can be carried on only by the factory system. During the past eight or ten years, under the fostering influence of the government, these cheese factories have greatly increased in number and improved in management. They are found everywhere exceptin Sicily, where a curious custom prevails.
The small producers carry their milk to the large pro ucers; and after theirdeliveries have amounted to 250 or 350 quarts, they receive that quantity back again at one time. This system of reciprocal loans is said to work well and be beneficial to all, as a large quantity of milk worked at once makes more cheese than the same amount of milk worked in small quantities at different times.

Damp Houses and How to Remedy Them.
Damp houses are a fruitful source of discomfort and dis ease, and yet, as important as their influence is, it is amaz ing how seldom means are taken by which the evil may be prevented. When a house is said to be "well drained," however true this may be of the plans adopted for carrying away the refuse water of domestic operations, it very rarely means that the site has been drained to prevent damp.
When experienced medical men see house after house built on foundations of deep retentive clay, inefficiently drained, they foretell the certain appearance among the inhabitant of catarrh, rheumatism, scrofula, and a host of other diseases of a similar nature. Where a damp house exists in connec tion with deficient sewerage, drainage or a cesspool full of decomposing material-an unfortunate conjunction too often met with in country and suburban houses-other and more dangerous diseases, as typhus fever, are induced. The watery mist of fog rising from a damp soil affords an admirable vehicle for the subtle and deadly exhalation of the decomposing drainage matter, by which they are too certainly conveyed to the interior of the house. And, physiologically dependent upon this condition of affairs, a mental as well as a physical depression is induced, which drives those subjected to the temporary relief afforded by the use of ardent spirits and other stimulants. Thus, in this, as well as in other departments of sanitation, the connection between physical and moral disease is easily traced. There can be no doubt as to the increased pecuniary and sanitary value of land suitable for building sites, arising from efficient drainage being carried out. The greater the inducements offered by the healthy condition of a neighborlood, the greater the value of the land for building sites. An excess of moisture in any district inevitably influences the local climate both as regards dryness and temperature.
The most effectual preventive of damp houses is the complete drainage of the site on which they stand. All other remedies are but remedies in name, more especially when the soil is very damp; in such a case lead or slate placed round the bottom courses of the foundation with water-proof cement may prove efficient for the time, but will ultimately ff surplus water from The system of drainage for carrying or conveying away domestic refuse water, etc. In the latter it is essential, nay, imperative, that the drains should be water-tight, capable of conveying the water admitted to their interior immediately to its ultimate destination, but ncapable of passing any of it to the surrounding soil through which the drains are laid. The former, on the contrary, should be permeable throughou their length; that is, have apertures of sufficient width throughout which the water of the surrounding soil can find its way into the interior of the drain, which should be of such a shape as to facilitate the removal of the water to its destination, preventing its return to the soil.
In laying and forming the drains the following points should be attended to: The first to be observed is the uniformity of slope or level of the bottom of the trenches. The method of accomplishing the perfectly uniform slope of the drains, from their highest point to their outfall, is by the use of level-rods or the spirit-level. Not so with the level-rods, as following description of their uses will show: Three rods are required, two of them two feet long and the third as much more than two feet long as the drain is deep-that is, if the drain is three feet six inches deep, the rod must be five feet six inches long. The rods are strips of wood with cross
pieces nine inches long on the upper end. The two shorter rods are planted upright, one on tbe ground on a level with the field at the head of the drain, and the other at the lower end, and a person stauds at one of them looking over its top, with his eye on a line with the other. A second man then takes the longest rod and holds it upright in the drain, just touching the bottom, and walks along from one end of the drain to the other, keeping it in an upright position. If, while it is moving along, its top al ways appears on a line with the tops of the otber two-as seen by the person looking along the three-the fall of the drain is uniform; but if it risesabove his line at any one place, the bottom is too high there, and requires to be reduced; if it falls below the line the bottom is too $\overline{\mathrm{I}}$ ow, and must be raised. In this way the fall may be rendered perfectly uniform. In cutting drains the best way is to commence with the main drain, and at its lowest point, working gradually up to the highest. An intelligent mason or carpenter may be intrusted to make drains of this sort at very little cost, and we are sure no houseowner who cares for the health of his family will ever regret the investment. -Builder and Woodroorker.

Coal in Colorado.

The Denver (Col.) Journal of Commerce reports the exist nce in Gunnison County, until recently known as the Ute Indian Reservation, of a bed of coal thirty feet thick, covring in one place sixteen hundred acres.
It is situated on a small stream tributary to the Uncom pahgre River, about eight miles northwest from the Las Pinas Indian agency, and one hundred and seventy-six miles southwest from the city of Denver. The coal crops out along the mountain side about eighty feet above the plain where exposed it shows a thickness of thirty feet of solid coal. The Journcel says that the coal is semibituminous and of a jet black color, and adds:

- It has been analyzed by Professor Wuth, of the city of Pittsburg, Pa., and pronounced by him to be of an excellent quality. It is almost entirely void of sulphur, and will smelt iron without coking. It has been used by the miners n that vicinity for the purpose of dressing their steel drills, and pronounced hy them to be superior to charcoal for that purpose. There is no doubt, taking into consideration the thickness of this vein and the extent of the deposit, that it is the largest vein of coal yet christened on this continent. It was discovered about two years ago, when the Indians held possession, by some prospectors, who associated themselves together so as to hold it until such time as the Indians should be removed, and the land thrown open for entry and location, which has now been done."

Chimney Draught.

At the closing meeting of the British Association Lord Rayleigh read a paper before the Mechanical Section on the effect of wind on the draught of chimneys, based upon ex periments made with tubes and a fan driven by hydrauiic power. He stated that a horizontal wind would usually promote a draught, except in cases where the chimney opened out upon a large expanse of wall, and so was indirectly affected. The cure in this case was to carry the chim ney higher. When the wind was inclined downward to the chimney at an angle of thirty degrees and upward, there was a down-draught, and the maximum up-draught was produced by wind inclined upward at about the same angle The simplest thing to prevent wind blowing down a chim ney was to erect a T-piece on the top. In that case a verti cal or inclined wind favored the draught, and the effect of a wind blowing through the \mathbf{T} tube was practically nothing. Mr. Park Harrison suggested as the only real remedy an ncrease of draught. A member contended that chimneys should be turned upside down, the opening at the fireplace being uarrow and the outlet widened. If all the chimneys in a house could be made to open into a common cloaca, a down-draught would hardly ever occur.

uture of Tendon.

Dr. Yeats recently presented a case to the Manchester Medical Society (British Medical Journal) where he had, six weeks after an accident, united with four catgut sutures the divided ends of the tendon of the extensor communis digitoum of the middle finger, at the metacarpo phalangeal joint. The skin wound was united by silver sutures. The opera ion was done antiseptically. The wound healed in four days; and three weeks afterward the patient had perfect control over his finger s, flexion and extension being perfect. At the end of five months the fingers were as strong and useful as before the operation.

Lake Constance.

The shrinkage of Lake Constance, in Switzerland, owing the extraordinary dryness of the past winter, has brought o light many interesting relics. Among them there are bone and flint implements, harpoons, pottery, many specimens of which are intact, clubs, baskets, arrows, field tools, and animal remains. Among the latter are skeletons of the bear, the bison, and the moor-hen. The discovery also in cludes a considerable quantity of oats and wheat in a good state of preservation, and a remarkably perfect and artistically executed stag horn harpoon. The relics have all been removed to Frauenfeld, and added to the collection of the ocal historical and natural history society, which is now the richest in lacustrine objects in the Helvetic Confederation.

A Great Gas Project

The fact that Bradford, Wellsville, Richburg, Bolivar, and all the towns and hamlets on the northern and middle oil fields are not only lighted, but heated by gas, the machine shops, boilers, and hotels being supplied with the same fuel, has attracted the attention of capitalists, and, according to a correspondent of the Philadelphia Press, a syndicate is forming to still further utilize the natural gas of the northern belt, which extends from Lake Erie east 200 miles, and from Bloomfield. Ontario county, N. Y., south to near Pittsburg; in other words, nearly 200 miles square. As an evidence that this gas is practically inexhaustible, the fact is stated that one well at Sheffield, Warren county, has been flowing steadily for fifieen years, and another in Westmoreland county nearly as long, and the gas from either would light and heat the city of Philadelphia. It is stated that the gentlemen who are interested in the enterprise are all large capitalists, and are confident of ultimate success in sup plying the great cities of the Union with gas, for light and fuel, at much less rates than even electricity can be furnished.

American Public Health Association

The American Public Health Association will hold its tenth annual session at Indianapolis, Ind., October 17 to 20 inclusive. Papers are promised on many subjects of sanitary interest, including the different action of disease in the white and the black races, the removal of excreta, heredity, the work of sanitary asso clations, vaccination, intermittent fever in New England, and cattle disease. Committees will report on the prevention of venereal diseases, compulsory vaccination, the management of epidemics, cattle dis eases, the National Museum of Hygiene, and other matters of popular and professional interest. Two proposed amend ments to the constitution will come up for action. Information with respect to contributions, membership, transportation, and so on, may be had of the secretary of the association, Azel Ames, Jr., 12 Pemberton Square, Boston.

A Rocky Mountain Railway Tunnel.

The Denver and South Park Division of the Union Pacific Railroad pierces the main range of the Rocky Mountains, 150 miles southwest of Denver, Colorado. The length of the tunnel is 1,700 feet, and its altitude above the sea 11,500 feet. The approaches on either side are described as marvels of engineering skill, laid through scenes unrivaled for grandeur and magnificence. Although the tunnel commences with a sharp curve at its eastern end, so nicely was the engineering done, that when workmen from either side met in the heart of the great snowy range, they found only abnut one inch variation in the respective bores.
This tunnel, said to be the highest in America or Europe, leads to the new silver region of Gunnison.

IMPROVED PLOW COLTER.
The annexed engraving represents an improved plow colter recently patented by Messrs. David Morris and Hugh Speirs, of Bunker Hill, Ill. This plow colter is constructed with a circular blade provided with a hub having a removable metallic bushing inserted in it, and a wooden pin passes through the bushing and is attached to the ends of the

MORRIS \& SPEIRS' PLOW COLTER.
colter yoke, one of the ends being countersunk to receive the head of the journal, and the other end perforated to receive a pin passed through the opposite end of the journal. Leather washers are inserted between the ends of the hub and bushing and the yoke. By this arrangement the wear is lessened, and the parts subject to wear can be readily and cheaply renewed, and the expense of purchasing the more costly parts of the colter is avoided.

A Pony Ranch in Texas.

A Texas paper describes an 8,000 acre ranch in that State entirely devoted to the breeding of ponies for children. The breeding stock consists of seven Shetland stallions and fortyfive mares, all thoroughbred, and two bundred small spotted pony mares. These little ponies range over the prairies like sheep, and are described as very gentle.

WORRELL'S COMBINED DRIER AND COOLER.

Liabilities of Employers for Injuries to Workmen.

In an action against an employer for the death by injury of a workman, it appeared that the death was caused by the slipping of a plank on which deceased was at work, and which had negligently been placed on some guard rails. The employer was not present at the time, but had left the work in charge of a competent ioreman. The work was the building of an iron bridge. The work was in its nature perilous, but the peril was obvious. Ample materials were at hand to secure safety, but the precautions for safety were neglected through the fault of deceased and his fellowlaborers. Held, that defendant was not liable for the death. laborers. Held, that defendant was not liable for the death.
The servant engaging in hazardous empluyment assumes its The servant engaging in hazardous employment assumes its
risks, but does not those of the negligence or malfeasance of the master. The master must use diligence, having of the master. The master must use diligence, having
respect to the nature of the service, to provide the proper materials, appliances, and instrumentali ties for doing the work, and also to use due diligence and care in the selection and employment of competent and careful fellow-servants for the particular work or service to be performed.

Discoveries of Magnetic Iron.

In sinking an Artesian well on the premises of the St. Paul (Minn.) Harvester. Works, magnetic effects were noticed. At the depth of 630 feet a hard stratum was struck, and operations continued to be very difficult for a distance down of 40 feet or more. On analysis the substance of the harder rock proved to be magnetic iron ore, exceedingly rich in quality. A second well has been begun to determine whether the ore deposit underlies any considerable area. There is
hence the necessity of heating the air, which should be as dry as possible, and made to move rapidly, so as to remove
the moisture from the surface as it works its way out from the moisture from the surface as it works its way out from the center of the body being dried."
The inventor of the machine herewith illustrated, after ten years of practical experience with three different driers, has devised a machine which appears to carry out the ideas just quoted in the most simple and effectuil manner. It is all iron, with no bearings exposed to the heat, simple, and therefore not liable to get out of repair, requires little power, and is economical to operate, as it presents large surfaces, utilizing all the heat.
This machine is virtually a new departure among driers, being constructed so as to cool the material being dried, as well as dry it, in one and the same operation. All persons who have operated drying machines know how much labor and trouble it requires to cool grain (to prevent it from "heating" in bulk) after it has been discharged from the drying machines ordinarily used. In fact this labor is often greater than that required to dry the grain. This very serious objection is entirely overcome in Worrell's combined drier and cooler, and this feature largely increases the value of the machine.
A few words will suffice to explain the engraving, so that any one can easily understand the operation of the drier The furnace surrounds about one-half of the long drying cylinder, which is slowly rotated by the friction wheels con nected by short shafts with the two pulleys seen at the left. The exhaust fan is shown just above these pulleys. The grain or other material being operated upon is fed into the cylinder through the air spout, where it is spread by the troughs, which run the entire length of the case, into a number of thin streams, as represented in the enlarged cross section of the cylinder. This view gives a good idea of the large amount of metal surface furnished for heating the grain and air; and what a very large surface of grain is presented for the heated currents of air to absorb the moisture from. Owing to the inclination of the case, which can be varied while in motion by screws, the grain gradually passes to the lower or discharge end.
After it has passed through that portion inclosed by the furnace, the cooling part of the process is accomplished by the same current of air which is drawn in at the lower end which is open. The grain is here discharged into the hop per in a dry and cool condition, suitable for storing in bulk for shipment or immediate consumption. It will be noticed that the grain nowhere comes in contact with the gases of combustion, and consequently it is not tainted and thereby rendered unft for food.
This machine is adapted for drying and cooling damp or musty grain, seeds, berries, fruit, brewers' grain, tobacco, salt, sugar, and other granular substances. It is peculiarly suited for drying corn for export meal, or new corn, so that it may be graded as old. Elevator owners will notice that this machine may be used without the furnace to cool beat ed grain.
This invention was patented April 25, 1882. These machines are furnished of any size up to a capacity of 5,000 bushels per day. There is now in operation one of 2,500 bushels capacity at Hannibal, Mo., where it is exhibited to interested parties. Any further particulars may be obtained by addressing the patentee, S. E. Worrell, Hannibal, Mo.

The largest and oldest chain bridge in the world is said to be that of Kingtung, in China, where it forms a perfect road from the top of one mountain to another.
not a little excitement in the neighbor-
hood, the belief being that St. Paul is destined to be the center of a great iron producing country.
A dispatch from Yankton, Dakota, dated August 22, says that the second Artesian well bored there has developed powerful magnetic properties. It would be interesting to know more of the nature of the rock penetrated. Perhap there is iron in that place also.

DROP PRESS BELT PROTECTOR.

Since drop presses have been run by power with a rope or belt over a moving pulley to raise the drop, there has been wanting some arrangement to keep the belt or rope off from the pulley when the drop is not in use, as when the belt or rope is in contact with the pulley it is continually wearing and heating, which causes the rotting, or rather slow burn ing of the belt.
This unnecessary friction is accompanied with a continual disagreeable noise. During a considerable portion of the time from one cause and another drops are not in use, either on account of repairs, or for want of work, or waiting for dies to be set, and as it is not usually convenient to take off the belt or rope, it is generally left on until worn out. It will thus be seen that quite a saving can be effected by the use of a device for keeping the belt from the pulley, besides preventing the noise.
In the accompanying illustration is shown a device that will meet all the requirements, and that can be easily made and applied. There are only two steel springs and two shafts with rawhide wheels. The two springs are riveted together in the middle, and the under spring fastened to

DROP PRESS BELT PROTECTOR.
the rope or belt by cross pieces, as shown in the engraving; the wheels and the upper spring are to raise the belt, while the under spring keeps the belt off from the pulley, while suspending it over the moving pulley, and at the same time keeping it ready for use, the same as if in contact with it, and offering no hinderance when it is required to swing the drop for heavy work.
This invention haś recently been patented by C. R. Bannibr, of West Cheshire, Conn., from whom further information can be obtained.

A volcano named Sheramino, in the center of Japan, which had been silent for seventy years, broke out in eruption on August 6. A severe earthquake shock was felt in Tokio and Yokohama on August 18.

