The Alligator Industry

The business of killing and catching alligators gives occupation to many persons in the South. According to the St. Louis Globe-Democrat the bide of a large alligator is worth from one to two dollars. It is almost a day's task to skin a large one. Alligator oil has quite a reputation as a remedy for rheumatism. It has, however, a most unpleasant smell, unless properly treated. Many fishermen have been known to eat portions of the meat, that of the tail being said, when something like pork. Quite a lucrative business is that of capturing alligators alive to send a way for exbibition. Colonel Williams, when Spanish Fort was made a summer resort, made a ish Fort was made a summer resort, made a
contract with a fisherman to fill the hole known contract with a fisherman to fill the hole known
as the alligator pond for him, and in the course of a couple of weeks he had it stocked with thirty or forty, ranging in length from 6 inches to 7 or 8 feet. The man who caught them showed no fear in bandling the huge reptiles. With a companion be would capture and bring into camp an alligator 16 feet long.
The manner of accomplishing this feat was, as he explained, quite simple. The old are savage and will fight for their young. and this fact is taken ad vantage of. Some of the young are caught out of the spot in which the old one is lying, and a stout noosed rope is then placed where to emerge she must thrust ber head through it. When all is ready the young are allowed to cry out, and the old one thrusts allowed to cry out, and the old one thrusts
out her head to bave her neck caught in the out ber bead to bave her neck caught in the
noose. She is dragged around in the water until pretty well choked, when another noose is secured to her tail, and she is firmly strapped stomach downward, on a wide board, which she cannot break, as her pow erful muscles in the tail act only in
a lateral direction. Her head is then fastened to the boat the noose about ber neck is romoved, and she is the boat, the noose about her neck is removed, and she
after her young have been placed in the skiff.
after her young bave been placed in the skiff.
Young ones are bought by dealers for from $\$ 2$ to $\$ 4$ a dozen, if not over a foot in length. When they sell them they get a much higher price, as they are bard to preserve alive. The large ones are sold differently, there being an increase in price of 50 cents to $\$ 1$ for every additional foot over a certain length. Alligators 16 or 18 inches long are frequently found by the dozens in shallow water, and can be handled without trouble, providing the old one, who is generally near, does not take alarm. Most alligator fishers are usually turtle bunters also, and search along the shores of bayous and lagoons for the boles of the animals. When the hole is discovered it is explored with a long pole with a big hook set in the end, and if the unfortunate resident is at home be is promptly dragged out in spite of bis struggles and quickly appears in market. The eye of a young alligator is a queer and pretty sight, is a queer and pretty sight,
having the fire and appearbaving the fire and appear-
ance of an opal of a similar size.

Embalming.

Fig. 3. Monas Okenii, not colored, and considerably magnified, so as to show the apparent interruption produced by transverse scission.-Fig. 4. The same colored by Paris violet, and considerably magnified to show transverse scission.Fig. 5. Monas Okenii exhibiting a not very frequent division. Protoplasm colorless, containing extremely fine granulations. (Magnif. 5:O diameters.)
cooked, to have much the appearance of veal and to ten long series of ages, have worked without relaxation at the

the Natural Reddening of water.

In human societies the persons most in sight are rarely
the most useful. The obscure workers, the humble and the ignorant, are in reality the ones who render the most service. It is the same in animate nature among living beings it is the smallest the least well known, that play the greatest role in the world. The formation of cert tinents is the work of microscopic organisms which, for a
long series of ages, have worked without relaxation at the

Fig. 1. Monas Okenii in the course of active division.-Fig. 2. The same colored by Paris violet. (Magnif. 530 diameters.)
magnificent spectacle of the phosphorescence of the sea. I have had the good fortune to witness several times during the last t wo years a phenomenon none the less curious, in the tanks that serve for watering the Jardin des Plantes, at Paris. This was the conversion of the water into-I was about to say wine, so similar to the latter in its beautiful red color was the water that I had observed a few days before perfectly clear. Nothing could have allowed the extraordinary change that occurred to be foreseen. Great was my surprise, then, when I found that the entire liquid, from the lower part of the tank up to the surface, was strongly tinged with red. Drawn up by means of a pipette from differeut depths, it everywhere exlibited the same appearance. When poured into a glass it exhibited by either reflected or transmitted light almost the same aspect as a solution of fuchsine. And yet, far from being cloudy, far from holding the least visible particle in suspension, it was absolutely limpid. The microscope caused the prodigy to vanish; for, on examining a drop of the bloody fluid under a magnification of 500 diameters, although I found it as byaline as normal water, I discovered in it clouds of red organisms in motion, as numerous as the stars in the beavens. Nothing can give to one who has not seen it any idea of so immense an overfiow of life in so small a space. The restlessness of these animalcules was extreme; pressed one against another, they swam with wonderful rapidity in all directions in the liquid, some turning over and otbers moving in a spiral or describing fantastic sinuosities and endless gyrations. The apparent coloring that the water exhibited to the naked eye was due, then, to the multitude of living beings that it contained. Fig. 1 shows these curious little animals as I observed them in the water. They are very different from the algæ (Hematococcus nivalis) which, according to Ehrenberg, sometimes color mivals) snow red. They approach, rather, the nudoflagellate infusnow red. They approach, rather, the nudoflagellate infu-
soria, and I refer them, in fact, to the group of monads, soria, and I refer them, in fact, to the group of monads,
although the organism, Monas okenii, Ehrbg., with which I identify them, has not offered me all the characters now attributed to that group. I bave been enabled to cultivate them, follow their movements, and then to reproduce artificially in the laboratory the phenomena that they give rise to in nature. My object in making them known is to incite others to researches of the others to researches of the
same kind; for I feel only too well the imperfection of my own, and the great interest it would prove to science to have them completed by more extended observations. It has doubtless happened that many persons bave been struck with the singular coloration that the water of ponds in the country takes on at certain seasons of the year. Were the liquid submitted to microscopic examination there would probably be observed in it an infinity of animalcules analogous to those whose evolution I have endeavored to determine.
It would prove very important for biology in general to gather precise facts as to the development, mode of
Experiments have been made at the New York morgue to test a process by which a portion of the past and connects us with the future, is nutrition, and reproduction of those beings that represent it is claimed dead bodies, though badly swollen and de- effected through the innumerable legions of animalcules and living matter naked, so to speak, and consequently life itself composed, can be restored to something like a natural microphytes that surround us. Of these, there are some, in its simplest state, in what it possesses of absolutely essenappearance, and preserved so that it will be recognizable indeed, that enter our blood and our tissues, and bring about $\begin{aligned} & \text { tial. }\end{aligned}$ appearance, and preserved so that it will be recognizable
indeed, that enter our blood and our
after months of burial. The suliject operated upon was
contagious and frightful diseases. Unfortunately, when we wish to study these little organ erysipelas. It was soft, black and blue, and out of all to ourselves, they are worthy, then, of fixing our attention. presents itself, for the liquid which contains them is soon in human proportions. An incision was made in the right To bim who studies them they offer every day a new sur- vaded by a foreign population which disputes with them the leg and an embalming fluid injected into the femoral prise. We find them, in fact, indefatigable actors in the empire of the water; infusoria, bacteria, micrococci, diaartery. In less than balf an bour the body assumed its drama of life, in a large number of natural scenes whose toms, and algæ of all kinds multiply therein, and, through natural size, became barder than in life, and as the degree splendor and novelty excite our admiration. Such is the their rapid and abundant development, exbaust the nutritive of hardness increased the discoloration disappeared, leaving it of a marble whiteness. The body of a man, operated upon seven weeks before, had been kept unburied without decomposition. It retained a natural appearance, and was without odor.

A flywheel, said to be the largest in the United States, bas been built by Watts \& Campbell, of Newark, N. J., for Clark's Thread W orks, of that city. It is twenty-five feet in diameter, with a face feet in diameter, with a face
of seven feet six inches. It of seven feet six inches. It
has three crowns for three belts, each twenty-four inches Wide. It weighs 49 tons.
 after having acquired a large size.-Fig. 8. The same colored by Paris violet. qualities of the medium. In this contest for existence the microscopic animalcules, whose modification it was proposed to detect, soon succumb, and it becomes impossible to continue the observation.

I have overcome such drawback by doing the planting in liquids that bave previously been deprived of germs by beat and afterward preserved from contact with the air in vessels inaccessible to atmospheric dust. Experience had taught me, in fact, that monads are great consumers of oxygen. It became necessary, then, to open the door to the outside air, and to close it against
that heterogeneous army of spores that it always holds in the monads, several types of which were studied a few years are distributed to stores, counting-rooms, and houses in all suspension in houses, inhabited rooms, and especially in ago by Prof. Ray Lankester and confounded by that scien- parts of the city, and the water is used for drinking laboratories. The use of the Pasteur matrass has enabled tist with the bacteria. I bave, in fact, been able to convince me to attain such conditions for success.
This vessel (Fig. 9) consists of a small flat-bottomed glass flask, the neck of which is covered with an emery-ground cap that tapers above into a tube of small diameter filled with cotton. After introducing into twenty of these flasks the liquid found proper for the development of the monads, I close each one with its cap and put it into a stove provided with a regulator. In this I keep them for five bours at a temperature of $125^{\circ} \mathrm{C}$. All the germs contained in the interior of each matrass, eitber against the sides of the ve in the liquid, or in the cotton wad, are thus destroyed.
The air which, during the cooling, enters the vessel through the tube of the cap filters through the cotton, and deposits the germs with which it is cbarged on the upper surface

Fig. 9. Pasteur Matrass. A, the cap; a, wad of cotton; B, the flssk; b, its neck.-Fig 10. Pipette. a, tube for sucking and blowing;
c, tapering tube serving to introduce the objects into the liquid; b, inflated part filled with cotton, d.
thereof. The liquid remains, then, perfectly pure, and may be preserved indefinitely in that state. To do the planting it is only necessary to remove the glass cap for a few seconds, and to blow into the flask by means of a special pipette (Fig. 10), previously warmed, a drop of the liquid in which a microscopic examination bas revealed the exclusive presence of the monads. This operation, when well executed, introduces impurities into only a small number of the flasks. We may say, then, that the results of it are excellent.

As for the liquid with which the matrass is to be balf filled for cultivating the monads, it is necessary to select it carefully. Thus, the very water that these animalcules colored red was found improper for such use; the tank that beld it contained a large quantity of plants of all sorts that constituted a constantly renewed food for the microscopic organisms, but deprived of such vegetable matter it ceased to be nutritive. The thought then occurred to me to boil : the water with the plants and organic detritus of the tank, then to filter it, sterilize it by beat, and to aerate it. This process succeeded very well. I also bad recourse to veal bouillon and to Liebig bouillon, diluted with water, adding to it a few drops of a weak solution of potassa to bring the bouillon, of itself acid, to a neutral or slightly alkaline state.
In botb cases the monads developed so quickly in the interior of several matrasses that they formed, a few days after being planted therein, a red cloud suspended in the liquid. Thanks to this process, and to cultures tried with less success, it is true, in vessels from whence vital concurrence was not banished, I have been enabled to determine the structure of the monads, and, in these minute agents that redden water, a whole series of interesting transformations whose succession it was of importance to ascertain accurately.
When these microbes are sown in a properly prepared liquid they develop therein in abundance. In the majority of cases they fall to the bottom of the vessel, but sometimes they swim either at the upper part or in the middle of the liquid and form there a very remarkable red zone. Under each of these circumstances they exbibita peculiar phenomenon. When they form a floating cloud they are always in
the course of active division (Fig. 1), their joints are short, their motions are very lively, and in the interior of their body, which is byaline, are seen numerous red granules. Then they deposit themselves on the bottom of the vessels and cease to divide so actively; but they increase more (Fig. 5), their motions become slower, and their granulations less numerous and especially much finer.
They are found also in the water of ponds and laboratory aquaria in a very agile state around aquatic plants. Growing then enormously, without segmenting, they are much elongated (Figs. 6 and 7), and exhibit very large dark-red granulations, perfectly spherical, in the interior of their bodies, whose mass is then of a pale rose color.

All these transitions from one state to another can be studied by cultures in flasks. We may, even, by possessing one, reproduce the others at will. Thus it is that the elongated form shown in Fig. 7, when sown in a medium rich in nutritive matters, segments very rapidly and gives in a short time the organism shown in Fig. 1, with all its characters.
Microchemical reactions seem to assign to the red globule the role of a reserve material for the organism. They have also permitted me to establish the anatomical characters of
myself of the absence of a cellulose, ternary, vegetable envelope at the periphery of the body. All reagents that color protoplasm color the external part, and vice versa. In alcobol, glycerine, and dilute acetic acid the contraction is general. It is the same during desiccation. Theuse of Paris
violet led me, besides, to discover the existence in monads of organs very different from those figured for bacteria. A very concentrated solution of this reagent brought to light at one of the extremities of the body (rarely at each of them) a filament about twice longer than the rest of the organism (Figs. 2 and 8). It is very delicate througbout its whole extent, extibits the same refraction as water, and, for this reason, is invisible without the aid of an artificial coloring. How do these long filaments form? What is their func tion? I thought I should be able to decide it by coloring them after killing them at different stages of division by osmic acid, which fixes the majority of the infusoria in their forms. I ascertained thus that the two segments of the body which separate from each other, and, although mutually interdependent in their motions, seem to be disconnected (Fig. 3), are in reality connected to one another by an istbmus of the same nature as the caudal filament. It is wholly comparable with the latter, it shrinks in size as it elongates, and it ends by detacbing itself from one of the two segments, or by breaking in the middle.
There is no doubt that the caudal filament plays an active role in locomotion. The following is an experiment which well shows how contractile it is: I put a large number of monads into two vessels, each containing distilled water. To one I added a drop of osmic acid (of 1 per cent). Four days afterward I collected the monads and colored them with Paris violet. This reagent brought clearly to light the filaments of the monads, whose forms were fixed by the osmic acid. It did not permit me to see the filaments that the monads that died in the distilled water were enabled to retract freely.
It is not without interest to reflect on what this little mass of albuminoid matter that forms the monad and its flagellum represents with respect to the bigher organisms. It corresponds entirely to the protoplasm which constitutes exclu-
sively the living and generating part of each of those innumerable cells of which the body of a man, of a horse, o of an oak consists. All the functions of which this body is the seat are accomplished also in the monad. Only, in the borse for example, the organs are differentiated by the pre dominance in some of physiological qualities that are weake in otbers.
In the Monas okenï, on the contrary, the same work is executed by one unicellular and nearly bomogeneous body. Although the existence of a locomotive flagellum gives proof of the tendency of the different parts of protoplasm to become specialized, such parts are nevertheless similar nough to act in the same manner. It is due to this sim plicity of organization that the microbes can be cultivated in mineral liquids of known composition and ser
termine the physiological mechanism of nutrition.
It would be impossible to dwell too long on the excellence of this method. It is, up to the present time, the only one which allows us to ascertain with accuracy the influence of physical surroundings upon living matter, and the general reactions that it exbibits. It must not be believed, in fact, that the bigher animals are alone endowed with contractility and sensitiveness, for these properties belong also to plants, and are common to all living beings. The monads that pro duce a reddening of water offer a surprising example of this, for they direct themselves toward the light. On observing them in laboratory aquaria I bave remarked that they developed themselves preferably against the sides exposed to the light. On this subject I made the following experiment: I poured water rich in monads into glass crystallizers, the whole inner surface of which I had covered with mineral pitch, except one point designed to allow the passage of the light. The vessels were covered with disks of black card-
board. At the expiration of ten minutes a microscopical exboard. At the expiration of ten minutes a microscopical exeft thion of the water showed me that all the monads had eft the dark parts of the crystallizers and concentrated bemselves against the little window that gave access to the uminous rays.
Such a phototactism recalls that of chlorophyl bodies. Is it in the monads connected with the existence of the red matter with which their globules, and sometimes their pro-
toplasm itself, is colored? It has been impossible for me to decide. I have not succeeded, eitber, in obtaining the color ing matter in sufficient quantity to study its chemical constitution and its absorbing power. As it is very soluble in alcohol, it will be easy, the first time water is seen to redden to obtain it by filtering the water and taking up the residue in alcobol. Such an occasion of continuing, under fitting conditions, the researches that I bave begun intothe monads will often present itself to naturalists who live in the country. I call the attention of those to it who think, with Fredol, that there is nothing so small to the sight which does not become great by reflection.-Louis Olivier, in La Nature.

A City of Water Jugs.

The various roads leading from the country to this city present a curious spectacle in the early morning, the way
being encumbered with numerous vebicles beavily laden with casks and jugs of different sizes, filled with fresh water from the numerous springs in adjoining towas. These jugs
culinary purposes in place of the Cocbituate water, which is supplied to almost every inhabitant. The empty jugs ar icked up by the enterprising water carriers, and returne gain filled with the sweet water of the country springs.
The cost of this supply of water is large to individuals, and very large in the aggregate, and the luxury can be indulged in only by those of ample or fair means.
The cause of this amusing display of water jugs in the streets, counting-rooms, banks, restaurants, dwellings, etc., is that an impression prevails that the water supply of the city is not suited to domestic uses by reason of impurities. There has been noticed for many months a disagreeable odor and taste in the water, and protracted discussion has occurred as to the causeof this offensiveness. The resources of science have been exbausted in efforts to discover the cause, but without any satisfactory results. Professor Rem sen bad the good luck to bit upon a plausible theory, which attributes the difficulty to the growth and decay of fresh water sponges in the ponds or supply basins; but as these sponges exist in considerable quantities in numerous ponds in New England where the water is perfectly tasteless and unobjectionable, the theory bas no good grounds to rest upon The sponges are found in six or eight ponds in Essex County, where the conditions are precisely similar to those of the Framingham pond, and no unpleasant results to the water are observable. If the Remsen theory were satisfactory to the water takers, and would have the effect to quiet apprebensions, the labor would not have been lost; but uch is not the case
In one view the condition of the city water supply is greatly exaggerated, and that relates to its possible unhealth fulness. We do not conclude, from the results of many years' observation upon the sanitary influence of New England pond waters, that there is anything contained in Boston water at present which is positively deleterious to health. These country water basins are to a large extent simiar in their surroundings, and they swarm with the lower forms of animal life, and large quantities of fish of various kinds are present; but they have no positive anti-sanitary in fluence. They may confer disagreeable physical qualities, but not chemical.
Boston water contains no impurities which may not be removed easily and readily by mechanical means. The inflowing of water jugs may meet the ends of a conceit, and so far as it is confined to wealthy citizens the conceit is apparently harmless; but poor people cannot afford to purchase water in jugs, and they are excited to alarm by the acts of those who can afford it. The jugs create uneasiness and apprebensions on the part of the mass of the people of he city, without doubt.
By filtration, even by the most simple means, Boston water becomes pure and inodorous, and as good for domesic uses as any brought from springs. The use of ordinary flannel, of several layers, securely attached to a water faucet in the form of a small bag, gives to the inflowing water a colorless appearance, and rewoves nearly all offending mat ters. It is better, however, to use a filter of more efficient nature, and this can be of home construction and cheaply made. A cylinder of tin, three inches in diameter and six or eight inches long, filled with alternate layers of clean beach sand and pounded charcoal, answers an admirable purpose. It may be attached to the faucet by a screw obtained from the plumbers, and there should be a delivery tube at the bottom. It is best to bave two delivery faucets, one for filtered water, for strictly culinary and drinking uses; and anotber for supplies for sink purposes and for washing. A filter used only for water for culinary purposes will serve its end in most families for several months, and when it fails of satisfactory service it may be removed, the contents changed, and again put in its place. If some plumber in the city would construct cheap and convenient filters, costing no more than a couple of dollars, on the plan suggested, he would confer a great service upon the poor people of the city and reap a rich pecuniary reward.-Boston Journal of Chemistry.

The Parasol Ant.

A correspondent from the London Field, writing from the land of Trinidad, W. I., says:

We were about returning to the boat when one of Mr. B.'s sons, who bad been some little distance away from us sauntering about in the busb, called to me to come back, and, on going to where be was, be pointed to what seemed a broad band of moving leaves right across the path, and, on looking more closely, I saw we bad met with one of those enormous swarms of the "parasol ants," which are so detructive to plantations in the tropics.

They were crossing from one side of the wood to the other, and were traveling in a column of more than a foot and a balf in width; and as each insect carried in its mouth a piece of leaf, which entirely covered the body, they presented a singular appearance, like a Lilliputian grove in motion; and, although we watched them for some time. still they came, their numbers seeming to be inexhaustible. "Nothing can turn them from their course; and although they be destroyed by the thousands, enough will swarm upon the intruder to make him repent interfering with them. On the mainland of South America 1 have known a ruit tree stripped in a single night by a swarm of these azts,"

