an impression, in the phastie state. from a patater in relief. silk. Even the osage orange, that grows so plentiful, will \mid pressure of got tons, rlae upper portion of theease weighed The bulk of the tiles is made up with eotrisc clay atded in make gooll silk
a frame, and this is solidified in a serew press. Then ermes: I desire to lay betore your readers, in the following tabu he silines-ir of the desisw, which the mater do ug the colored elay in a creany or slips state on the indented surface. After a few days evaporation the surface is scrapel or piated, anni the tie patsees suceessively to the drying sonse and the oven. The colors desired in cucaustic tikes are sometimes those given by the clay in ordinary treatment somutimes they are obianed by staining with manganese sobalt, etc. The prolucts of this branch of manufactur are inuch admired.
The five ormanembal work of various shatpes and color frown as terra corta has of late been much used, especially in the lacing of public buiddiugs, and with fine effect. Anerican Pottery and Glassoare Requoter

agricultural inventions

Mr. Thomas Haxton, of Gore, Otago, New Zealand, ba patented an improved barrow, which is constructed of sec tions of metal, each section made in one piece, bent hori zontally in triangular form, with eyes at the ends of the arms, and also bent vertically below the eyes to form teeth, whereby, when the sections are linked together, a complete fexible harrow is made.
An improved harvester tinger bar has been patented by Mr. Abner D. Dailey, of Riley, Ind. This invention retate to imprevements in the finger bars of that class of barvester in which the cut grain falls upon an endless belt or carrier n rear of the cutters, which belt conveys the cut grain to an elevator, and thence to a grain binder. In this class of harvesters, as now constructed, the endless belt or carrier is arranged above the cutter bar, and has its front edge a sbor distance in rear of the cutter bar, whereby an open space is eft between the end less belt and the back of the cutter bar, nto which short grain and cut weeds fall, causing the loss of the short grain and the clogging of the belt by the weeds and short grain winding around the belt rollers. To remedy these defects is the object of this invention. The finger bar s composed of a metallic plate bent so as to form upper and lower horizontal flanges parallel with each other, the frame of the endless belt being secured between the flanges and ingers bolted to the upper flange, which upper flange is also provided with slots for the passage of the endless belt in its revolution, whereby the outer edge of the endless belt re volves in contact with the back of the cutter bar, and th upper face of the belt is flush with the cutter bar and car ries the butts of the wheat as fast as the heads, thus bringing the stalks straight to the elevator
An improved cornstalk cutter bas been patented by Mr Alexander Cberry, of Saratoga, N. Y. The invention con sists in a cornstalk cutter having two parallel runners with downwardly projecting plates attached to their sides and wo outwardly inclined side bars carrying laterally project ing knives.

Silk Raising at the South.

The pessibility of producing silk with profit is beginning o agitate the people in some parts of the South, and vision of prospective wealth are giving an impetus to the enterprise A writer in the Louisville Courier Journal says
Silk culture in the South can be carried to the greatest success, owing to the mild climate and the long seasons of good weather. Silk culture can be managed successfully and profitably in the South in rooms of all sizes and kinds, so they are dry and airy. I have sent samples of raw silk grown here in Memphis by myself and friends to Lyons, France, and the reports of it are the bighest, commanding 11 a pound of twelve ounces. The French of Lyons an Marseilles express their astonishment when informed that we have mulberry trees in great quantity without trouble ven whole forests of them.
One person raising silk in the South can make as much a five persons can with cotton, and with an outlay of only a few dollars in starting. I have, at great expense and labor, prepared an exbibit of silk raised in the South for the Atlanta Exposition, but have been delayed in getting it placed in position, owing to a severe spell of sickness re cently.

A number of capitalists of Memphis, together with myself, are to establish a filat ure of silk, also a moulinage for reeling and preparing the silk raised in the South for the looms in the East. To give your readers an idea of the silk industry in the United States at present, I give an article from a journal devoted to the silk industry. It says:
"No industry has had more wonderful growth in this couniry than the manufacture of silk. There are now invested in this industry about $\$ 18,000,000$; the total product of the silk looms annually is $\$ 27,000,000$, and there are 18,000 operatives, receiving in wages annually $\$ 6,000.000$. In the town of Paterson, N. J., there are 32 silk-weaving mills, having 74,000 throwing spindles, 23,000 braiding spindles, 730 power looms, 563 hand-weaving looms, and em pinying enough people to make a good sized city. The first ilk mill was established there in 1840. The demand for raw silk is so great in this country (United States) that most of the raw silk bas to be imported from France and to be woven by the looms in our country.
I have prepared, by careful and laborious work, a tabulated form of each day's work to raise silk worms, and which, if followed by your readers who raise silk in the future, will nsure certain success.
Any and all kinds of our mulberry trees will produce good ated statement. the daily work necessary to raise 40,000 silk worms, which will produce 1,000 pounde silk eochors, worth from S^{2} to 8250 per pound

In three days they finish their cocoons and then cut out, ansform into a silk butterfly, lay from 800 to 1,000 eggs, nd die.
One person can tead to 40,000 silk worms, but two per ons can attend to 120,000 , and raise 3,000 pounds of silk ocoons.
The silk worms eat night and day incessantly. They must not be crowded too closely together; the young worms must not be placed where the larger worms are eatng, but must be kept separately
Silk eggs must be wintered where they are to be fed and raised, and must be at their future home before the 1st of January preceding March. If shipped later in the season they are liable to be hatched in transit, and having no leaves, will die.
The silk worm rooms must be dey, provided with shutters or blinds, to be closed at night and during thunderstorms, especially when the worms are spinning their silk.
The eggs must be kept from mice, crickets, and ants, for bey will feast on them.
In answer to many inquiries about the kind of mulberry leaf required, etc., I will say that any kind of mulberry tree will produce silk, but the white mulberry tree produces the finest silk. I bave a limited supply of acclimated silk eggs, and shall in the future devote my attention principally to raising silk eggs in order to get a supply for your numerous readers.
In answer to the manv letters which I have received asking what kind of a house is necessary, etc., I answer that any kind of a bouse, so it is dry and airy. They can be raised in rooms of all kinds and sizes-even in the cotton gin-bouses n plantations, etc.
The attention of your readers is specially called to the rgent necessity of planting out young mulberry trees

The Great Bell for St. Paul's.

Recently Messrs. Taylor, at Loughborough, have been testing the great bell which bas been manufactured by that firm for St. Paul's Cathedral. Dr. Stainer, the organist of St. Paul's, speaks of it as follows in a letter recently published:
'Big Ben' sinks into comparative insignificance by the side of 'Great Paul,' now lying comfortably, mouth upward, in the foundry of Mr. Taylor, of Loughborough. She (for I fear 'Great Paul,' as a bell, must, like all other bells, be considered feminine) will take her rank among the six or eight heaviest bells in Europe. At present her position cannot accurately be assigned, as she has not yet passed the scales;
but it will probably lie between the great bell of Olmiitz, weighing 17 tons 18 cwt., and that of Vienna (cast in 1711), weighing 17 tons 14 cwt. Three furuaces, one of which was specially built for the purpose, poured out more than 20 tons of molten metal into the gigantic mould of 'Great Paul,' and after writing off 43 cwt . as 'overplus' and 8 cwt . as 'waste,' this will leave $3 \boldsymbol{3} 0 \mathrm{cwt}$. actually in the mould, or a weight of $17 \frac{1}{2}$ tons. This mass of metal, consisting of pure tin and copper in due proportions, was about eight and a balf hours in course of melting; it was placed in the furnaces in the afternoon of Wednesday, the 23d of November, and was pronounced fit for use at balf past ten at night. Four minutes after the rush of molten metal the mould was full, and 'Great Paul' came into existence in one of those deep 'pits' so mysterious to lookers-on. It was not until
the evening of Tuesday, the 29th, that the heat had sufficiently abated to allow the men to boist out of the pit the mould and bell in their 'case.' This castiron 'case' bad an all-important duty to perform: it had to resist the enormous train of such a weight of metal when forcing itself impetu ously into the mould; and so, in order to prevent a bursting

14 tons; the lower plate on which it rested, 7 torns. Inelud ing elamps and bolis, it is probatbe that the whole weight of chis huge box was nol far short of 25 tons. It may be easily imaned how great was the anxiety of all when the case was being taken tor pieecs, the clay mould broken up, and the mighty bell, bit by thit, exposeil to view. The catsting proved to be as smootla and deliente in surface arat cuthese as if it hat bens a little 'treble' of 5 owt. I have to-daty, in conjunction with Mr, F. C. Penrosm, been examining the bell and testing its tones. 'The 'skin' of the casting showed no flaw of any kind whateven; and when the tone wats produced by swinging a heavy ball of iron arginst the sonud bow a musical note boomed out which was impressive be yond cleseription. The dimensions of the bell are ats fut low: Height, perporndicular (from lip to top of caunous), x feet 10 inches; ditmeter (from edge to edge of lip), 0 feet $63 / 1$ luches; thickness of middat of somat bow), $81 / 4$ inches, or abont one thirtementh of the (litmoter. The mote is E : flat, the upper partiale B flat. le flat :ind G boing just audible with the sonorous groumd tone. The general ajpeatence of the bell is hantisme, andall companolorists should, if abie to ret to Loughborough, tatie a walk round here, and aiso have at! eye to the many valuable amplianeos which Mr. Taylor tast brought togember for the perfectiog of his art. The coct inf the boll and hoisting it into its pace in the apper parl of the northwest tower will be about $£$ 胃, (000, : poction of whichhas alroaly been whtributed. It has belrn deciled to u*b the bell for the first time on Easter Sunday $16 \times \mathrm{xt}$, when I : lath be sumprise of if fomdoners dis unt riatize the fact that ' Groat Patul is worthy alike of their ancient city and spladid carliedral."

Phytocollite, a New Mineral from Scranton, Pa

This name bas been given, says H. C. Lewis (Proc. Amer. Philos. Soc.), to a very curious, jelly-like mineral recently found near the bottom of a peat bog at Scranton, Pa. An excavation for a new court house had cut through a peat bog, below which was a deposit of glacial till. Near the bottom of the bog, in a carbonaceous mud, or "swamp muck," there occur irregular veins, of varying thickness and inclination, filled with a black, homogeneous, jelly-like sub stance, elastic to the touch. This substance becomes tougher on exposure to the air, and finally becomes as bard as coal. When thus dried, it is brittle, has a conchoidal fracture and brilliant luster, and closely resembles jet. It is nearly insoluble in alcohol and ether, but is entirely soluble in caustic potash, forming a deep reddish-brown solution, from whence it can be again precipitated on the addition of an acid. It has a specific gravity of 1.032 , and burns with a bright flame. After having been dried at 212°, it has the following composition, according to the analysis of J. M. Stinson:

		or withont ash,	
C	28989	C	30971
H	$5 \cdot 172$	H	5.526
N	$2 \cdot 456$	$\mathbf{O}+\mathrm{N}$	63503
O	56983		-
Ash	$6 \cdot 400$		$100 \cdot 000$
	100000		

yielding the empirical formula $\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{O}_{16}$.
In its mode of occurrence and in general appearance, this substance closely resembles Dopplerite, but differs from that mineral in burning with flame and in its composition. Another jelly-like substance from a Swiss peat bog, differing both from Dopplerite and from the Scranton mineral, has been described by Diecke.
Itis now proposed to group all thesejelly-like minerals, pro duced by the decomposition of vegetable matter, under the one generic name of Phytocollite (Gr., phuton, kolla, "plant jelly") of which the three minerals now known would be arieties.
Special interest is attached to these substances, in that they illustrate the first step in the transformation of peat into coal.

Test for Gold.

There is a simple method for the detection of gold in quartz, pyrite, etc., which is not generally described in the mineralogical text books. It is an adaptation of the well known amalgamation process, and serves to detect very minute traces of gold.
Place the finely powdered and roasted mineral in a test fube, add water and a single drop of mercury; close the test tuhe with the thumb, and shake thoroughly and for some ime. Decant the water, add more and decant repeatedly, thus washing the drop of mercury until it is perfectly clean. The drop of mercury contains any gold that may have been present. It is therefore placed in a small porcelain capsule and heated until the mercury is volatilized, and the residue of gold is left in the bottom of the capsule. This residue may be tested either by dissolving in aqua regia and obtaining the purple of Cassius with protocbloride of tin, or by taking up with a fragment of moist filter paper, and then fusing to a globule on charcoal in the blowpipe flame.
It is being shown that gold is much more universally dis tributed than was formerly supposed. It has recently been found in Fulton and Saratoga counties. New York, where it accurs in pyrites. It has also been discovered in the gravel of Chester Creek, at Lenni, Delaware County, Pa. In one of the Virginia gold mines wonderful richness is reported, $\$ 160,000$ worth of pure gold having been taken from it space of three square feet.

Mr. Potts gives a striking account of the cruelty and rapa city of the keas in the prosecution of their horrible taste for sheep fat, the part especially liked by them being the fat that surrounds the kidneys. With this view they do not besitate to tear open the animal's flesh till they arrive a these organs, after tearing out the fat of which, they leave the poor animal to litger on or die in excruciating agony Sheep," says Mr. Potts, " while being got out of snow

A sheep-Eating Parrot.

and flesh on a precisely similar spot to that where so many A singular bird bas recently been added to the collection had been found to be fatally wounded. in the Zoological Gardens, London. This is none other \quad There was no doubt about the keas being the offenders, than a carnivorous parrot, whose love of animal tesh maui- and means were at once taken to have theirnumbers reduced. fests itself in a very decided predilection for mutton. There Since then, a mortal enmity has existed against them on the are two things which, to the naturalist, are remarkable in part of the shepherds; and justly so, as it is found that from connection with this bird. First, it is, in respect of this three to five per cent of every flock is so wounded or killed. flesh-eating propensity, an exception to the whole family of :In some individual instances, the ratio of destruction has parrots, which are frugivorous, living on fruits, seeds, leaves, been much higher. On one station on the Matatapu, out of huds, and the like; and second, this carnivor ous taste is not a natural but an acquired possession, the species of parrot in question having been till a few yearssince frugivorous, like others of its family.
This curious bird is the kea (Vestor notabilis) or mountain parrot, and comes from New Zealand. The general color of its plumage is green; its length from point of bill to extre mity of tail is twenty one inches; its bill $\mathrm{i}_{\text {s }}$ allout two inches long, the upper mandible being curved and very strong. It inhabits the bigher wooded glens and recesses of the n:ountainous districts, if New Zealand, and, like the owl, is generally nocturnal in its babits. The kea was first made known to science in 1856.

In the time of Manri rule, the bird was as innocent and barmless in its babits, as respects its food, as any others of the parrot family; and it was not till the higher tracts of country were utilzed by the early settlers as runs for sheep, that be kea was tempted to lesert its fruit-eating babits and to join the destuactive army of the carnivora.
About is68, it was noticed at the sheer. shoaring season on the upland runs that many sheep were suffering from sores or scars, more or less recent, on the back, immediately in front of the hips Curiously enough, it wasobserved that in all be animals so injured the wound was in precisely the same place in ach-fairly above the kidneys. In some cases (says Mr. Potts, who b is contributed an article to the Zoologist on the subject), the part affected bad a bard dry scab, or merely a patch ,f wool stripped off; others showed a severe wound, in some instances so deep that he entrails protruded The animals so injured were invariably those hat were in the hest condition ; and many discussionsensued as to

" cially are the birds
prone to molest prone to molest those carrying double
fleeces, as though they fleeces, as though they
knew how firm a foothold they could maintain with their maintain with their
gripe. When one of gripe. When one of
these sheep, temporarithese sheep, temporari-
ly exbausted with its ly exbausted with its
exertions in toiling through deep snow under the burden of two years' growth of wool, lreaks off from the mob and leaves the track, desperately flourdering into deeper snow wreaths, a flock of parrots, ever watchful as theybover round, soon perceive their op portunity for mischief; they alight close to the spot where the sheep, unconscious of approaching danger, stands gazing fixedly in a state of helpless stupidity; gradually hopping or moving toward the victim with some show of caution, some show of caution, one of the keas at last
settles on the back of settles on the back of
the sheep, which, terrified at the strange visitor that thus besets it, bounds away; the bird now rises only to alight again on the alight again on the
same place, and clutchsame place, and clutch-
ing into the wool with its sharp claws, retains itshold more firmly and tenaciously. In vain the tortured animal, in the direst agony, seeks to rid itself of its cruel persecutor, that boldly persecutor, that boldly
keeps its vantage;after keeps its vantage:after
running and struggling some distance, its efforts to escape become feebler; it is at length so bard pressed that in a few minutes it yietes passively to the tearing and searching beak of the kea."

These repulsive fleshdevouring propensities may have been acquired through the bird being forced, in severe winters, to approach the stations in bopes of finding food, and there feeding on the flesh in the meat gallows, and thus gradually forming a carnivorous appetite of such strength, that its former frugivorous its former frugivorous tastes are entirely dcstroyed, and flesh now forms its sole food. The kea in the Zoclogical Gardens was struck down while it was in the act of attacking a what could be the cause of this singular stateof things. At last a flock of twenty Lincoln rams, nineteen were within ovel sheep; but the man did not succeed in capturing it till it a shepherd gave it as his opinion that the injury was inflicted month killed by these parrots. On another run, a flock of bad torn bis clothes in many places and severely lacerated by a kind of parrot, rather a tame sort of bird, that was to be three hundred and ten strong young wethers were, within a bis hands. Its food consists mainly of mutton, raw; it does met with in the higher ranges; but the shepherd's opinion period of five months, so seriously injured by the keas, that not care for cooked meat, but will take it if very bungry. was only laughed at. Yet the shepherd, after all, was found at the end of that time only one bundred and five remained Occasionally it will take beef. and is fond of pork. But its to be right. In connection with the stations on sheep-runs in New gaged to kill the bird at a shilling a head; and these men, will not touch bread, though it likes the seed of sow-thistle. Zealand, there is a meat gallows, where the carcasses taking advantage of its nocturnal babits, now range the It is altogether a remarkable and curious bird. of sheep killed for food are kept; and it was observed by mountains at night, lighting fires to attract their game. In the shepherds that the keas were in the habit of visiting the the daytime they rest and prepare the skins for sale. But gallows and breaking off bits of mutton-fat with their strong the kea. with the cleverness and cunning of its tribe, bas beaks. Soon afterward, one or more hands actually saw a \quad grown very shy and wary, and knows very well, when it beaks. Soon afterward, one or more hands actually saw a grown very shy and wary, and knows very well, when it by an alarming increase of malarial diseases in the irrigatei parrot on the back of a sheep plucking and tearing the wool \mid sees a man carrying a gun, what be is likely to do with it. $\begin{aligned} & \text { districts of Southern California. It is said that where the }\end{aligned}$
desert lands of Fresno, Tulare, and Kern counties bave been reclaimed by irrigation the progress of fever and ague, previously unknown there, has been rapid and general.
Various suggestions of remedies have been made, one idea being that if a system of thorough drainage should be com bined with that for irrigation, it would mitigate the evil. Some benefit seems to be derived from having rooms used as dormitories at a considerable elevation from the ground, and buts raised on long poles have been tried, while one wealthy vine grower has built a three story welling. Others seek immunity by living in villages at a distance from their farms and the irrigating ditches; and perhaps this practice will become universal. As showing that the question is not a local one, confined to the counties named, it is mentioned that the same experiment was tried. with similar results, in the county of Yolo, a bundred miles north of San Francisco. A large ditch led the waters of a small stream across a number of farms, and in a few years ague became common, families began moving away, and, as irrigation was not indispensable to cultivation in this instance, the ditch was finally closed

Pink Eye in Horses.

Dr. C. E. Page writes to the editor of the Boston Medical and Surgical Journal as follows:
This disease in horses is one of the varieties of catarrbal or influenza colds, so-called, prevalent in this climate among humgn beings, and springs from the same cause, namely, excessive, over frequent, or otherwise injudicious eating. The custom of working or exercising horses directly after eating; of feeding them directly after hard work, and before they are thoroughly rested: baiting at nonn, when both these violations of a natural law are committed; these are the predisposing causes of pink eye, and of most diseases that fflict our horses. The symptoms denominated pink eye are ant indicative of dangerous disease, unless feeding is kep up; but if it is, then pneumonia, which is merely an aggra vation of the original disease, is very likely to result. Keep the horse quiet, dry, warm, and in a pure atmosphere. The nearer out-door air the better, and stop his feed entirely a the first symptom of disease, and be will speedily recover As prevention is better than cure, horsemen will do well to heed the hint here given and keep their creatures from con racting this or any other ailment. It bas been demonstrated in tens of thous unds of cases, in family life, that two meals are not only ample for the hardest and most exbausting labors, physical or mental, but altogether best. The same thing has been fully proved in bundreds of instances with borses, and bas never in a single instance failed, after a fair trial, to work the best results.
in hour's rest at noon is vastly more restoring to a tire animal, whether horse or man, than a meal of any sort although the latter may prove more stimulating. The morn ng meal given, if possible, early enough for partial stomach digestion before the muscular and nervous systems are called into active play; the night meal offered long enough after work to insure a rested condition of the body; a diet iberal enough but never excessive; this is the law and gospel of hygienic diet for either man or beast. If it be objected that these conditions cannot always be fully met in this active work-a-day world, I reply, let us meet them as nearly as pos sible. We can, of course, do no more than this; but we can come nearer the mark on the two-meal system than on three 1 will add, in parenthesis, that the nervous disorder commonly known as "pulling" will yield readily to this prin ciple of treatment. It makes the puller healthy; he is bet ter nourished and therefore less " nervous;" and he will do more roading, and without excitement or profuse sweating He is not made less ambitious by reason of reduced muscu lar power, but by reason of better digestion and assimilation -more nourishment and less stimulation. Horse dealers or others, whose business or pleasure depends on the plump appearance of their animals, regardless of the size of thei muscles, who must have a borse fat if he is not fleshy, fo style, may bave to take the chances and feed three times day; but of this I am by no means sure. I bave nevertried to fatten my horses, for I long ago learned that fat is dis ease; but I bave always found that if a borse does solid work enough he will be fairly plump if he has two sufficient meals. Muscle is the product of work and food; fat may be laid on by food aloce. But for perfect health and immunity from disease, restriction of exercise must be met by restriction in diet. Horses require more food in cold than in warm weather, if performing the same labor. In case of a warm spell in winter I reduce their feed, more or less according to circumstances, as surely as I do the amount of fuel consumed. I also adopt the same principle in my own diet. The result is, that neither my animals nor myself are ever for one moment sick.

Milk Diet in Bright's Disease.
Since we know not at present any drug that possesses berapeutic value to any marked extent in this terrible and fatal disease, and since it is daily making sad bavoc among human beings, and principally among that class who, by reason of their valuable public labors, are particularly necessary to the welfare of the world; therefore, it becomes a medical question of paramount interest that we should dis cover some potent method of combating this very prevalen disease. Some years since Carel first called attention to the treatment of Bright's disease by the use of a milk diet, and since then Duncan, as well as many other prominent physi cians, have written on this subject. We have ourselves seen
che
some remarkable results follow this treatment, while Dr. S. Weir Mitchell, of our city, is now quite an enthusiast on this subject. This method of treating a formidable disease has received sufficient distinguished indorsement to recom mend it seriously to our notice. We would, therefore, ask all physicians who read this article to try this method of treatment, and to furnish us with their experience, which we will publish. The milk is used thoroughly skimmed and entirely freed from butter. To procure the best results, it aas been advised that the patient shall restrict himself abso lutely to milk, and continue the treatment for a long time If it disagrees with the stomach (as it will in some cases) Dr. Mitchell advises that the patient be put to bed, and the reatment commenced with tablespoonful doses, to which lime water is added, until the stomach tolerates the milk when from eight to ten pints daily should be taken, and absolutely nothing else. The sanction of such a distin yuished physician as Dr. Mitchell forces us to seriously con ider the merits of this treatment, and we trust to receiv the experience of all readers of this journal who may bave
cases of Bright's disease to treat.-Medical and Surgical Re-
porter

Effects of Atmospheric Electricity.

At a recent meeting of the California Academy of Sci ences, Mr. C. D. Gibbes, C.E., remarked that when survey ing during our north winds, in the San Joaquin valley, the electrical disturbance was so great as to cause the needle of is compass to fly up against the glass and become useless during the first part of the day when in the field; but that if he took the same compass into a warm moist room, t again acted normally. Engineers in Santa Clara and Calaveras counties report the same action and dip of the magnetic needle during the prevalence of ourdry northers.
Dr. Harkness said the northers affected the human skin. They caused an uneasiness, which results in dog fights, run way horses, cross dispositions, pallid faces, etc. Dry atmo sphere is a perfect non-conductor, but all moist plants and nimals, as well as men, then become so many miniatur lightning rods. The nerves are at such times continually irritated by a constant succession of tiny blows, like tele graphic ticks, against the nerve centers. They contract and produce a congestion of the organs; the blood becomes tur bid, while kidneys, liver, and lungs all suffer
Dr. Henry Gibbons, Sr., thought this electric action more subtle than from any apparent mechanical evolution of electricity from friction of the passing wind over the surface of the earth. He said all persons felt cold, for it drove the circulation from the surface to the interior of the body as Dr. Harkness so beautifully described twenty years ago Its effect on certain diseases has been marked. The death rate bas been claimed to increase at such times. He had a patient whose eyes always blinked and snapped during a north wind, even in a warm, moist room entirely protected rom direct contact with the wind.
Dr. Harkness said we were always surrounded by elec ricity, but did not perceive it until its equilibrium was destroyed, when it became manifest. In some parts of India silk underclothing is necessary to comfort, at certain alti udes, during dry north winds, and in other parts no relief is found in this clotbing

Insanity in the United Nates.

After all the recent talk about the increase of insanity in this country it is encouraging to learn that we are not so crazy as some other nations. At the late meeting of the National Association for the Protection of the Insane and the Prevention of Insanity it was shown our insane number about 63,000 , or 1 to 777 of the population. The ratio in England is 1 to 350, part due, perhaps, to the more thorough separation of the insane from the general population. By sections the ratio is in this country: In New England, 1 to 588 Middle States, 1 to 600; Western States, 1 to 850; Southern States, 1 to 1,100 . The ratio to which we may look forward in the future is, in the opinion of Dr. C. F. Dana: In New England, 1 to 500; West, 1 to 600; South, 1 to 800. In 1881 there were 74 State and 34 private asylums. The cost of maintaining them was $\$ 12,000,000$ a year. The needs of the insane are want of room in asylums, separation of acute and chronic patients and epileptics, improvement in the laws of commitment, more amusement and ork for patients,

Whalebone.

Aside from its oil-yielding properties, the whale also serves man's needs by furnishing him with whalebone. This was once an important article of commerce, but the supply and demand have for many years been diminishing. The fact is the whale does not live "in the North Sea" a much as be once did, and the decline in the New Bed ford oil business is reflected in a measure in the whalebone industry. As the supply fell off substitutes for the article were discovered. Steel takes the place of whalebone in umbrella manufactures, and the latter now finds its chief uses in the making of whips and corsets.
The preliminary preparation of whalebone is about as follows: When the raw bone is received the bair is first cut from the slabs. These are then soaked in water until they become soft, after which all the gum which adberes to them is removed by scraping. They now go to a steam box, where a workman straightens them with a knife. After
forms. There are certain places where it is probable that no known material answers so weil as whalebone, and it is said that a fortune awaits the inventor who devises an effi cient substitute for it. Experiments, looking to this end, have been made with rawhide.
Since the decadence of the hoop-skirt fever the price of whalebone has declined very materially, but the price was tits zenith in the last century. The Dutch formerly ob ained $\$ 3,500$ a ton for whalebone, but since 1763 it bas never commanded such high figures. In 1818 the price was $\$ 450$; in 1834, from $\$ 530$ to $\$ 545$; and in 1841 it ranged between $\$ 1,080$ for Southern to $\$ 2.550$ for Northern bone. We learn that in the upper jaw of the whale are thin, paral el laminæ, varying in size from thre to twelve feet in length, and that theseare what are known as " whalebone." The quality which commands the highest price is above six feet in length, and is called "size bone." It is said that the Greenland whale furnishes the best bone. From the moulh of these huge creatures from 2,000 to 3,000 pounds are often taken.

NEW INVENTIONS.

An improved side-bar vehicle bas been patented by Mr. Lafayette A. Melburn, of Denver, Col. The invention consists in a certain improvement in the class of side-bar vehicles, more particularly in buggies, which are constructed upon what is commonly termed the "Brewster" pattern. The prings that support the bodies of such buggies require to be made very stiff in order to have the requisite strength, and, being also short, they lack that degree of elasticity necessary to render the vehicle comfortable to the occupant when passing over ordinary roads. In attempts beretofore made to remedy this defect various so-called improvements have been made in the form and arrangement of the springs, but without the desired success, since the result has been a noticeable, if not striking, inelegance of appearance, and considerable addition to the cost and complication of structure of the buggy, besides lessened efficiency in use. This inventor bas devised an improvement in the form and arrangement of the springs which overcomes the defect of the Brewster.

An improved station indicator has been patented by Messrs. William H Hackney, of Laramie county, Wyoming Territory, and Edward G. Hudson, of Lincoln, Ill. The improvement consists in the peculiar means for reversing the movement of the ribbon when wound up, for which purpose the inventors place an intermediate shaft between the two shafts carrying the belt or ribbon. This intermediate shaft has a cog wheel adapted to engage with cog wheels on the ribbon shafts alternately by the lateral shifting of this intermediate wheel, the wheels on the ribbon shafts being set in different planes to permit this action, and the intermediate wheel being shifted by the longitudinal movement of the shaft, which is held by a latch entering one of two circumferential grooves int the shaft.
Mr. Benjamin Day, of West Hoboken, N. J., has patented an improved vertically and laterally adjustable frame for holding a printing medium--for instance, such as the printing film for which Letters Patent were issued to the same inventor on the 22d day of April. 1879, and numbered 214,493. The invention consists in a frame baving the printing film attached thereto, and provided with clamping devices for holding it, and which are detachably hinged to longitudinally and transversely adjustable blocks held in clamps on a vertically adjustable frame surrounding the stone or block, so that the swinging film-holding frame will rest on the block or stone

An improved switch board for use in connection with annunciator or burglar alarms bas been patented by Mr. Lambert F. Fouts, of Greenfield, Iowa. The several doors and windows of a dwelling, hotel, or other structure, or any battery an plarm, er having a pivoted button and fixed post for each door or point in the circuit. When a "break" is made-as, for instance, when a door is opened-it may be located by mov ing one or more of said buttons until the restoration of the circuit through branch wires connected with the aforesaid posts and the consequent arrest of the alarm give the required indications.

An impreved inkstand, which closes itself automatically, and can be opened readily, has been patented by Mr. Charles De Roberts, of Albion, Neb. The invention consists in an ink well resting no a base, and provided with a lid or cover attached to the upper end of a bell crank lever pivoted in the base, the lower end of which bell crank lever rests on one end of a lever pivoted to the under side of the base, and provided at the other end with a knob projecting above the top of the base, which knob is depressed by the hand when he cover is to be raised.

The First Chinese Ir nclad.

The first ironclad battle-ship of the Chinese navy was ately launched by the Vulcan Company, at Stettin, at the mouth of the Oder. The ship is called the Ting Yuen, or
the Everlasting Peace, and is a turret corvette of the first rank, with compound armor of English steel and iron. Both turrets are armed with twelve-inch compound plates, and the four $301 \frac{1}{2}$ centimeter guns which they have can deliver broadsides simultaneously. On the deck, in addition, are elght other guns from Herr Krupp's foundry at Essen. The same company bas a contract to build another ship of the same kind for China.

