KOHLER'S EXTINGUISHER FOR ARGAND BURNERS

The engraving shows a very simple and effective extin uisher for kerosene lamps, recently patented by $\mathbf{M r}$. C. H Kohler, of 235 Superior Street, Cleveland, Ohio. The device answers the double purpose: First, of an extinguisher for use whenever it is desired to put out the light in the safest and most convenient manner without blowing into the chimney or turning down the wick-either of these methods being very dangerous; and, second, of an automatic extinguisher, which insures the instantaneous putting out of the light should the lamp be turned over, thus pre venting the fires which are so frequently caused by kerosene lamps being upset
Many of the accidents resulting in the destruction of life and property might have been avoided had thissafety device been used.

KOHLER'S EXTINGOISHER FOR ARGAND BURNERS,
Fig. 1 shows a limp with the improvement attached; Fig 2 is a sectional view, showing the manner of operating the device by hand; and Fig. 3 shows a lamp partly overturned, with the extinguisher being operated automatically.
A sleeve is fitted over the outer side of the wick tube and connected by a wire arm with a smaller tube within the wick tube. The lower end of this tube rests upon a support inside the wick tube. Air to supply the flame is admitted to this tube through an opening in its side. A lever pivoted in the side of the burner extends into a slot in the inner movable tube, and has at its outer end an eye, to which is attached a chain carrying at its opposite end a small metallic ball having sufficient welght to move the connected sleeve and tulue, so that whenever the ball is displaced from its socket, in case the lamp should be overturned, it drops, and in its fall raises the extinguishing device and huts off the supply of air to the flame, which then goes out instantly. To insure direct pull on the lever, the chain passes through an eye formed on the end of a wire projecting from the side of the burner. To operate the device by hand, all that is required is to press on the lever.

IMPROVED DRILLING MACHINE.

We give an engraving of an improved machine for operating vertically reciprocating rock drills for sinking wells, prospecting for minerals, etc. A walking beam is fulcrumed in the upper portion of the derrick, and connected at one end to the drill rope, the other end being connected with a rope that is alternately drawn up and released to give a vertically reciprocating motion to the drill.
At the lower end of the derrick there is a frame formed of four upright parallel bars, two of them being integral with the derrick bars. These bars are consected together at the top and bottom, forming the frame. In the upper part of this frame the winding frame is journaled. Below this is the crank shaft, having a large spur wheel, which is driven by a small spur wheel on the lower shaft; the latter reoeives its motion from the tumbling rod ff the horse power.

The crank on the middle shaft consists of a straight bar of iron connected at the middle with the shaft, and carrying a slide which moves freely on it, and is connected with the operating rope extending upward to the walking beam. When the crank completes, or nearly completes, a half revolution after the walking beam is moved so as to aise the drill, the slide slips to the upper of the crank bar and allows the drill to descend. This operation is repeated each half revolution without lost motion, without any swinging or whipping of the drill rope, and without sudden strains or jerking on the horse traces or machine.
The winding drum receives its motion from the lower shaft through an endless chain, and the lower chain wheel and the small spur wheel are loose upon the driving shaft, and both are capable of being engaged by clutches operated by the hand lever.
This derrick can be used for boring as well as drilling.
The machine is very simple, and possesses all of the qualities necessary to make it effective and economical of power. It is compact and portable, and may be set up and operated with very little trouble.
This drilling apparatus is the invention of Mr. Williạm W. Giles, of Washington, D. C. For further particulars address the United States Manufacturing Company, Washington, D. C.

MISCELLANEOUS INVENTIONS.

Mr. Martin W. Speulda, of Springfield, Ill., has patented an improvement in fare registers of that class which are to be carried by the conductor, and operated as each fare is received, to register the number of fares taken. The inven tion operates upon a common general principle, in that it has a pull bar which gives a step-by-step movement to a train of wheels bearing numbered dials, and simultaneously rings a bell at each movement
An improved nose feed bag has been patented by Mr. Charles J. Gustaveson, of Salt Lake City, Utah Ter. This invention relates to nose feed bags which have perforated bottoms; and the improvement consists in a perforated bottom, in combination with a supporter having protecting cross-stays.
Messrs. Ira Robbins, of Camden, N. J., and David Heston, of Philadelphia, Pa., Lave patented improvements in machines for grounding wall paper before printing. It consists of devices by means of which the pressure of the impressiun roll on the paper in contact with the grounding roll may be increased or diminished, as desired.
Mr. George W. Golay, of Middle Grove, Mo., has patented improvements in devices for increasing or lengthening the throw of the connecting rod of reciprocating engines, which consists in the peculiar arrangement of levers similar to that of the well-known lazy tongs.

An improvement in sleighs has been patented by Mr. Theodore F. Westervelt, of Mount Pleasant, Mich. The object of this invention is to construct a sleigh in such manner that greater strength shall be secured to the se veral parts than is possible where the timbers are mortised, and at the same time repairs can be easily and cheaply made. The vention consists in a sleigh having sockets of peculiar conruction for holding the timbers together, and braces com ned with the sockets for supporting the cross beams.
An improvement in electric lamps has been patented by Mr. Ludwig K. Böhm, of New York city. This invention relates to electric lamps of the class in which an incandescing carbon is employed in a vacuum chamber, and the object of the invention is to allow the use of straight carbons and to facilitate the introduction of the carbons and ealing of the wires. mass of people in the United States, but it is an old subject to practical telegraphers. The first telegraph line built in the United States, which was from Baltimore to Washing ton, was underground. It did not work until it was placed on poles above ground, as at present. Telegraph builders have ever since been trying to ascertain some means or invention by which it can be made practical, and work as well underground as it does above ground, without the disadvantages which are common to the present system. Electrical difficulties in this have been eagerly sought to be overcome and ever since the practical working of the electrical tele graph we constantly hear of some new invention or contry ance that has been discovered in Europe or America that will allow underground wires in a cable, or tube, or coating or inclosure of some kind, to work as easily and as well underground as if placed above ground on poles. We may emphatically say that, up to the presen time, they have all fallen far short of what has been claimed and expected of them, and that in many instances and circum stances they are an absolute failure, when the most useful and practical instrument for transmission are to be used, and also in long lines. Germany has been laying underground "compound submarine cables" rather recklessly without knowing their durability, and it is thought by practical electricians that, when one wire of the compound series fails, which it may do in a few years, their experiment will be a costly one. It is already proved that there is much loss of speed, and diff culties of sensitiveness and induction and loss of powers of transmission, although the lines are comparatively short. It is eminently a war telegraph system-safety in war, slow in peace. These are the elec trical difficulties which are unknown and unheard of by the popular ear. They effectually consist of the non-user or aboli tion of the automatic instruments by
which many hundred words are transmitted and recorded in a minute, and also the abolition of the duplex and qua druplex instruments (by means of the latter four messages are sent over one wire at one time, thus answering the pur pose of four distinct wires), and the duplex answering for two distinct wires, and last of all, which has suddenly come upon us, the telephone, with its still more sensitive apparalus.
After all these electrical difficulties are overcome or dis pensed with, the practical difficulties still remain, the main one being that of cost, while convenience must also be con sidered.
In this practical age convenience is regarded more than cost in many instances. In this instance the cost of placing all tele graph lines under ground in cities and towns with anything like the present convenience and facilities will be such ás to make it too expensive for popular use, which in the end would be a practicai prohibition of its use.
Without detailing the manner of its construction in Lon don, which is on the elevated railroads and taken down a stations, and Paris, which is in its sewers, we can say tha none of the advantages and modes of its construction in those cities exists in any of our American cities.
We will take New York city as an example. In Paris there are only 80 miles of underground lines. In New York city there are 9,000 miles of line in the streets and on house-tops Of these over 3,500 belong to and are used by the Metropoli tan Telephone Company. The Gold and Stock Telegrap Company have many miles upon which the automatic iostru ments are used. The Western Union has 1,200 miles of wire, of which only about 300 miles are on the main trunk lines, and the remaining 900 supply the little local offices. It is the many local offices and places where instruments are se that is to be considered in this question of laying under ground cables. If one man in a block desired commanica tion by telephone, or the use of the Messenger Telegraph or Stock Indicator, the whole eapense of digging a trench from the main office must be considered. This would greatly narrow their use. The expense for digging the trench for one wire only would be almost as great as for many of them. Then again there must be places near together on the lines by which any wire could be taken out for repair and replace if necessary.
The Western Union Telegraph Company has now three lines of underground cables in New York city. They are in three iron tubes about three inches in diameter each, and lead from the main office of the company to Pier 18, foot of Cortlandt street, North River. In these three tubes is a cable of thirty wires each. These are conducted under the Hudson River to Jersey City.
When first laid, about five years ago, there were ouly the two tubes and the two cables in them. The expense of lay ing them from the main office to the river was at the rate of $\$ 15,000$ per mile, the cables each costing at the rate of $\$ 5,250$ per mile. About one year ago some of the wires in the cable failed to act, and one cable was entirely taken out and replaced by a new one. Another tube and cable was also then placed in the trench. The expense of often re placing must also be considered, for if some of them fail it may be necessary to entirely renew the cable. The sum of $\$ 7,500$ per mile for laying underground cables is great when compared with the cost of a line of poles in the city, which rarely exceeds $\$ 150$ per mile, capabie of carrying many wires. In places where smaller and shorter poles can be used the expense is very much less, even as low as $\$.5$ per mile in cities, and much less in the country. Increase of expense implies a necessary increase of rates. The interest on the cost of a mile of underground line will be suf cient to build at least four new lines the same length every year, which will last from twelve to fifteen years each, the wire costing only $\$ 15$ per mile.
The popular objection urged against the present system is that the poles and wires are "unsightly." When this is closely examined it shows it to be mere clap-trap and with out any reasonable foundation, and it will more strongly apply to every means of economical and convenient carry ing of merchandise and passengers in cities, without any of the chief annoyances which appertain to the later.
Surely, the means of the conveyance of intelligence is as important and as great convenience in a community as the conveyance of persons and of merchandise. Indeed, this mode of carrying news saves much personal travel by messenger or otherwise
The day has not yet arrived when underground telegraph lines in American cities will prove a convenience and be a popular success, as some will try to make others as well as themselves believe. The facts of science are stubborn things and cannot be removed or dispensed with by pupu lar opinion or legislation.-Journal of the Telegraph.

M. Gaiffe's Sulphate of Copper Battery.

This is an improvement on the Daniell element, and is in tended to put a stop to the reaction of the zinc on the sulphate of copper when the circuit is open The apparatus consists of a glass cell, at the upper part of which is the zinc, constructed as in a Calland element. The central vessel has a porous upper portion fixed upon a non-porous lower portion, which may consist of an ordinary drinking glass. The copper cylinder placed in the central cell has a prolongation which is bent down so as to reach down to the bottom of the outer cell, where it terminates in a ring. This element is charged by means of a concentrated solution of zinc sulphate of magnesium sulphate, while some crystals of copper sul-
phate are placed in the bottom of the central cell. On dis. solving, the copper sulphate first saturates the liquid in the non-porous part of the central cell, and when the copper so. lution reaches above the top of the non-porous part it tra verses the porous cell, and falls, in virtue of its superior density, to the bottom of the outer cell, beyond the reach of the zinc. This passage of the copper sulphate is effected slowly, and the circuit may be left open for weeks without any deposit of copper being perceived on the zinc. When the circuit is closed this element first reduces the sulphate of copper which has fallen to the bottom of the outer cell, the liquid in which sonn resumes its original purity, and the action then continues as in an ordinary Daniell element.

RHEOMETRIC APPARATUS

by marcel deprez.
As an example of the arrangements of rheometric apparatus belonging to the different classes cited in a preceding article, I shall describe two instruments that I had con structed some time ago. The first of these (Fig. 1) consists of a soft iron qeedle mounted on a horizontal axis movable

about two knife edges, and inclosed within a galvanometric helix, B B. The helix is placed within a pair of large bobbins, A A, wound with a wire of pretty large diameter, into which is sent a current from a Bunsen pile. The axis of the ron needle termivates at C in an index, and in a system of mall masses movable on screws, the purpose of which is to alance the whcle.
To employ this instrument, there is first sent into the wire of the bobbins, A A, a current from some energetic and constant source, such as a Bunsen element. The result is that the soft iron needle becomes magnetized to saturation, and places itself spontaneously in such a manner as to coin cide with the axis of the bobbins, A A; but it is proper to emark, also, that it is directed at the same time as magnetized. If, afterwards, the galvanometric helix, B B, be put in relation with any source whatever, the needle will"behave ike the magnetized needle of an ordinary galvanometer, and its deflection will depend upon the intensity of the sec ond current and of the directing force developed on it by the bobbins, A A. Now, this directing force may be rendered as feeble as may be desired in two ways: (1) by in creasing the diameter of the bobbins, A A; and (2) by actng upon one of the regulating masses in such a way as to place the center of gravity over the axis of rotation until the equilibrium is almost indifferent, when the bobbins, A A, will be traversed by a magnetizing current, while the botbins, B B, will be traversed by none at all.

It will be seen, then, that this instrument is a galvano meter in which the needle may be magnetized with great energy, while the directing force may be rendered very feeble, these being conditions that we always try as much as possible to obtain.
It will also be seen that it constitutes likewise a compare of currents; that is to say, an apparatus giving the relation of the intensities of two currents and not their absolute value. In fact, if tw o currents are simultaneously sent, one into the bobbins, A A, and the other into the galvanometric helix, B B, and if care has been taken to destroy every species of foreign directing force, by causing the center of gravity of the movable system to coincide with the axis of the krife edges, and by placing the latter in the magnetic meridian, the soft iron needle will assume a position of equilibrium, which will not change whether each of the cur
rents be doubled, tripled, or quadrupled. But this position of equilibrium will change, on the contrary, if the intensity of a single oue of the currents be altered. In order to de monstrate this property experimentally, the two bolbins, A A, B B, may be united inderivation on a same curve when, the law of the division of the current between the two bobbins depending only on their respective resistances, the deflection of the needle will be seen to remain the same as long as these respective resistances are not altered, whatever be the intensity of the total current. If, on the con trary, by any means whatever, the resistance of one of them be altered, the position of equilibrium of the needle will im. mediately change. Owing to this property, this instrument might become a measurer of resistance which should indi cate, by a simple reading, the resistance of a wire into which was sent a current of any intensity whatever.*
Becquerel's Bulance, modififd.-The second instrument is based on the same principle as the Becquerel balance. It consists (Fig. 2) of a powerful magnet, A A, whose arms are surrounded by the two bobbins, B B, in such a way that the distance between the pole of each arm and the lower arma ture of the corresponding bobbin is equal to about a third of the total length of the latter. The two bobbins are mu tually interdependent, and are connected with a knife edge, C, supported by the small lever arm of a steel yard, C F, whose long arm carries a weighing slide, F, to which may be booked a supplementary weight, G. The magnet is stationary and the bobbins movable, and receive the current. either through mercury cups or through a very fine and fiexi ble wire, wound in the shape of a helix, whose elastic force is altogether feeble and yet constant. This apparatus pos sesses an advantage over the Becquerel balance in having a very intense magnetic field, while in the latter the magnets are formed of small iron bars 4 to 5 millimeters in diameter It might be objected that the weight of the bobbins being much more cousiderable than that of the bars of the Becquerel balance, there would be lost, as a consequence of this surcharge imposed on the balapce, the benefit resulting from the increase of the mechanical action of the current. But it is necessary to remark that the weight of the entire movable portions of the balance is greater than that of the movable bobbins, and that, consequently, in these two instruments, the balance is placed perceptibly under the same conditions of sensitiveness, while the absolute mechanical effort, at an equal intensity with the current, is much greater in this apparatus than in that of Becquerel. The model shown in Fig 2, although roughly constructed, has in fact exhibited a remarkable sensitiveness. I think, then, that this apparatus, when better made, might render genuine services. La Lumière Electrique.

MECHANICAL IN VENTIONS

An improvement in machines for making dough into cakes has been patented ry Mr. Daniel M. Holmes, of Cincinnati, O. The object of the inventor is to secure an even and constant feed and pressure to the valves and cutters. With the use of the ordinary dough box and plunger in cake machines considerable time is lost in the intermitteat action of the feed. Mr. Holmes has, therefore, provided means of accomplishing an even and constant feed and delivery. whereby the time usually consumed in recharging the ma. chine is saved, and a consequently larger yield of goods in a given time is effected.
Mr. Henry H. Norrington, of Way City, Mich., has patented an improvement in the class of punches or perfo. rating stamps designed for use in banking and other similar establishments for the purpose of puncturing or cutting out portions of a check or other written instrument to prevent fraud by alteration. This inventor has obtained Letters Patent of the Unted States for stamps or punches of this class, and the present invention is in the main an improvement upon that which forms the subject of patent No. 223,161, granted to the same inventor December 30, 1879.
Messrs. Levi L. Lukens, of Chester, and Henry Holcrnft, of Media. Pa., have patented an improvement in shuttle boxes for loons which consists in a peculiar construction and arrangement of the parts, by which the second spindle, as ordinarily used, is dispensed with, which permits of an increasing width of the picker strap. There are other points in the invention which cannot be described without an engraving.
An improvement in the class of machines adapted for sol dering the heads of paint cans and other cylindrical vessels to their bodies has been patented by Mr. Henry R. Robbins, of Baltimore, Md. It is more particularly an imprevement in machines which are adapted for using solder wire, the latter being wound upon a reel, from which it may be drawn off as required and fed into contact with the heated soldering irons and can seams. In this machine the wire reels and mechanism for drawing off the wire are operated simulta neously with the rotation of the can by means of friction gearing, which is put in operation by treadle mechanism. The soldering appliances are also arranged for a certain simultaneous and automatic action. The soldering irons are pivoted and adapted to vibrate between the can-holders and an open furnace, so that they may be swung forward to press on the can seams, and backward to enter the furnace, where they are heated preparatory to the next operation.
An improved car brake, patented by Messrs. William A. Kearney and Joseph G. Davis, of Logansport, Ind., consists in a novel arrangement of a cam for drawing the brake chain * Mr. Carpentier has recently constructed a resistance measurer bared

