a WeEkly Journal of practical information. art. sciience. mechanics, chemistry and manufactures.

INAUGURATION OF THE NEW EDDYSTONE LIGHTHOUSE. portion of the reef upon which it rested had become inseThe first Eddystone Lighthouse was built by Henry cure. The construction of a new lighthouse had therefore Winstanley, in 1696. It was constructed of wood and become imperatively necessary; and its cornerstone was laid stone, and was carried away, together with the architect and by the Duke of Edinburgh, August 19, 1879.
keepers, by a violent storm in November, 1703. A second, of The new tower is from designs by Mr. James N. Douglass, similar construction, was built in 1708, by John Rudyard, a chief engineer to the Trinity Board. The building has been silk mercer, of London, and this was burnt down in 1755. entirely carried out under the personal superintendence of The famous building by Smeaton succeeded this, and stood Mr. Thomas Edmond, the resident engineer, with Mr. W. T. for over a century on the famous reef. In 1877 it was dis- Douglass as his assstant. It is entirely of granite from the covered that the rocky foundation had been undermined by De Lant quarries at Wadebridge, near Padstow, in Cornthe waves, and that, although the tower itself was sound, the wall, with the exception of seven courses, in the Iower part

sectiox on cure old tomery of the tower from Aberdeen. A solid cylinder of granite $441 / \mathrm{ft}$. in diameter, was first built up from the rock to the height of $21 / 2 \mathrm{ft}$. above high water. From this, as a base, the tower springs, leaving a terrace, $41 / 2 \mathrm{ft}$. wide, all round.
Experience and observation satisfied Mr. Douglass that the shape of Smeaton"s tower, of which so much had been said, was not the best that could be designed, and that, by allow ing the waves to run up readily toward the summit this shape had the effect of throwing the main stress of the water upon the upper part of the tower, where it acted with enormous leverage to weaken the base. He has, therefore placed the curved portion of the tower upon a base with vertical sides, which will not have the same tendency to produce an upward run of the waves, and has also laid the coundation in a manner somewhat different from that which Smeaton had employed. The tower is built of granite blocks, some of them 6 feet 6 inches deep, 2 feet thick, and 3 feet 10 inches on their outer circumference, and they are all without a flaw. Throughout the whole tower every stone is dove tailed, by projections and grooves, into those above, below, and on either side of it; and the interstices between the blocks have been filled up with Portland cement, which blends the whole into a mass, the joints of which are as hard as the granite itself.

## 



SECTION OF the new tower.

INAUGURATION OF THE NEW EDDYSTONE LIGHTHOUSE.

# §oinutific Ammerian. 

## ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors. pUBLISHED WEEKLY AT
No. 261 BROADWAY, NEW YORK.

## Me copy, one year nostape included.



nit uy postal order. Address
The Scientific American Supplement
is a distinct paper from the SCIENTIFIC A MERICAN, 'THE SUPPLEMENT
is issuad weekly. Every number contains 16 octavo pages, uniform in size
with Sce

\$5. 00 a year, postage paid, to subscribers
all news dealers throughout the country
Combined Rates. The SCIENTIFIC AMERICAN and SUPPI, AMIENT
will be sent for one year postage tree. on receipt ot seven dollars. Both
papers to one address or difterent adaresses as desired.

Scientific American Export Edition.

NEW YORK, SATURDAY, JUNE 24, 1882.

| Contents. |  |
| :---: | :---: |
|  |  |
| Binder, load, Conkling's*......... 397 |  |
| iosit | 5 |
|  |  |
|  |  |
|  |  |
| ment for repai |  |
| ir, reclining. Alien ${ }^{\text {d }}$ ** |  |
| ts, weather. North Atiantic. | Ocean cables, curiosities of...... ${ }^{393}$ |
| iosities of ocean cables.... ${ }^{393}$ | Paradox wheel*................... ${ }^{\text {397 }}$ |
| tting mechanism, Danheim's ${ }^{*}$ * 397 |  |
| oom, p |  |
|  |  |
|  |  |
|  |  |
| Electricity, launching by ... ... 395 |  |
| tric mot | Pro |
| ics | Range |
|  |  |
|  | Recsin |
|  | Ro |
|  | Safe, suspended |
|  | Sn |
|  | Steamb |
|  |  |
| Incandescent lamn. Regnard's. Instruction. defective, in reading 392Inventions. mechanical*......... ${ }_{397}$ |  |
|  |  |
| Inventions, miscellaneous**.... ${ }^{\text {and }}$ 397 |  |
|  |  |
| Lamp, incandescent, Reg Launching by electr |  |
|  |  |
|  |  |
|  |  |

TABLE OF CONTENTS OF

## the scientific american supplement, NO. 338,

## For the week ending June 24, 1882 .

Price 10 cents. For sale by all newsdealers.
I. ENGINEERING AND MECBANICS.-The St. Gothard Tunnel.- Pa 2 figures.-Swiss entrance to the Tunnel.-Italian approach, with
view of old carriage road.............................................
The Berlin Metropolitan Railway. By wiIIIAM BIRD.-14 figView of oid carriage road................................................
The Berlin Metropolitan Railway. By WIILAM BIRD.- 14 fig-
ures.-Friedrich street station.-A lexander Platz station.-Museum ures.-Friedrich street station.-A lexander Platz station.-Museum
Island Bridge.-Stock Exchange depot.-Street Bridge.-Castle Island Bridge.-Stock Exchange depot.-Street Bridge.-Castle
Bellevue Bridge.-Viaduct.-Bellevue station.-Silesian depot.Charlottenburg Roadway Bridge.-Schiffbauerdamm Bridge.-Spree Viaduct and Michael's Bridge.-Handweber Kanal Bridge.. Improved Feathering Propelle
Welton's feathering propeller... Welton's feathering propeller..
Erlach's Improved Bicycle.-2
.
Wh CHEMISTRY, ETC.-How a Shoemake hould Work Sole Leather
Herr Hof-Pbotograph V
Practical Notes in Pharmacy.
Oil of D'Anda-Assu and of La
Nitrate of Ethyl for Disinfecting Purpose
. electricity, magnetism, etc.-Easy Process of Magnetization..
 can be stored economically.-Mode of generating and storing elec tric energy.- Plante's storage battery.--1ts capacity, efficiency, and tric energy.-Plante's storage battery.-1ts capacity, efficiency, and batteries....
Magic Mir
Magic Mirrors of Silvered Glass.-1 figure.-M. Laurent's appa-

. HYGIENE, MEDICINE, ETC.-Salicylic Acid in the Treatment of Yellow Fever, Cholera, etc. By Dr. T. BROWN HENDERSON.-FerCarbolic acid and its use.-Sulpho carbonate of ammonia........ On the Determination of Sex in Generation. By Dr. T. M. MARRis...
Caus
Hoang Nan, a New Chinese Remedy for Snake Bite
Consumpticn. By Prof. Trndali. Communication describing

- ASTRONOMY AND METEOROLOGY.-The Great Nebula in Andromeda. -3 figures.-Nebula as figured by Bond in 1847.-By Trou elot in 1874.-By Perry in 1881
I. ARCHITECTURE, ETC.--Concrete Flooring. The Great Temple of Rangoon.- 1 tgure.-Entrance to the Great natural history -The Ba VII. NATURAL HISTORY.-The Barking Toad.-1 figure.-The

Notwithstanding all that has been written or said about rendering dress goods and curtains non-combustible, the sub ject does not excite as much public interest as it deserves. We have often referred to the subject, but the following paper by Dr. P. Rabe, in the Industrie Blaetter, will prove of interest:
Gay Lussac succeeded in rendering fabrics totally incom bustible by soaking them in a 7 per cent solution of sulphate of ammonia. In 1838 the Paris police made the use of un inflammable material compulsory on the stage. This process however, did not work well, for in course of time the ammonia partially escaped and the sulphuric acid that remained destroyed the fiber . Then, too, the goods gradually lost their non-combustibility by use. Chevalier tried to avoid this by employing a mixture of sulphate of ammonia and borax, but this injured the fabric likewise. After the burning of the Munich Theater Fuchs recommended a coating of waterglass for protecting easily combustible substances. But since the heat causes the waterglass to peel off it affords little protection. Versmann and Oppenheim first made experiments on a large scale, and found that four salts were suitable for impregnating fabrics, viz.: 1. Phospbate of ammonia. 2. Phosphate of ammonia with salammoniac. 3. Sulphate of ammonia. 4. Tungstate of soda. For arti cles that require starch, only the last is suitable; it has in fact been used in England for twenty years. Abel impreg nated fabrics with silicate of lead by first saturating them with sugar of lead, then dipping them in waterglass solution and washing. Suhsequently a series of other substances were recommended, the most important of which will be found at the close of this article.
Means have also been discovered for protecting woodwork from burning. Usually it has been attempted to gain this end by means of a paint. Nickle's process, which bas been used a good deal in Strassburg, consists in adding to the lime used for whitewashing an equal weight of chloride of calcium solution of $14^{\circ} \mathrm{B}$., and applying the whitewash in the usual manner. Another wash used in Westphalia consists of $21 / 2$ parts of salammoniac, 1 part of sulphate of zinc, 2 parts of carpenter's glue, 20 parts of zinc white, and 30 parts of water. Patera in Vienna has used with success a mixture of 2 parts of gypsum and one part of sulphate of ammonia in 3 parts of water. J. A. Martin recommends 15 parts of salammoniac, 5 parts of boracic acid, 50 parts of glue, and $11 / 2$ parts of gelatine in 100 parts of water, to which is added enough pulverized lime to bring it to the proper consistency.
Schussel and Thouret have rendered wood incombustible by impregnating it with this mixture. To 16 parts of a phosphoric acid solution of $16^{\circ} \mathrm{B}$., and $21 / 2$ parts of carbonate of ammonia, are added 6 parts of a solution of salammoniac of $10^{\circ}$ B., and 1 part of gum arabic. The dried wood is put in this liquid for at least twe iity-four hours then allowed to dry. and painted with oil paint.
There is no doubt that impregnation protects the wood rom fire better than any kind of paint, and will no doubt become very important in the future. Prohably the rather costly mixture of Schussel and Thouret may be replaced by other substances that are of scarcely any value for other uses, such as the still unused portions of the Stassfurt salts, and the enormous quantity of waste chloride of cal cium made in some manufactures. Instead of saturating the wood by simply dipping it into the liquid, it would be better to force it in by atmospheric pressure. In a similar manner wood is already impregnated on a large scale to protect it from decay, and the works where railroad ties are prepared should not permit the preparation of fireproof lum ber for building purposes to slip through its hands. The same substances that prevent its burning also protect it from dry rot. It is to be boped that the use of impregnated fire proof lumber sball not be limited to theaters and simila buildings, but come into general use.
impregnating liquids fot fabrics.

## Discoverer $\quad$ Composition

Versmann and
Nicoll.
Solution of tungstate of soda of $28^{\circ}$ Twaddle with
per cent phosphate of soda.
parts alum, 2 parts borax, 1 part tungstate of soda.
part dextrine in soap water.
Siebdrath. $\quad 5$ parts alum, 5 parts phosphate of ammonia, in 100 parts water.
parts boras, $21 / 2$ parts sulphate magnesia, in 20 parts of water.
8 parts sulphate of ammonia, $21 / 4$ parts carbonate of ammonia, 3 parts of boracic aci
starch, and 100 parts of water.

## DEFECTIVE INSTRUCTION IN READING

The census enumerators found in the common schools two years ago, close upon ten million pupils. In the high schools there may have been a million more. Let it be granted as no fault of the schools that-as school officers tell us-the lower half of this vast number are too young or than a hundred or two of the simplest English words. How about the upper half? How many of them know, or are about the upper half? How many of them know, or are
likely ever to know, how to read-that is, to read to good purpose?
As a rough estimate, based upon not a little practical knowledge of the instruction given in our schools and it
ates as well as the graduates of lower schools. In truth, it is the exception when a student learns how to read in school As a rule, the schools do not teach reading in any stric sense of the term, even when they spend much time in for mally drilling their pupils to call off with more or less of elocutionary effect the words of a printed exercise. We have known those who might win prizes for that sort of display, who yet had but the vaguest idea of the essentials of the art of reading. Indeed, their notion of reading is much like that of the young man who protested that be could not see why some people called Euclid "hard reading." He had read a whole book at a sitting, and without the slightest difficulty That reading implied understanding, had never occurred to him.
The crowning defect of the instruction in reading given n schools could not be more forcibly illustrated. To recog nize the words at sight, as words, is the grand object; and when this has been accomplished it is taken for granted that there is no more to be done. The usual matter of the reading exercises makes the delusion easier. At best the selec tions are purely literary, employing a literary vocabulary and allowing a wide range of vague comprehension to pas or understanding. When one who has been taught to read in this way (and the majority are) essays, to read matter requiring clearness and precision of thought, or an exact understanding of facts or principles, he is all at sea. He thinks he knows how to read, but be does not. He may be able to call off the words with the utmost readiness; but there is no real reading, for there is no full and clear understanding The unschooled mechanic, who has ploddingly read for specific information upon subjects he has wanted to master, seeking for knowledge he needed to use, may mispronounce half the words, and yet be the better reader, for he will not be content with empty sounds. To bim reading is a means o an end, not an end in itself.
We have sometimes thought that if our common school bould aim first of all and all the time simply to teach pupils to read, the public benefit would be greater than is obtained under the more ambitious system which now pre vails. Such teaching would be useful so far as it went and it would go further for all practical purposes, educational or otherwise, than the delusive smattering of many things which the majority of pupils now get; for it would necessi tate a systematic building up of a comprehensive vocabulary every word of which would have to be objectively taugh and variously illustrated until its meaning should be as fully comprehended as the pupil's age and capacity might make possible, and also a constant practice in the recognition of known truths and in the acquisition of exact nowledge in and from print
If all schnol children were thus taught to read a death low would be struck to the production of what forms the bulk of the popular literature of the present time, for its market would be spoiled; at the same time the level of popular intelligence would be materially raised, and something like a revolution wrought in social, industrial, and political affairs by exacter habits of popular thinking and speaking. Half the mistakes, misunderstandings, and conflicts which spoil the peace of society arise from the inability of most people to give or follow exact directions, written or spoken. Strictly speaking, the average reader does not know how to read.

## LIVE STOCK IN THE UNITED STATES.

A census bulletin gives the statistics of live stock in each of the States and Territories, exclusive of ranche stock and he horses, mules, cows, and swine (in cities or elsewhere), belonging to persons not owning or occupying farms. The otals are: horses, $10,357,981$; mules and asses, $1,812,932$ working oxen, 993,970 ; milch cows, $12,443,593$; other catle, $22,488,590$; sheep, $35,195,656$; swine, $47,683,951$. The percentage of increase during the ten years from 1870 to 1880 was: horses, 45 ; mules and asses, 61 ; working oxen, (decrease), 25 ; cows, 39 ; other cattle, 66 ; sheep, 24 ; swine, 90.

The State having the largest number of horses on farms is Illinois, 1,023,082. New York's number is 610,358 . If the horses in our cities and employed on the canals were added the showing would be very different. The horses in he other leading States number as follows: Texas, 806,099 Iowa, 792,322; Ohio, 736,478; Missouri, 667,776; Indiana 581,444 ; Pennsylvania, 533,578 . Missouri leads in mules and asses, with 192,027; Tennessee has 173,488; Texas, 132,581; Georgia, 132,078; Mississippi, 129,778; Illinois, 123,278; Alabama, 121,081; Kentucky, 116,653; Texas has the largest number of working oxen, 90,603 ; the other States having more than fifty thousand each are: Alabama, 75,534; Mississippi, 61,705; Virginia, 54,769; North Carolina, 50,188; and Georgia, $50,026$.
New York leads enormously in milch cows, with 1,437,855; hen comes Illinois, 865,913; Iowa, 854,187, Pennsylvania, 854,156; Ohio, 767,043; Missouri, 661,405; Texas, 606, 717 no other has half a million, though that number is approached by Indiana, 494,944, and by Wisconsin, 478,374. In "other cattle" Texas leads with 3,387,967, and five other States have over a million each: Iowa, 1,755,343; Illinois, 1,515,063; Missouri, 1,410,507; Ohio, 1,084,917; and Kansas, 1,015,935. Ohio leads in sheep, with $4,902,486$; then come (Yalifornia, 4,152,349; Texas, 2.411,887; Michigan, 2,189,389; New Mexico, 2,088,831; Pennsylvania, 1,776.598; New York, 1,715,180; Missouri, 1,411,298; Wisconsin, 1,336,807; and Indiana, Illinois, Kentucky, and Oregon, with over a mil lion each. Iowa leads in swine, with $6,034,316$; Illinois has

5,1\%0,266: Missouri, 4,553,123; Indiana, 3,186,416; Ohio, 3,141,333; Tennessee, 2,158,169; Texas, 1,954,948; Arkansas, 1,565,078; Alabama, 1,252,462; Georgia, 1,471,003; Mississippi, 1,151,818; Nebraska, 1,241,914; Penn sylvania, $1,187,968$, Wisconsin, $1,128,825$. Michigan and Virginia approach the million, but no others do. There was an increase in the number of working oxen in fifteen States, all southern except Michigan.

## The Franklin Institute on "the Legalizing of

 Theft."At a special meeting of the Franklin Institute, May 24, the following resolution was adopted:
Whereas. By a vote of the House of Representatives of the United States, taken on the 15th day of May, 1882, a bill was passed to amend the United States patent laws-which amendment takes away almost the entire protection granted by letters patent to property acquired by invention, and in effect legalizes theft; and
Whereas, It is manifest that any such enactment as will relieve the possessor of a fraudulently made article from all liability as a party to the infringement, will render the pro tection heretofore guaranteed by letters patent as utterly inadequate as though no patent existed; and
Whereas, The unparalleled advances that have been made by this nation in every department of science and industry are due solely and unquestionably to the wise provisions of our patent laws, and all legislation that in any degree detracts from the protection now afforded to inventors would paralyze all the industries which by protected ingenuity have become monuments to American progress, and sources of incalculable wealth to the nation;
Resolved, That it is the sense of the Franklin Institute, of the State of Pennsylvania, for the Promotion of the Mechanic Arts, that the amendment to section 4,919 of the Revised Statutes, relating to the recovery of damages for the infringement of patents, which passed the House of Representatives May 15th, 1882:
Is a violation of the rights insured to the holders of patents under the laws of the United States;
Is a deprivation of the remedies which are essential to the maintenance of those rights;
Is a breach of the contract with patentees made by the laws relating to patents;
Is injurious to the interests of inventors and patentees, with no compensating advantages to any other honest persons;
And is destructive of the system of patents in the United States, which has done more than any other one thing for the promotion of the mechanic arts and the advancement of the promotion of the mechanic arts
the material interests of the country.

## Prof. Wm. B. Rogers.

Prof. William B. Rogers, one of the founders of the Boston Institute of Technology, and for many years its president, died suddeuly, May 30, while addressing the graduating class.
Prof. Rogers was born in Philadelphia, in 1805, and, like his three brothers, early distinguished himself in scientific pursuits. His first lectures on science were delivered in the Maryland Institute in 1827, and two years later he succeeded his father, Dr. P. K. Rogers, as Professor of Natural Philosophy and Chemistry in William and Mary College. In 1835 he accepted the chair of natural philosophy and geology in the University of Virginia, a place which he filled till 1853, when he removed.to Boston, where he has since resided. He analyzed the waters of the mineral since resided. He analyzed the waters of
springs in Virginia in 1835, and organized the State Geological Survey, at the head of which he remained till it was discontinued in 1842. He delivered a course of lectures in 1862, before the Lowell Institute in Boston, on the application of science to the arts, and from 1862 to 1868 was President of the Boston Institute of Technology. He was elected President of the American Association for the Advancement of Science in 1875, and at the time of his death was President of the National Academy of Sciences. As an author dent of the National Academy of Sciences. As an author
he produced a treatise on the "Strength of Materials" he produced a treatise on the "Strength of Materials"
(1838); "Elements of Mechanical Philosophy" (1852); and many scientific papers.

## John Franklin Gray.

Dr. John F. Gray, the father of homeopathy in America, died in this city, June 5. He was born in Sherbourne, N. Y., in 1804. He was graduated at the College of Physicians and Surgeons in 1826, and shortly after began to practice his profession in this city. Subsequently he adopted homeopathy, and in 1834, in connection with his brother-in-law, Dr. Heill, he started the Homeopathic Examiner, the first journal of that school of medicine. The American Institute of Homeopathy was started in 1844 at his suggestion. Hamilton College made him a Doctor of Laws in 1871. He was a believer in a high standard of scholarship. The State Board of Medical Examiners was formed through him; he was its first president, and bas since been one of the board.

## Progress of Orange Culture in Florida.

A Florida paper says that within a radius of eight miles of Sanford, that State, there are 2,992 orange groves, containing 165,235 trees, and, although only 5 per cent of the trees are now bearing, they produce $2,500,000$ oranges annually. The entire State is said to produce $50,000,000$ oranges.

Of the total 97,200 miles of cable in the world, some
36,420 are owned and worked by the Eastern Telegraph 36,420 are owned and worked by the Eastern Telegraph
Company and its affiliated companies, the Eastern Extension Company and its affiliated companies, the Eastern Extension
Telegraph Company and the South African Telegraph Company. The Eastern Telegraph Company is perhaps the most enterprising of cable corporations, and makes a very fine display at the Crystal Palace, London. Cable operations have been, says Nature, of great assistance to the geographer, and the soundings taken in order to ascertain the nature of the sea bottom, where a cable route is projected,
have enriched our charts quite as much as special voyages. There is, however, another way in which these operations could be made subservient to the cause of natural science; but it is a way which has not been sufficiently taken advantage of. Besides the specimens of stones, mud, and sand, which the sounding lead brings up from the deep, the cable itself, when hauled up for repairs, after a period of subitself, when hauled up for repairs, after a period of sub-
mergence, is frequently swarming with the live inhabitants of the sea floor-crabs, corals, snakes, mollusks, and fifty other species-as well as overgrown with the weeds and mosses of the bottom.
Many an unknown species has passed over the drums unnoted to rot and fester in the general mess within the cable tanks. We venture to predict a rare harvest to the first naturalist who will accompany a repairing ship, and provide himself with means to bottle up the specimens which cling to the cable as it is pulled up from the sea.
Some idea of these trophies may be gathered from the stall of the Eastern Telegraph Company, where a few of them are preserved. Two of these are a very fine gray sea snake, caught on the Saigon cable in a depth of thirty fathoms, and a black and white brindled snake, taken from the Batavian cable in twenty-five fathoms. Twisting round ropes seems to be a habit of this creature, for the writer remembers seeing one scale up a ship's side out in the River Amazon, by the "painter" hanging in the water.

A good example of a feather star is also shown; these animals being frequently found grasping the cable by their tentacles. A handsome specimen of the blanket sponge, picked up in the Bay of Biscay, is also exhibited. But the most interesting object of all is a short piece of cable so beautifully encrusted with shells, serpulæ, and corals, as to be quite invisible. It was picked up and cut out in this condition from one of the Singapore cables. The rapid growth of these corals is surprising, and some valuable information on this head might be gained if the electricians of repairing ships in these eastern waters would only make some simple observations. Curiously enough, so long as the outermost layer of oakum and tar keeps entire, very few shells collect upon the cable, but when the iron wires are laid bare, the incrustation speedily begins, perhaps because a better foothold is afforded.

A deadly enemy to the cable, in the shape of a large boring worm, exists in these Indian seas; and several of them are shown by the company. The worm is flesh colored and slender, of a length from $11 / 2$ inches to $21 / 2$ inches. The head is provided with two cutting tools, of a curving shape, and it speedily eats its way through the hemp of the sheathing, to the gutta percha of the core, into which it bores an oblong hole.

A full account of this particular worm, with anatomical illustrations, is given in the Journal of the Royal Microscopical Society for October, 1881, by Dr. Charles Stewart, Secretary of the Society. The bore holes, after passing through the oakum of the inner sheathing, either pursue a tortuous course along the surface of the gutta-percha core, or go right into the copper wire, thereby causing a " dead earth" fault. Dr. Stewart classes the worm as one of the Eunicidæ, but proposes for it the generic name of Lithognatha worslei, because of its possessing a pair of calcareous mandibles or cutting jaws, and after Captain Worsley, the commander of the repairing ship which picked up the worm-eaten cable. The pair of calcareous jaws, in addition to three pairs of chitinous ones, is the most remarkable feature about the animal, and the white plates which form them make the creature look as if it were in the act of swallowing a tiny bivalve shell.
The best protection hitherto formed against it is to cover the core with a ribbon of sheet brass, laid on without a lap. First the gutta percha is covered with cloth, then the brass is overlaid. Canvas is then put over the brass, and the hemp and iron wires over all. A close layer of iron wires is not a sufficient protection, for the worm can sometimes wriggle in between the wires where they are not close enough; and, moreover, the rapid decay of iron wires in tropical seas is certain to leave the core a prey to these pests in a few years.
The Eas
The Eastern Extension Telegraph Company also exhibit some interesting samples of stones picked up from the sea
bottom; for example, limestone blocks and shells bored by the bivalve, Saxicava ragosa, the worm Sabella, and the sponge Hymeniacidon celata; wood honeycombed by the teredo. a red stone pitted by the bivalve shell (pholas), and a ferruginous flaky stone brought up from the bottom between Penang and Singapore. Most interesting. however, of these inanimate waifs is a flat piece of black flinty rock hollowed
into cup-like pits by the sucking feet of the sea hedgehog. The pits are excavated as lairs for the animal, and some of them are nearly three inches in diameter by one inch deep. To make the rocky bed softer to the feel, the hedgehog has lined it with a calcareous enamel, probably secreted by its body, much in the same way as the pearl oyster coats its shell.

In the earlier days of submarine telegraphy, Sir William Thomson declared the life of a cable to be practically inviolable; and Robert Stephenson, on the other hand, was of opinion that no cable would last out ten years. The latter view has proved the more correct, for the average life of a cable hitherto has been about eleven years. Thanks to the improved means of repairing them, however, the outbreak of faults does not mean the loss of a cable, for these flaws can be cut out in water, however deep, and the cable put to rights again. Indeed every cable company expects a re currence of faults, and provides a fully equipped repairing ship always on the spot.

## Cattle Transportation.

A train of ten improved stock cars, containing 158 head of cattle, arrived in this city on the night of May 28. The train left Chicago on the 26th, and ran to Buffalo on slow time. From Buffalo to New York a speed of from 30 to 45 miles an hour was maintained. This is said to be the quickest trip ever made by a live stock train, and the condition of the cat tle on their arrival proved the excellence of the treatment they had received on their long journey. The weight of the cattle when loaded in Chicago was 226,098 pounds, an average of 1,430 pounds a head. They arrived in New York at midnight, and early the next morning their aggregate weight was found to be 222,870 pounds, an average of 1,410 pounds each, showing a shrinkage of only 20 pounds a head. The usual shrinkage for this journey is from 70 to 100 pounds. The cattle were watered at stations along the road, and at the same time supplied with hay to be eaten while the train was running.
The improved cars are each 40 feet long, inside measurement, or 10 feet longer than the ordinary cattle car. Each car contains sixteen stalls, eight of which face to one side and eight to the other. These stalls are $21 / 2$ feet in width, $81 / 2$ feet in length, and $7 \frac{1}{3}$ feet high, allowing ample room for the largest steer to lie down on and rise from at will his comfortable dried sand bed of an inch and a half's thickness. They are separated by gates, which are cushioned, with spring fastenings, against which the animal can lean without being bruised by the motion of the train. For about onesixth of the width of the car the gates are permanent, and extend from the floor to the ceiling, but for the remainder of their length fold upward into the rigid section, thus makng a free passage for the cattle to pass out of or into the cars. The gates are dropped down, one at a time, as each animal is walked into its stall, while the car is being loaded The heads of the animals are between the stationary sec tions, so that "hooking" or quarreling about feed is effectually prevented. In front of the beasts, along the sides of the car, are continuous troughs for feed and water. The food, which may be cut feed or dry hay, is easily introduced from the outside by raising a hinged board that is upheld by a hook while the food is being placed, and afterward dropped and fastened by another hook on the outside to prevent the feed from being thrown out. The water is received through an aperture in the top of the car, and is conveyed directly to the troughs through pipes. The train was provided with automatic brakes.

## British Patents in 1881.

During 1881 the British Patent Office received 5,751 appliations, the largest number recorded for any year. The number of patents granted is not reported. Of the whole number of applications 2,139 , or more than 37 per cent. came from foreigners. The applications from the United States numbered 745, while those from Canada were only 34. France is second on the list, with 552 applications, and Germany third, with 464 . From other nations the applications were few: 70 from Austria-Hungary; 70 from Belgium; Sweden 32; Switzerland 40; Russia 24; Italy 19 ; India 15; Norway 14; Denmark 12. The Australians appear to invent but little or few things likely to find a market in he mother country. The applications from Australia were ; from New Zealand 5; from Tasmania 1. The South American applications numbered but 10 in all.
The home applications numbered 3,633 , the number of applicants being a little more owing to joint inventions The great majority of the applications came from England 3,263; the number from Scotland was only 270; from Ireland 63 ; from Wales 46 . In order of inventiveness the ten leading towns stand thus: London (postal district) 1,260; Manchester and Salford 240; Birmingham 220; Glasgow 130; Liverpool 109; Leeds 70; Sheffield 54; Bradford 44; Nottingham 37; Edinburgh 34. For its size the most nventive town is Birmingham.
M. Dumas, the perpetual President of the French Academy, has been instructed by the Minister of the Interior to make a return of all persons who have been killed or maimed in pursuit of scientific research. It is the desire of the French Government to make some compensation for such casualties, which have hitherto been disregarded. Some time since, says the Photo. Neus, we remember meeting M. Henri Pellet, whose blue-lined copying process is so well known, and sympathizing with bim on the loss of the fingers of one hand, which he had surstained through experiments with gun-cotton and nitro-glycerine. "I sup pose you will give up explosives, now," was nur remark. Our friend langhingly shook his head: "I have my other hand still," he cried, holding it up.

GENTILLI'S GLOSSOGRAPH.-AN AUTOMATIC SHORT-HAND APPARATUS.
Amadeo Gentilli, C.E., brought before the public a short time ago an invention with which he has been occupied for a number of years. The purpose of this apparatus is to record speech automatically, in easily deciphered characters, with the rapidity of the normal flow of speech. The inventor did not proceed with his studies, as the inventors of the telephone and phonograph, upon the principle of acoustics, because he could not succeed in making practical use of the microscopical characters thus obtained; but he converts the motions of articulation of the organs of speech into visible permanent characters.
An easily managed instrument, shown in Fig. 1, is pro vided with delicate levers which rest upon the different parts of the tongue and lips, and slender wings swing before the nostrils. The levers of this instrument may be taken in the mouth without any inconvenience.

On speaking these levers and the wings move, and their motions are transferred partly in a mechanical way and partly by electricity to a writing pencil, which marks the single sound with great precision upon six lines parallel and near to each other on a strip of paper, which is moved forward by hand or clockwork. Upon the utterance of the vowels and consonants, moving one or more parts of the organs of speech more or less strongly, or upon the air being exhaled through the nose, the signs corresponding to the sounds uttered are recorded and may be read at once. For example, in uttering ch; $r, g$, the back part of the tongue is raised; with $s, h, l$, the tip of the tongue; and with $\mathrm{e}, \mathrm{i}$, the whole tongue is moved; with $s$, $t$, the tongue is pushed forward against the teeth; with o, u, the under lip; and with $\mathrm{f}, \mathrm{b}$, the upper lip is moved; and with $\mathrm{n}, \mathrm{m}$, the soft palate is depressed in such a manner that the air which otherwise would issue from the mouth finds its way through the nose. These characteristic motions through double levers are transferred in the instrument from the inside to the out side of the mouth in such a way that with the utterance of $\mathrm{ch}, \mathrm{r}$ g, lever IV.; with e, i, levers IV and V.; with s, ch, l, lever, VI. with $\mathrm{s}, \mathrm{t}$, levers. V. and VI with a, o, u, lever III.; with $f$ b, levers II. and III. are put in motion and produce larger o smaller variations of the penci from its position of rest. The nasal sounds, $n$ and $m$, place lever I. in motion.
These few signs suffice for the interpretation of language, for in our conventional orthography, taking into consideration only the phonetic sound marks, it will be found that $b$, $d$, and $g$ are only less degrees of intensity of sound than $p, k$, and $t$; that c, $\mathrm{z}, \mathrm{q}$, and x are composed from ts, kw, and ks; that between and $v$ no difference exists; and that $w$ is only a sonorous
fication of $v$. The system of writing of this apparatus, as represented in Figs 3 and 4, may be quickly learned. There are certain rules which make the deciphering easier. These rules rest upon the laws of the construction of syllables and the combination of consonants.
The German and Italian languages are best adapted for recording by this apparatus, because in these languages the phonetic mode of writing varies least from the orthography but this does not prevent its being applied to other languages.
Stenography through the use of this apparatus (which the inventor calls a glossograph) becomes, in a certain measure, the public property of every one who will undertake the easy and interesting labor of learning the key of this " nature's selfwriting." This apparatus may be used for the recording of public speeches, not by the orator himself, but by one employed for that purpose, who takes the instrument in his mouth and repeats the speech softly, for the voice plays no part in bringing out the signs.
The glossograph has the advantge over stenography as it is practiced now, as it requires no previous study or practice, it demands no straining of the attention, and consequently causes no weariness. Only the deciphering requires practice. 'The employment of an apparatus which will enable us to write four or five times as rapidly as formerly, especially in an age when so much writing is done as in ours, will not be confined to the noting down of public speeches, and if the compass of the

A few imperfections which appeared afrue irst exhibition of the apparatus have since been obviated by the inventor. He has separated the speaking apparatus from the writing apparatus, and provided the latter with clockwork, so that the writing is more distinct, and by the relative duration of


RECORD OF THE GLOSSOGRAPH.
the single signs a valuable knowledge of the signs may be obtained. The transmission of the motions is made by elec tricity: the contact of the tongue with the soft palate, or the lips with each other, is imprinted by the closing of the working current.-Illustrirte Zeitung.


DIAGRAM OF THE LEVERS


RECORD OF THE GLOSSOGRAPH.
that his experiments were made with the venom of the fol lowing species: Surucucú (Lachesis rhombeata), a reptile that attains a large size (two meters and more), and whose bite is considered to be one of the most dangerous; .jararaca (Bothrops jararaca), the most common of our venomous species, and whose dimensions seldom exceed one meter; jararacussú (Bothrops jararacussú), whose bite is as much feared as that of the surucucú, and which attains a larger size than the jararaca; and finally the urutú, a species not very well defined as yet zoologically, but which is similar to the bothrops, and is endowed with a very active poison. He has already collected about forty cases of bites in man, of individuals belonging to these different species, in which hypodermic injections of permanganate of potash have given the best results. Among these there are even two cases of bites by the rattlesnake (Crotalus horridus).
Testsapplied in India show that the same treatment is efficacious against the poison of the cobra de capello. It is noteworthy that the permanganate of potash, as used by Dr. Lacerda, in a solution of 1 in 100, has no irritating effect.
Dr. John Shortt, formerly Deputy Surgeon General of the Madras Army, in a communication to the Lancet, says that as long ago as 1869-70 he publicly demonstrated the efficiency of liquor potassæ as a cure for snake bite, and describes a number of cases of successful treatment of snake bites with his remedy. In summing up Dr. Shortt says: "In the course of a large series of experiments with snake poison, I discovered that the liquor potassæ neutralized the poison completely and rendered it inert. Having thus satisfied myself of this fact, and after further experiments, I found that potash combined with brandy as a diffusible stimulant roused the nervous system, excited the circulation, and thus carried the potash into it as rapidly as possible, and enabled it to overtake and neutralize the poison in the blood. Being satisfied on this point, when the snake bitten cases came for treatment, $I$, in the most careful manner, put into practice the plan I had found so successful in my experiments on these patients with perfect success. Of the five cases thus treated two were the bites of cobras, two that of Russell's viper, and the othe one that of a green viper. It is difficult to get a succession of cases of snake bite for treat ment, but the secret of success by this method consists in bringing the patient's system rapidly under the influence of the potash and brandy or in othe words, to make the patient drunk as speedily as possible and maintain this effect for some time after, till the-system becomes thoroughly saturated with the potash, and the whole of the secretions become alkaline. I have tested the permanganate of potash also and have found that it likewise render

Potash as an Antidote to Snake Poison.
The Brazilian Government has distributed throughout the empire a circular announcing the fact that Dr. J. B. de Lacerda, of Rio Janeiro, has found an antidote to snake poison in permanganate of potash, and explaining the manner of its use. Dr. Lacerda recommends that the per-


GENTILLI'S GLOSSOGRAPH. nake poison inert, but as it is the potal alone sesses the power of ueutralizing snake poison, I do not see the advantage of using the compound known as the permanganate of potash.
In Dr. Shortt's treatment the wound was scarified, so as to bleed freely, and then kept wet with a lotion composed of three ounces of liquor potassæ and ten ounces of warm water. Meantime the patient was given hourly doses of one and a half ounces of a mixture of three drachms of liquor potassæ, nine ounces of brandy, and four and a half ounces of water.
Where obtainable the hypodermic injection of permanganate of potash as pre scribed by Dr. Lacerda would seem to be the quicker way to neutralize the poison aud one less likely to cause a general disturbance of the patient's system.

## New York as a Manufacturing Center

New York city is popularly regarded as a great commercial center whose prosperity is based entirely upon its foreign trade. It is true that it is the commercial metropolis of the continent; it is also true, but less generally known, that New York is the greatest manufacturing cen ter in the world. The products of the factories of the city proper turn out products worth nearly $\$ 450,000,000$ a year while those of its chief suburbs sweli the total to something near $\$ 750,000,000$ This vast sum is within a hundred million dollars of the entire foreign com merce of the port. If the manufacturing
 must be perceived that there is a fruitful principle in it the snake, and also into the surrounding tissue in different see the value of manufactured products equal or exce which is capable of great development. Herr Gentilli a short time ago gave an exhibition of his invention before the Institute of Physical Chemistry of the University of Leipsic, and gave proofs of the practical utility of the apparatus.
parts of the member bitten, when the application is delayed. In this way life has been saved eight or ten hours after the bite was received
In a recent letter to the London Lancet, Dr. Lacerda says $\mid$ strong acetic acid to form a thin paste.

## NEW SUSPENDED SAFE

The engraving shows an improved suspended provision safe, arranged for preventing crawling insects from obtaining access to the interior. The safe itself is of the usual construction, with its sides and the hinged door covered with wire gauze or perforated sheet metal for insuring the proper ventilation, and preventing flying insects from getting inside. The top of the safe projects beyond its sides, so as to admit of the suspension of the safe. Two upright posts, having feet at their lower end, are connected together by a cross brace.
To the upper ends of these posts are connected cups for holding liquid, to prevert the crawling insects from ascending the posts above the cups. The cups are held in place on the ends of the posts by screw rods, which pass through holes in the cups, and are screwed into the ends of the


## MASON'S SUSPENDED PEOVISION SAFE:

posts. To prevent the liquid in the cups from escaping through the holes in the bottom, a packing ring is placed on the bottom of the cups, and above the packing ring a metal washer, the rod passing through the packing ring and washer; it also passes the projecting ends of the top of the safe. By this means the saie is securely held in a suspended position, and between the projecting ends of the top and cups around the rod there is a sleeve for keeping the packing rings tightly pressed down against the bottom of the cups, sealing the joint between the rods and cups, and preventing the possibility of the liquid escaping. The metal washers in the cups, as will be seen, form bearing plates for the lower ends of the sleeves to rest against, so that by tightening the rods, the sleeves will be forced down more tightly against the metal washers and compress the packing tightly against the metal washers and comp
between the washers and bottom of the cups.
It will be seen that the safe is wholly suspended from contact with any object except the rods, thus insuring a great protection of the contents of the safe from crawling insects. This useful invention has been patented by Mr. Sanford Mason, of Galveston, Texas.

## Launching a Ship by Means of

 Electricity.In launching the English turret ship Colossus, March 21, electricity was employed by means of an ingenious contrivance which connected the dog shores with a large magnet; and in a similar with a large magnet; and in a similar
manner the christening was performed. manner the christening was performed.
Simultaneously with the breaking of the bottle over the ship's nose a musical instrument inside an ornamented box was set at work, and "Rule Britannia" was the result. By this time the course was reported clear, and, as the ship gave evidence of anxiety to leave the cradle, it was deemed advisable, though ten minutes before time, to let her go. The pressure of the launching button was followed by a heavy thud. The weight had fallen and the dog shores had been knocked away. The ship moved instantly, and the huge mass of 4,420 tons -the heaviest ever launched from the Portsmouth yard-glided gracefully down the inclined plane into the harbor, amid the music of the bands and the enthusiastic cheers of the multitude.

The Marlin (Texas) Index reports a newly discovered food for horses in Falls county, that. State. In the Brazos bottom grows a weed, in beight 15 or 20 feet, that is said to be almost as nutritious as corn. It is called the " biood weed," from the fact that when broken there escapes a juice that is almost as red as blood. Many farmerś feed their work stock but once a day with corn. The other two meals are made by "staking" on blood-weed. In many instances the work by "staking" on blood-weed. In many
stock are exclusively fed on this weed.


## NICHOLSON'S IMPROVED RANGE.

With this arrangement the heated air is distributed through all of the parts of the oven, and comes into contact with the articles being cooked, and greatly hastens the operation of cooking. Another advantage is that the heated air acts first upon the surfaces of the articles being cooked and prevents the juices from escaping, making the articles more palatable.
There are openings from the oven into the flue, H, near the top of the oven, to permit of the escape of the heated air into the flue. These openings are controlled by a damper. Further information in regard to this invention may be obtained by addressing the inventor as above.
absowed trom

A letter from the Rev. John Buchanan, quoted in an interesting address recently delivered before the Arkansas Historical Society by the Hon. Benjamin T. Duval, thus described the expedients of the first settlers in what is now Washington county, Ark.: "For more than two years these early settlers enjoyed the privilege of eating pound cake, having no mills to grind grain of any kind. They had to make their meal by pounding. Some families having springs suitable, fixed pounding mills and beat their meal by water power. The mill was made by getting a large log of timber about 15 feetlong, making a trough at the butt-end 3 feet long, to hold as much water as possible, hewing the balance of the log some 4 inches square, hanging it on a pivot near the trough. They fixed a pestle at the other end, and then a mortar to hold the grain. The trough was about 4 feet above the ground. A spout carried water from the spring into it, and when the trough was full it sank down, raising the pestle some 10 feet high. When the water poured out the pestle fell with a vim on the grain in the mortar. It was slow but sure, running day and night. They were called Lazy Toms. They were inclosed with palings to keep out fowls and vermin (wild animals). The first mill for grinding grain was built in 1829 by Peter Pyeatt, on the creek heading at Mark Bean's spring. The second was built a short time after by Sam Billingsly, at or near where Kidd's mill stood before the war. John F. Truesdale put up a steam mill at the same place about the year 1840."

## IMPROVEMENT IN COOKING STOVES AND RANGES.

The engraving shows an improvement in cooking stoves and ranges recently patented by M. A. Nicholson, of Richwood, Union county, $O$. The principal object sought in the invention is to increase the efficiency of the ovens. The range, A, has a firebox, B, from which the products of combustion pass through the space under the top and above the oven, D , to the side flues, E, chamber, F, below the oven. At the forward end of the chamber, $F$, the smoke passes down into and backward through the chamber, $G$, above the bottom plate of the range. The smoke passes from the rear end of the chamber, $G$, upward through the flue, $H$, to the chimney.
In the front of the flue, H , and above the oven, D , there
is an opening closed by a damper. When this is an opening closed by a damper. When this damper is opened the products of combustion pass directly into the of comben the damper is closed the smoke and products of combustion pass down the
through the chambers, $\mathrm{F}, \mathrm{G}$.
A cold air pipe, $L$, leading from outside of the building enters the chamber, $M$, in the lower part of the range, and is heated. This chamber is divided by vertical partitions to prolong the stay of the air in the chamber, to insure its thorough warming previous to discharging it into the chamber under the ove
tom of the oven. from the stomach.

Cost of one horse power per hour, as follows, from experi ments lately made it Carlsrube.

| $100 \mathrm{H} . \mathrm{P}$ | steam engine | Cents. <br> $1 \cdot 90$ |
| :---: | :---: | :---: |
| 2 " | " | 11.07 |
| 2 | Lehman caloric engine | 6.62 |
| 2 " | Hock motor ... ...... | $2 \cdot 00$ |
| 2 " | Otto gas engine | 6.52 |
| 2 " | Otto-Langen gas engine | 6.52 |
|  | Schmidt water engine (fed b | 23.75 |
|  | Horses. | $11 \cdot 10$ |
|  | Men | 50.00 |

INAUGURATION OFTHE NEW EDDYSTONE LIGHTHOUSE (Continued from first page.)
The Eddystone rocks, which are of gneissic formation, consist of three reefs, the western, southern, and northern, with odd rocks dotted about irregularly. The old towerSmeaton's, now in course of demolition-stands upon the northern extremity of the western reef. 'The new tower, just completed, stands at the northern extremity of the southern reef, the middle of the three. The whole group of rocks occupies nearly a square mile at low water, and stands a little to the north of a direct line between the Start Point in Devon and Lizard Point in Corn wall, being about forty miles from the former and thirty from the latter. The distance between the two towers, from center to center, is only 127 feet. The height of the focal plane of the light in the old house was 79 feet above high water, and was visible thirteen miles, while that in the new house is 133 feet, and is visible seventeen and a half miles.
On Thursday, May 18, 1882, the new lighthouse was set in operation by His Royal Highness the Duke of Edinburgh, as Master of the Trinity House Corporation, who have the charge of all lighthouses round the British coasts.
The Duke went to the Millbay Docks, where he was received on board his old ship, H.M.S. Galatea, which at once moved into the Sound. She was followed there by the Trinity yacht Siren and the Harpy, which contained the Mayor and Corporation of Plymouth. The Carron, with the Mayor and Corporation of Devonport, and the Vivid, the yacht of the Port Admiral, Sir Houston Stewart, were wait ing off the pier, and with the Triton, Trusty, Perseverance and other government steamers, joined in the procession, fol lowed by a number of private steamers and by a whole fleet of yachts. The Galatea led the way, closely followed by the Siren, the Vivid and the Harpy coming next in order. The ships in port were dressed with flags from sunrise, and as the royal standard was hoisted salutes were fired from the citadel and men-of-war. The weather was brilliant. As the Galatea passed through the Sound two American corvettes the Portsmouth and Saratoga, which were lying there dressed colors and fired a royal salute. The run out occupied about an hour and a half. The coast of Devon and Cornwall, from the Prawle Point to the Dodman, was dis inctly visible, and the sea was covered with craft of all sizes, from tiny fishing boats to ocean mail steamers on their way up channel. The Eddystone was reached at a quarter past eleven, and the vessels grouped themselves around the reef This is well shown in our engraving, which is from the Illustrated London News. Altogether 9,000 persons were present at the Eddystone at the time the light was inaugu rated; but the ceremony was not participated in by more than a select few of those on board the Galatea, with the addition of Mr. C. F. Burnard, the Mayor of Plymouth. The Duke of Edinburgh landed on the Eddystone Rock about half past eleven. A prayer was offered by the Rev. Dr. Wilkinson, the lamps were lighted, and the machinery which sets in motion the fog bell was started by the Duke of Edinburgh. Everything was found in the most perfect order. The ceremony over, cheers were raised by the party at the lighthouse, and taken up again and again by the occu pants of the steamers which lay around. The Duke then embarked amidst another round of cheers, and the start homeward was speedily made, 'the Galatea and the Siren being this time the last to leave. The run back was made at full speed, after the Galatea had steamed round the American vessels in the Sound, which manned yards in honor of the visit. Millbay Pier was again reached a little after two. Here an address was presented by the Mayor and Corporation of Plymouth, and his Royal Highness drove from the pier to the Guildhall to attend a luncheon, given by the Mayor, Mr. Burnard. The magnificent hall was splendidly decorated. The company numbered over two hundred, and included the Duke of Edinburgh and elder brethren of the Trinity House, Admiral Sir Houston Stewart and other heads of departments in Plymouth and Devonport, Commodore Luce and the officers of American vessels in the Sound, the magistrates and members of the Corporation of Plymouth, Devonport, and Stonehouse.
The Mayor, on rising to propose the health of the Duke of Edinburgh, said: "I may say that when I suggested to his Royal Highness, as I did, that we had not expected our American cousins on this occasion, and that it would be desirable to recognize their attendance, he at once expressed the pleasure it would give him to propose the toast of their healths. (Great cheering.) I have now to propose the health of the Corporation of the Trinity House, including the health of his Royal Highness, the Master." (Cheers.)
His Royal Highness, in concluding his remarks in reply, said: "I beg to thank you once more for the way in which you have drank to the health of the Trinity Brethren, and more particularly for the way in which you have associated my name with the toast. (Loud cheers.) The fact has been alluded to more than once by the speakers who have addressed this assembly, that we have among us to-day representatives of our Transatlantic cousins. I ask you to join with me and with the Brethren of Trinity House in welcoming among us Commodore Luce and the officers of the American squadron. (Loud cheers.)

Commodore Luce, was enthusiastically received, and said
" Your Highness, your Honor the Mayor, and gentlemen, I esteem it a great privilege to be present to day to speak in the name of Americans. (Cheers.) As Americans, it is good for us to be here. (Cheers.) The very name of Ply mouth recalls to mind the Pilgrim Fathers-(cheers)-and
reminds us of Plymouth Rock in New Ered. As it has been happily expressed, the ocean does not divide but knits Old and New England. (Loud cheers.) Our traditions date from this country. (Cheers.) When my distinguished friend Admiral Sir Houston Stewart, reverted to the fact of Sir Francis Drake playing bowls upon Plymouth Hoc, just before he and Hawkins and Howard of Effingham, set out to meet and defeat the Spanish Armada, I was reminded that it was just as much the New England as the Old that was interested in that great epoch. (Cheers.) The Pilgrim Fathers and the Plymouth Rock are inseparably associated by us in America. And I would go further and ask what merican there is who has not been nurtured in the Eng ish classics, and what American there is who has not bad instilled in him the early English instincts of civil and reigious liberty? (Cheers.) As the Old England has given light to the physical world, let us hope that it may continue to give light to the moral and religious world." (Cheers.) Commodore W. B. Hoff, of the Portsmouth, Commander Henry C. Taylor, of the Saratoga, and Flag Lieutenant A. Ward were also present at the luncheon.

## The Office of Resinous Matters in Plants.*

It has been difficult to make even a plausible conjecture of he uses of the "proper juices" of plants. In their producion a large amount of nutritive material is consumed; and for the most part they are stored up irretrievably in the plant, not being reconverted into nutritive material. This gave some color to the old idea that they are excrementitious. But, besides that under normal conditions they are not excreted, why should a pine tree convert such an amount of its assimilated ternary matters into turpentine, which is merely to be excreted? Or, if it be a by-product, what useful production or beneficial end attends the production? If excrementitous, the tree should be benefited by drawing it off. But, as De Vries remarks, and as the owners of the trees very well know, the process is injurious, and if followed up is destructive. It goes almost without saying nowadays, that he turpentine is of real good to the tree, else turpentinebearing trees would not exist. De Vries has made out a real use, which he thinks is the true function of the resiniferous matters in Coniferce and in other resin-producing plants. Resinous juice is stored in the tree as a balm for wounds. It is stored up under tension, so that it is immediately poured out over an abraded or wounded surface; for these wounds it makes the best of dressing, promptly oxidating as it does nto a resinous coating, which excludes the air and wet and other injurious influences, especially the germs or spores which instigate decay; and so the process of healing, where here is true healing or reparation, or of healthy separation of the dead from the living tissues, is favored in the highest degree. The saturation of the woody layers with resin, in the vicinity of wounds and fractures (as is seen in the light wood of our hard pines, is referred to as effectively arresting the decay which parasitic fungi set up, this "fat" wood being impervious to mycelium.
Latex or milky juice is a more complex product, of which certain portions have been shown to be nutritive; but as to the caoutchouc and the waxy matters they contain, De Vries insists that they subserve a similar office, are, in fact, a rem-edy-a protection against decay, a natural provision for the dressing of wounds, under which. healing may most favorably proceed.-American Journal of Science.

## dECISIONS RELATING TO PATENTS.

preme court of the United States. Decided March 6, 1882.
Design Patent.-An immaterial variation of the designuch as a slight inclination backward, hardly perceptible to the eye, of the glass constituting the front of the elevated parts of a show case-does not relieve from the charge of infringement.
It is immaterial to the patentability of a design whether it is more graceful or more beautiful than older designs. It is sufficient if it is new and useful. The patent is prima facie evidence of both novelty and utility, and neither of these presumptions has been rebutted by the evidence.
Appeal from the Circuit Court of the United States for the Eastern District of Missouri.
Mr. Justice Woods delivered the opinion of the Court. license.
In the case of Searls vs. Bouton et al., United States Circuit Court, Southern District of New York, Judge Wheeler holds as follows:
The defense of non-infringement rests upon a license granted by the orator to John O. Merriam and Edwin Chamberlain " to manufacture" at their shop in Troy, New York, and no other place or places. This appears to be a personal license, not transferable. and a license to make only. Merriam and Chamberlain had a shop in Troy and constituted a firm. Merriam appears to have sold out to a new firm composed of Edwin Chamberlain and Perry D. Randall. Edwin Chamberlain has since died. and Edward Chamberlain has succeeded him in the firm of Chamberlain \& Randall. Merriam appears to have ordered materials, or to have permitted Chamberlain \& Randall to order them in his name, for use in making whip sockets at that shop, but he does not appear to have been engaged himself in the

* By Hugo de Vries. A paper in the Archives Néerlandaises. vol xvii 1882. The extract fills 24 pages svo.
manufacture. Sockets made under and pursuant to the license would be free to the trade, but sockets merely dealt in by the licensees would not thereby be made free. The defendants have not made it clear that the sockets they have sold, which would otherwise be an infringement, were made under and pursuant to the license. Therefore they must be adjudged to have infringed. The extent of the infringement unlawfully done must, of course, go to the master for deter mination.


## United States Circuit Court-District of Indiana CGOOOD et at., vs. HEWITT Decided March 22, 1882. <br> RIGHTS OF

## Gresham, J.:

Persons are not deprived of the right to their inventions Phile in the service of others, unless they have been hired and paid to exercise their inventive faculiies for their em ployers.
A contract by which one person agrees to pay a sum of money for the time, labor, and skill of another for a given period gives the employer no right to an assignment of a patent that is issued to his employe for an invention made during the period of his employment.
If under such a contract of employment the employer has any right to the invention, it is a mere naked license to make and sell the patented improvement as a part of its business. This right, being a mere personal one, is not transferable, and is extinguished with the dissolution of the corporation which exercised it.
This was a suit brought by Charles H. Hapgood, James H Hesse, and John Parker, trustees of Hapgood \& Company, a defunct corporation organized under the laws of the State of Missouri, and the Hapgood Plow Company, a corporation organized under the laws of the State of Illinois, agains Horace L. Hewitt. The relief sought is a decree compelling the defendant to assign to the Hapgood Plow Company as the successor of the Hapgood Company, or to the trustees of the last named company, in trust for the Hapgood Plow Company, certain letters patent which the defendant caused to be issued to him for improvements in iron sulky plows. The bill is demurred to for want of equity. Demurre sustained.

## SMALL DYNAMO-ELECTRIC MACHINE

In Supplement 161, February 1, 1879, I described àsmall dynamo-electric machine, giving working drawings, together with all the particulars necessary to enable any machinist or amateur, whether familiar with electricity or not, to construct a working dynamo of small but practical size. This machine has been copied by a large number of the readers of the Scientific American, who have succeeded ver well indeed; others, however, have failed. In the most of these failures of which I have been informed the cause has been evident enough, and should not have been overlooked by the builder of the machine.
One has an armature of very hard iron-a sufficient cause for failure, since the magnetization of the armature is reversed at each half revolution. A nother has a wide space between the armature and field magnet. Another finds the wires of his magnet wound so that both poles are alike Another discovers that his armature is short circuited, and another has found the same trouble in the wire of his field magnet. Still another finds that the commutator needs ad justing. Another has oiled the commutator, and there is not enough pressure on the commutator springs or brushes to press the oil out of the way, and the oil being a good insulator prevents the current from passing. Another finds fine particles of copper between the halves of the commutator this, of course, shorl circuits the armature. Another has varied the sizes of the wire on the magnet and armature Some expect the machine to work through large external resistance, and so on. In nearly every case the only possihle advice has been to follow the instructions given in the SUPplement referred to
Several inquiries relating to the kind of wire gauge used in giving the sizes of the wire, the electrical resistance of the magnet and armature, and the performance of the machine in connection with Edison's lamps having been referred to me, I will briefly give the following points:
Field magnet wire, No. 16, American wire gauge.
between Nos. 17 and 18, English wire gauge.
0.055 inch diameter
resistance of 19 ohms .
Armature wire, No. 18, American wire gauge.
19, English
diameter of 0.04 inch.
resistance of 0.9 ohm .
The current from this machine will bring four Edison 3-candle power lamps to incandescence, and will light two of them with great brilliancy, the machine being turned by hand.

Geo. M. Hopkins.

## Fast Stzamboat Time

On Thursday, May 25, the Mary Powell made the trip up the Hudson River from New York to Rondout, 95 miles, in 4 hours and 17 minutes, beating her best previous time by included the time taken in making eight landings.

## miscellaneous inventions

## Extension Carriage Top.

The object of the invention shown in the annexed engrav ing is to provide vehicles that have folding tops of the ordinary construction, with an auxiliary top, D, to be attached when desired to the front part of the ordinary top, so as to extend its projecting area, and may be removed when not required for use. In the engraving $A$ is an ordinary carriage top, to the front bow of which are attached knobs upon its upper and outer sides. The auxiliary top has two bows the ends of the forward one being hinged to the rear bow near its ends. The ends of the rear bow are hinged to a hook formed upon a U-skapcd lamp. This clamp is lined clamp. This clamp is lined ith rubber, and is of such ize and shape as to fit upon the front bow of the top, and is held firmly to it by a
thumb bolt that passes through the ends of the clamp. To these bows a cover is attached of material to correspond with the cover of the carriage top, the rear edge of which is secured to the knobs on the front bow; and to the auxiliary bows are attached jointed brace bars, so that the auxiliary top may be folded up or extended, as may be desired. In openings in the middle part of the cover are secured glass plates to enable the driver to see the road in front of his team. When not required for use the top may be detached and folded to place beneath the seat of the carriage. This invention is patented by Mr. Richard J. Parrett, of Portland, Jay county, Ind.

## Reclining Chair.

Improvements relating to the class of chairs baving pivoted backs adjustable by ratchet mechanism, secured to stationary arms, have recently been patented by Mr. Morris S. Allen, of Brooklyn, Kings county, N. Y. In the engraving $\mathbf{A}$ is the seat frame provided with fixed side arms and a hinged back. The arms are grooved at their under side, and in the grooves are placed longitudinally slotted plates, screwed to the arms, to which rack bars are held by headed pins that pass through the slot, the racks being free to move endwise. Bars are pivoted to one end of the racks, the other

ends being atfached by hinges to the back of the chair. Springs are attached to the arms of the chair and to the ends of the rack bars in such a manner that they tend to draw the racks and bars endwise and raise the chair back. Pawl levers are pivoted on the fixed slotted plates, that have their inner ends bent at right angles to engage the rack bars, and at their outer ends are knobs extending to the outside of the arms, for couvenient bandling by the occupant of the chair, who brings the back to the position required, by raising the bandle ends of the levers and leaning backward, and is held against return as soon as the levers are released. To raise the back it is only necessary to raise the levers, when the springs will draw the back up.

Portable Dark Room for Dry Plate Photographing.
The invention shown in the accompanying engraving is a portable dark room, consisting of a box made of suitable material, and provided with straps and a handle for carrying, and having an aperture from which a flexible sleeve of proper material projects from the box. The opening and sleeve must be of such size as to permit the plate holder of the camera to be passed through them into the box. Two compartments, provided with lids, are located at either end of the box, one containing dry plates that have not yet been exposed, and the other the exposed plates.
The operator passes the plate holder through the sleeve iuto the box, opens the frame, and deposits the exposed plate in its proper compartment, and takes a fresh plate from the opposite compartment and places it in the plate holder, which is then withdrawn. In this manner the plates are placed in or removed from the plate holder without being exposed to light or dampness. While manipulating the plates with one hand the flexible sleeve is held against the arm with the other hand, so that no light can pass into the box by accident. The box also serves as a receptacle for transporting plates. This ingenious device is patented by Mr. John Serdinko, of New Braunfels, Comal county, Texas.

## mechanical inventions.

Cutting Mechanism.
A new and ingenious mechanism for cutting paper, cloth, leather, sheet metal, etc., rapidly, and with a clean sharp edge, patented by Mr. Sandor Danheim, of New York city, is shown in the accompanying engraving. The metal frame, A, is provided at one end with a handle loop, and at the opposite lower end with a triangular sharp edged knife, from the end of which the frame is gently curved backward and upward. Two sharp edged cutting disks are journaled to the frame in such a manner that the disks must overlap each other slightly, and must also be in contact. The lower disk must not pro-
ject beyond the
lower edge of the lower edge of the
frame so as to deframe so as to de-
face the table upon face the table upon
which it rests. A which it rests. A
lever, J, is loosely lever, J, is loosely
mounted upon the
 journal of the up-
provided with a spring pawl that catches in notches on the side of the disk. When the handle is seized, aud pushed forward, the edge of the material that is to be cut slides up the knife, upon the edge of the lower disk, and is cut by the action of the two disks. If the material to be cut affords too much resistance to permit moving the instrument for ward, the upper disk may be rotated by means of the lever J , or the handle and lever may both be seized at the same time, and the instrument pushed forward while operating the lever. If it is desired the handle and lever may be placed at the opposite end, and the instrument be drawn instead of pushed.

## Load Binder.

A novelty in devices for binding loads, which consists of headed lever provided with a chain and hook mechanism for attaching the binding chain, so that loads of lumber merchandise, or other commodities may be securely and easily bound upon a wagon or other vehicle, and it is simple, easily handled, powerful, and inexpensive. This device is patented by Mr. Stephen S. Conkling, of Middletown, Orange county, N. Y., and is shown in the accompanying engraving. In the engraving, $A$ is the lever, and $B$ the head, and they may be made solid, of malleable cast iron, or of wood and
iron combined. The head is circular in form, and grooved on its circumference to receive the chain, and also has extended straps which receive and hold the lever. Upon one of the straps is formed an of the straps is formed an
eye to which one end of eye to which one end of
the hooked chain is attached. The-head is perforated near its center, for the passage of a bolt or pin which secures a clevis to the head, the clevis being provided with a swiveled eye to which is attached a hook to hook into the binding chain. The free end of the lever is provided with a chain by which the lever is secured after being brought to bind the load. In use the swiveled hook and the hook at the end of the chain that passes over the head of the lever are to be hooked in the binding chains, with the lever standing toward the swiveled hook, and then to bind the.load the free end of the lever is forced down and secured to the binding chain. The distance from the pivot to the outside of the head is very short, and furnishes a powerful leverage, making it possible to make the device small and compact and still furnish ample power.

## Car Mover.

Mr. James D. Lawrence, of Carroll, Carroll county, Îowa, bas patented a new and ingenious device for moving cars short distances in switching and coupling, etc., which is clearly shown in the annexed cut. The lower edge of a lever, A, is rounded at its lower end, and at a short distance from this end a forked pintle is pivoted to it by means of a bolt. On thispintle two opposite jaws are pivoted and are secured to it by a nut at its lower eud. On the bolt that connects the pintle and lever a U-shaped clevis is mounted in such a manner that it hangs down from the lower edge of the lever. When the ends of the opposing jaws
are placed against oppo-
 site sides of a car wheel, and the lower end of the
lever, $A$, is rested on the tread of the wheel, and the outer end of ine lever is raised, the jaws will be firmly pressed against the sides of the wheel, and by their grip the wheel will be turned and the car moved. The clevis hanging vertically rests against the outer edges. of the jaws, and by its weightpresses them together sufficient to enable them to take a firm grip when the lever is lowered without their adjustment by the hand.

## THE PARADOX WHEEL

So called from its appearance; for, seeing that all the in ternal parts, $a b c d$ and $e f g h$, are pivots which support the whole of the internal parts, and that the cross in the center is also free on the axle after the manner of a pair of scissors, a collapse appears inevitable; whereas the axle continues as firmly in the center as in the ordinary wheel with fixed spokes, and the elastic tire gives way, and flattens on the ground with the same freedom as if the load were merely placed on the top of the elastic tire; and (as I shall show) gives us a base equal to the sleepers which (on a railway) support proportionately a locomotive engine (See Fig. 1). This wheel might also be named the leg wheel, or the walking wheel, from its appearance.
By publishing this invention, I am showing to our readers my " trump card;" for so important is a means of reducing the horse power required for traction on a common road to the same low amount (for the same load) as is required on a railway, that its general adoption would amount to a revolution in locomotion on common roads.
I am aware that others have tried to effect the same ob-


Fig. 1.
ject; but one mistake has been to make the internal part of a wheel elastic; whereby the load only descends nearer to the ground, instead of the tire becoming uniformly flat next the ground, as is the case in this invention. In other deigns the two wheels on each side have not been indepen dent of each other, whereby guiding has been prevented.
In order to show that my object has been attained, I will explain why it is that so great a proportionate tractive power is required on the common road.
The common wheel acts somewhat after the manner of a cheese cutter, and grinds to powder annually millions of tons of road metal, and also falls into, and has to be dragged out of every rut, little and bis; this amounts to a lot of uphill work, and accounts for the extra power required. By the adoption of my invention these evils are avoided; as there is always a base or foundation sufficient to make the tractive power no more than that of a railway on the same gradients-mind, I say, on the same gradients; which we know are more favorable on a railway.


Fig. 2.
To compare, let us suppose a cart has 5 foot wheels, and the tire to flatten one-eighth, or about 2 feet; width, say, 4 inches; total surface bearing, 1 foot 4 inches; and, say, total weight, $1 \frac{1}{2}$ tons. Now, a locomotive engine will weigh about twenty-four times this, which, $\times 1$ foot 4 inches $=$ 3.) feet super. for sleepers, which, divided by, say, 5 sleepers, gives each 8 feet 7 inches long by 9 inches wide, which is not far from the truth.
The tires should be one piece of spring steel, tempered clock spring, of width and thickness as engineering data may dictate. The ends of the tire may be riveted to the bearing, same as the other three, but the ends must be shut into the dovetail, cast as part of one of the four bearings, which is shown at bottom of Fig. 2. The other parts of the tire should be malleable cast iron.
Other advantages resulting are, that carriage springs are needless, the tires being themselves the springs; and all noise, jolting, and vibrations are done away with, so that the motion will be as easy as can well be imagined.-J. H. Huxley, in English Mechanic.

## Eighty Miles of Dead Sea Fish.

The brig Edward Hatton, Thomas Simmons master, arrived at this port, May 28, from Pointe-à-Pitre, Guadeloupe. Captain Simmons reports that on the outward and homeward passages his vessel encountered vast numbers of apparently dead fish. "They were all on their backs," said the captain to a Herald reporter, "and were from two to four pounds each in weight. They all had a bloated appearance. At first sight I took them for cod, but further observation convinced me that they were what is called drum fish. Their fins kept moving, which gave to the fish an appearance of life, but the movement was doubtless caused by the waves. The vessel ran across them between latitude 39 and $371 / 2$. They were inside the stream in deep soundings. We kept among them for a distance of from sixty to eighty miles."

## WAVE POWER MACHINE

## GaUCHEZ'S PROJECT FOR UTILIZING THE OSCILLATIONS O

 the ocean.As well known, the ocean forms an immense reservoir of motive power, perhaps the greatest in nature, and one whose energy is expended to no purpose. The incessant agitation of .its waves and the oscillation of its tides are absorbed without profit in polishing the rounded pebbles on the beach, or in merely modifying the contour and relief of the coasts against which they continually beat. There is here an enormous power, which, so to speak, offers itself of its own accord, and entirely gratuitously; for it is derived from the sun, as are all the forces that we employ on earth. Nor is there any danger of the supply giving out, as some persons have begun to fear with regard to coal, which is merely the heat of the sun that has accumulated for ages, and which has remained up to the present time the daily bread of the industries. For this reason there has for a long time been sought a metbod of collecting this power by motors adapted for making it serve a useful purpose to the needs of man, as has been successfully done with water courses. Yet the numerous experiments made in this direction bave never as yet yielded apparatus that were really practical; and, moreover, the success obtained in one day with the steam engine has completely turned attention away from this question of the utilization of natural forces. Nevertheless, the steam engine is far from being an economical and advantageous apparatus from the stand point of rational mechanics; and, without going so far as to say with M. Le Bon (Revue Scientifique, Oct. 8, 1881), that "the last specimen of this rude apparatus must, before the end of twenty years, go to join the stone axes of our primitive ancestors in the museums," we cannot forget the fact that it does cause a true waste of motive power, since its effective work scarcely exceeds ten per cent of the stress exerted; nor is it even to be hoped that any important progress can be effected, notwithstanding all the improvements of which it is the object, since the maximum and theoretic performance determined by the physical properties of steam, is limited to about 20 per cent.
The recent progress made in electrical machines is at present attracting attention to the subject of the cheap production of power; and now that an intermedium is being arranged which is capable of transforming and utilizing at a distance the motion produced, for all sorts of applications, electric motors will finally dethrone the steam engine, when they shall no longer be obliged to call upon it for their motive power.
The utilization of natural forces is, then, called on to perform a decisive role in the mechanics of the future; and there is reason to hope that this question, now definitely proposed, will receive its solution in a not very distant future. Such being the case, our readers will read, not without interest, a few details that we shall here give regard-ing-some recent experiments, especially regarding Mr. Victor Gauchez's apparatus, which figured at the Brussels Exhibition of - 1880. M. de Coligny had succeeded, before M. Gauchez, in utilizing the oscillating motion of the waters of the sea for raising water to a certain height, and his apparatus has been applied successfully in drying lakes in the vicinity of the coast. M. de Coligny is likewise the inventor of a most ingenious apparatus, founded on an analogous principle, which permits of collecting in the locks of canals a portion of the volume of water that is uselessly given out when a boat passes from one level to another, by carrying it back to the upper level again. He utilizes only the elevation of level that the waters assume when they are undergoing the effect of an oscillating motion, or what is called the ram stroke, resulting from a suddenly interrupted current. Properly maneuvered, it appears that his apparatus is capable of economizing a volume of water reaching 70 per cent. of the unprofitable outflow from an ordinary lock, and sometimes even 90 per cent., according to an experiment made with it on a lock near Fourchambault.
Some experiments have also been undertaken to directly utilize the motion itself of ebb and flood, by collecting the water at high tide in large basins, from which it afterwards flows out to furnish the motive power at low tide. In the Department of Finistère it has been found possible to actuate a mill by this process, which has been applied likewise, under a different form, at Alexandria, in Egypt. The trial has also been made, but without much success, to compress air into large submerged bells which became filled with sea water at bigh tide.
Besides the tides, the motion of the waves themselves on the surface of the sea may be utilized. In this case it becomes necessary to set up the apparatus at a certain distance from the coast, so tbat it may not be interfered with by the tide; and, on another hand, the power that it is desired to store up becomes much more capricious, and very accidental and variable in its effects, from the simple swell that gently ripples the surface to the furious wave that sometimes reaches several meters in height, and occasionally capsizes boats. But this undulating motion of the wave is very easy to seize; for it is propagated, in fact, under the same conditions as sound and light, that is to say, the molecules of water, like those of air or ether, are alternately raised or
depressed without there ever a longitudinal motion occur-
 floating on the surface of the sea does not change place and for this reason there may be installed without difficulty a simple oscillating float, located at the extremity of a lever, whose axle may thus be given a rotary motion. Such an idea as this, put forth some time ago by Mr. Roche, of Nimes, who has made some experiments witb regard to this subject on the Mediterranean, has been taken up in a more general way by Mr . Victor Gauchez, in the apparatus shown in Figs. 1 and 2 , and by employing the intermedium of compressed air, which is stored up in reservoirs to be afterward distri-


## DR. REGNARD'S INCANDESCENT LAMP.

[buted as wanted. Such an arrangement presents the advantage that the power is stored up, and dangers of a stand still are prevented. Mr. Gauchez's apparatus consists of a float weighing anywhere between 40,000 and 100,000 kilogrammes, according to its dimensions; of an iron compressing bell, connected with the float by cords passing over pulleys, as shown in Fig. 1; and of air reservoirs, withstanding a pressure of twenty-five kilogrammes, located on the coast and connected with the compressor by special conduits (Fig. 2). The float rises or descends with the wave, and, in its descending motion, raises the bell through the intermedium of


Fig. 1.-Float and Iron Compressing Bell.


Fig. 2.-General Arrangement of the System, Showing the Air Reservoir on the Coast.
the two cords wound in opposite directions on the pulleys In this motion the belt sucks in air through apertures in the upper part, and when the cords slacken while the float is rising, it falls back by its own weight and forces the airinto the reservoirs. The bell is closed at the lower part by a rubber membrane attached to the masonry which supports it. The length of the chains is imited in such a way as to follow the tide only, from the half-swell at ebb-tide to that at flood-tide, supposing the highest bar does not exceed three meters. In this way the slightest swells are utilized, and those irregularities are avoided which are frequently occasioned by abnormal tides.
The great difficulty that this arrangement, otherwise so simple, will present, will be that of preventing the exaggerated heating of the air, and especially that of insuring a
rapid flow of it into the reservoirs; for the waves succeed each other, in fact, every nine or ten seconds on an average, and it is necessary in this so short an interval of time to fill and completely empty the bell. The inventor foresees that the latter may have a diameter of about 25 meters with a total height of seven meters, and weigh, with all its ap purtenances, 600,000 kilogrammes. Its travel might be imited to two meters, so as to suck in only a volume of 800 or 900 cubic meters of air. It would be necessary to reduce the dimensions of the orifices in order to limit the entrance of air, and, on another hand, to provide the bell with strong safety-valves in order to insure of a flow of a portion of the air into the atmosphere, when the pressure, having become somewhat hign in the reservoir, would prevent the introduction of the whole volume.
We shall not dwell on these grave difficulties of execution; for, in a question of such a nature, they can scarcely be decided by a simple calculation, and the model, a very careful one, by the way, constructed by Mr . Gauchez on a scale of one-tenth, can give only an approximate idea of what the apparatus will in reality become. However, there is reason to think that there is nothing insurmountable in these difficulties, es pecially in the presence of the progress already realized in the great works of Mont Cenis and St. Gothard, where compressed air was employed under pressures that were likewise very great. And probably we shall one day be permitted to see, at least in a preliminary application, the most powerful, perhaps, of natural forces put at the service of the industries by means of Mr. Gauchez's apparatus, which will, if necessary, be improved without doubt.-La Nature.

## REGNARD'S INCANDESCENT LAMP.

There has for a long time been sought a process for obtaining a bright light which should permit of pro jections being easily made. In places where electric lights exist the thing is very simple; and it is also easy in places where there is gas, but then oxygen being necessary the apparatus became quite difficult to arrange and move about. But in all localities where even gas does not exist it becomes absolutely necessary to dispense with a method of teaching, which, it is generally agreed, is an excellent one.
Quite recently the Minister of Public Instruction requested a special commission to design for him an apparatus that might be readily used in primary schools for making projections. The result of this commission's examination is that even if simple apparatus for projecting be not wanting, we are very far from laving luminous foci sufficiently intense for obtaining some what enlarged images. Dr. Regnard has conceived the idea of obtaining a very brilliant light by burning a mixture of air and vapor of petroleum on a platinum gauze. There results from this an ntense heat, which raises the platinum wires to a white heat, and thus produces a light about half as bright as that of the oxyhydrogen light. The apparatus is very sim ple, consisting of an ordinary Bunsen burner terminat g in a little cage of platinum wire. Instead of sup plying this burner with gas, there is forced into it a mixture of air and petroleum vapor, according to a process known for a long time, and utilized recently by the numerous inventors of thermo-cauters. A simple kitchen bellows or a syringe bulb is quite sufficient to set up the necessary current of air. In order to throw all the light in one direction the Bunsen burner may be covered with a tube having a flaring orifice, like the bell of a trumpet, covered very accurately witb a network of platinum wire. In order to obtain an extremely brilliant light whenever the blowing is done, it is only necessary to regulate the flow of the gaseous mixture by the ring of the burner. If, instead of using bellows, the current of air be forced by a pneumatic machine or tromp, quite a number of lamps may be supplied and made to give a light having the aspect and power of incandescent electric lamps for rooms, factories, etc., in places where no gas exists.
Dr. Regnard's lamp is based on the Bourbouze burner, but is superior to that in not requiring the use of illuminating gas. It has another very great advantage, and that is that it costs almost nothing, and even when operating at a maximum the expense is only a few cents per hour. It will prove of service to physicians for making laryngoscopic and otoscopic examinations.
If it be desired to give the apparatus greater constancy and make it serviceable for regular lighting, we suppose it would be necessary to go to a little more expense and increase the size of the carbureter in order that the impoverishment of the petroleum may not make itself too quickly felt. This may be accomplished by causing the air to bubble through one of those large flasks found in all drug. stores, and into which there will be put nine or ten pints, of the liquid. Such a flask may be placed under the table holding the apparatus, or even further off.

If it be not desirable to perform the blowing with the hands, there may be disposed under the table a large blowing apparatus that any one can construct by loading with a weight a bag filled with air. If the bag is tolerably large the lamp will be enabled to operate for several hours without any attention being paid to it. The petroleum product to be put into the carbureter is the ordinary benzine of com-merce.-La Nature.

## THE DOUBLE INDUCTION MOTOR.

One of the most difficult problems in mechanics has been to produce a safe, compact, economical, and manageable motor for household and other uses requiring only a small amount of power. The motive force has been sought for in various directions, and as the latest result of experience and experiment, electricity has proved itself to be the most available, and in all respects preferable to other motive agents for small power. Among motors employing electricity as a source of power we know of none so simple, so compact, or so powerful in proportion to its size and weight as the double induction motor shown in our engraving. It is the invention of Mr. William W. Griscom, and is manufactured by the Electro Dynamic Company, 121 South Third street, Philadelphia, pany
Pa .

In describing the construction, operation, and advantages of this motor we cannot do better than use a portion of the report of the Franklin Institute of Philadelphia, in which the mechanism is described as follows:

The motor consists briefly of two semicircular electromagnets, which together form a ring; their poles project inward, and, together with the wire coils, form a cylindrical tube, with which a Siemens armature revolves. The poles extend laterally beyond the ring, forming supports for the brackets which carry the bearings of the armature and the brushes of the commutator. In order to reduce the wear of the journals to a minimum, the bearings are made four times the diameter of the shaft, and the direction of the wear is away from the point of nearest approach, so that the poles of the armature and magnets can never come in contact from this cause-a frequent source of annoyance and danger in former motors.

The battery consists of six one-gallon cells, into each of which plunges a plate of zinc four inches long and two inches wide, and two plates of carbon exposing a like surface
The large amount of liquid (electropoion) is merely to save the trouble of frequently recharging; a battery containing six drachms per cell gives equal power, but for a shorter period. It is estimated that the battery once charged will continue to supply the motor with efficient power for all ordinary use of a sewing machine, in a private family, for ordinary use of a sewing machine, in a private family, for
many months, or probably one year, without refilling. It
cotton cloth at a very rapid rate. The motor is $21 / 4$ inches in diameter 4 inches long, and its weight is but $21 / 2$ pounds; it is securely attached by a light frame to the table of the sewing machine. The entire apparatus is simple in its construction, excellent in all its mechanical details, and its adaptability to general use is not questioned by the committee. The battery differs from the ordinary Grenet form mainly in the automatic arrangement for removing the plates from the bath, and in the large size of the cells, holding one gallon of "electropoion" fluid each.
The method of graduating the strength of the current
rapid deterioration when a constant use is required, is avoided to a great extent, while its advantages for household and occasional use are retained. These advantages are: that it generates no gases or vapors that are practically deleterious; the zinc elements do not (as in other batteries) require requent amalgamation or attention, and when not in use, are simply raised above the fluid, and allowed to drain
The committee, in conclusion, recommended this electric motor and battery to the favorable consideration of the Franklin Institute, as an apparatus possessing great power in proportion to its size, simplicity in its construction, exveland consequent speed of the motor, is as simple as it is lence in its mechanical details, and general adaptability to household use.
This new electric motor is not only the most compact and powerful small motor we have examined, but it is also low in price.

Any desired information in regard to this motor may be obtained by addressing the Electro Dynamic Company as above.

## Proposed Weather Charts of the North Atlantic.

The British Meteorological Office, London, announces that the Meteorological Council propose to undertake the preparation, from observations made by incoming ship masters, of daily weather charts of the North Atlantic Ocean. The work will begin August 1, imultaneously with the commencement of he concerted meteorological observations at the international Arctic stations planted by different nationalities in Kamtschatka, Siberia, Nova Zembla, Northern Scandinavia, Greenland, and Arctic America. The work proposed is tentative, and no signally important results are anticipated in the way of storm warnings, owing to the fact that most British storms come from the west, whence ffective; a very slight pressure of the font on the treade their formation cannot be promptly reported, save as it is suffices to start the machine as gradually as may be desired; now done by the New York Herald. the speed may then be increased. up to one thousand or more stitches per minute, which it is said is considerably faster than is now attained by professional sewing women, while others seldom sew more than 300 or 400 stitches per minute. Two forms of the battery were shown, in both of which the plates are automatically raised above the bath when not has taught us to moor a ship 700 or 800 miles out in the in actual use. In one form this is accomplished by means Atlantic, as a floating meteorological observatory, connected many months, or probably one year, without refilling. It of a spiral spring attached to either end of the bar, to which by cable with the west of Ireland.


THE DOUBLE INDUCTION ELECTRIC MOTOR.
is inclosed in a tight box, which, covered with a cushion, serves as a seat for the operator.

The power of the motor depends upon the quantity of electricity furnished by the battery; this is easily regulated by raising or lowering the zinc and carbon plates in the exciting fluid. It is found that when the plates were partially plunged in the bath sufficient mechanical power was developed by the motor for all ordinary requirements of a sewing machine, and when fully immersed it was more than sufficient to drive a large needle through sixteen layers of
the plates are permanently fastened. In the other a similar result is attained by means of a counter weight on the small arm of the lever attached to the treadle.
The important novel feature in this battery consists in the size of the cells, which thus enables it to continue operative without recharging for a great length of time, as the cur rent is necessarily intermittent when the motor is running, and as the plates are frequently raised and lowered by the operator, to accommodate the needs of the work of sewing, the main objection to the ordinary Grenet battery, viz., the

Epidemic Whooping Covgh in London--During the first four months of the current year more than 2,500 children were carried off by whooping cough in London. The epidemic began toward the end of last year, and has since prevailed with exceptional fatality.

A large canoe in excellent condition has been found near Bex, 4,000 feet above the sea level and nearly 3,000 feet above the valley of the Rhone. No Lacustrine relics have ever before been found in Switzerland at such an elevation.

## 3utimes and extsual.

The Chargefor Insertion under this head is Dne Dollar a line for each insertion; about eight words to a line.
Advertisements must he received at publication office as early as Thursday morning to appear in next issue. New Quick Adjusting Parallel Bench Vise, with screw clamp. Strictly first-class. Machine made. $4 /$ size ready
Price $\$ 10.50$. Address J. Thomson, 9 Spruce Street, N. Y. Railroad Supplies. Manufacturers' Supplies and Polishers' supplies. Send for catalogue. Greene, Tweed \&
Co., New York. For Sale.-A Beam Engine, condensing; 34 inch cylinder by 48 inch stroke; Sickle's cut-off; now developing 300
horse power by card. Flywheel, 20 feet diameter by 36 horse power by card. Flywheel, 20 feet diameter by 36
inch face. Can be seen running at the Brooklyn City Street, Brooklyn, N. Y
Wanted.-A large DrillPress. Address James Cuddy
Jordan Iron And CHEMICAL Works,
N. Jith AND 5 TH STM., BROKLYN. June 8, H. W. Johns $M^{\prime}$ 'fg Co.. 87 Maiden Lane, New York:
GENTLEMEN: We take pleasure in testifying to mirable flreproof qualities of your Asbestos Roofing.
At a fre which occurred at our works, May 26 last, our Rooting resisted the action of the flames after the wood work on
stroyed.
We have found the roofing to be very durable wh
there is much walking upon it. Respectfully yours. J. h. Kolb, Superintendent. J. H. Kolb, Superintendent
"Abbe" Bolt Forging Machines and "Palmer" Powe H.H.

List 28, describing 3,600 new and second-hand Machines, now ready tor distribution. Send stamp fo Cotton Belting, Rubber Belting, Leather Belting, Soap.
stone Packing. Empire Packing. Greene, T'weed \& Co. stone Pack
New York.
Lehigh Valley Emery and Corundum Wheels are ac knowledged to be the satest, freest cutting, and most durable wheels in use. Write for prices, stating sizes
you use. L. V. E. w. Co., Lehighton, Pa. American Fruit Drier Free Paphlet
American Fruit Drier. Free Pamphlet. See ad., p. 390 $72^{\prime}$ Independent 3 Jaw Chucks, $\$ 42 ; 48^{\prime \prime}, \$ 36 ; 24^{\prime \prime}$,
\$30. Warranted best in the world, and sent on trial. \$30. Warranted best in the world, and se
American Twist Drill Co., Meredith, N. H.
Ball's Variable Cut-off Engine. See adv., page 389. Fire Brick. Tile, and Clay Retorts, all shapes. Bo Drop Forgings of Iron or Steel. See adv., page 389. For best Portable Forges and Blacksmiths' Hand
Blowers, address Buffalo Forge Co., Buffialo, N. Y.
Paragon School Desk Extension Slides. See adv. p. 389 . Brass \& Copper in sheets, wire \& blanks. See ad. p. 388. The Chester Steel Clastings Co., office 407 Library St. Philadelphia, Pa.. can prove by 15,000 Crank Shafts, an Castings over all others. Circular and price list free. The Improved Hydraulic Jacks. Punches, and Tube Diamond Tools. J. Dickinson, 64 Nassau St., N. Y. Tight and Slack Barrel machinery a specialty. John
Greenwood \& Co., Rochester, N. Y. See illus. adv. p. 388 . Draughtsman's Sensltive Paper.T.H.McCollin, Phila.,Pa. Something new and interesting in Stemwinding PerSewing Machines and Gun Machinery in Variety The Pratt \& Whitney Co., Hartford, Conn.
Wanted.-Orders-Penfield Pulley Block Co., Lock-
Catechism of the Locomotive, 625 pages, 250 engrav-
ngs. Most accurate, complete. and easily understood book on the Locomotive. Price $\$ 2.50$. Send for catalogue
Steam Pumps. See adv. Smith, Vaile \& Co., p. 388.
Patent Key Seat Cutter. See page 388.
Wanted a Superintendent; a thoroughly capable man who understands the malleable fron business and is competent to manage the manufacturing department. State
experience, reference, and salary expected. Address experience, reference, and salary expe
"Malleable," P . O. Box 332 . Pittsburg, Pa
Nickel Plating.-Sole manufacturers cast nickel anodes, pure nickel salts. polishing compositions, etc. Com-
lete outfit for plating, etc. Hanson \& Van Winkle. plete outfit for plating, etc. Hanson \& Van Win
Newark, N. J., and 92 and 94 Liberty St., New York.
Bostwick's Giant Riding Saw Maehine, adv.,page 372 Small articles in sheet or cast brass made on contract.
Send models for estimates to H. C. Goodrich, 66 to 72 Send models for estimate
Ogden Place, Chicago, 111 .
Latest Inproved Diamond Drills. Send for .circular The Berryman Feed Water Heater and Purifier and For Pat. Safety Elevators, Hoisting Engines. Friction Mineral Lands Prospected, Artesian Wells Bored, by 4 to 40 H. P. Steam Eugines. See adv. p. 372.
First Class Engine Lathes, 20 inch swing, 8 foot bed Cope \& Maxwell M'f'g Co.'s Pump adv., page 353. Supplee Steam Engine. See adv. p. 357.
Ice Making Machines and Machines for Cooling Breweries, ett. Pictet Artificial le Co. (Limited), 142
Greenwich Street. P. O. Box 3083 , New York C. B. Rogers \& Co... Norwich, Conn.. Wood Working
Machinery of every kind. See adv., page 342. achinery of every kind. See adv., page 342.
Pure water furnished Cities, Paper Mills, Laundries,
Steam Boilers, etc.. by the Multiford System of the
Newark Filtering Co., 177 Commerce St., Newark, N. J. Agents Warted.-None but intelligent and energetic Agents Warted.- None but inteligent and energetic
need apply. Must furnish good recommendations, or no
notice will be taken of applications. Exclusive territory given. Agents are now making from $\$ 10$ to $\$ 15$ a day
Address, for terms. The Infallible Coin Scale Co., 26 Address, for terms, The In
Broadway, New York city.
Improved Skinner Portable Engines. Erie, Pa.

Jas. F. Hotchkiss, 84 John St., N. Y.: Send me your
ree book entitled "How to Keep Boilers Clean," conree book entitled "How to Keep Boilers Clean," con-
aining aseful information for steam users \& engineers. (Forward above by postal or letter; mention this paper.) Steel Stampsand Pattern Letters. The best made. J.
.w.Dorman, 21 German St., Baltimore. Catalogue free. .W.Dorman, 21 German St.. Baltimore. Catalogue an Fuilt to order. E. E. Garvin \& Co., 139 Center St., N. Y
For \& Economy, Alcott's Turbine, Mt.Holly, N.J. Combination Roll and Rubber Co., 27 Barclay S . Y. Wringer Rolls and Moulded Goods Speciaties. resses \& Dies (fruit cans) Ayar Mach.Wks., Salem,N.J Wood-Working Machinery of Improved Design and
Workmanship. Cordesman. Egan \& Co., Cincinnati, $\mathbf{O}$. Workmanship. Cordesman, Egan \& Co., Cincinnati, o.
Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. Presses, Dies, Tools for working Sheet Metals, et ruit and other Can T'ools. E. W. Bliss, Brooklyn, N. Y. Split Pulleys at low prices, and of same strength and
ppearance as Whole Pulleys. Yocom \& Son's Shaftin appearance as Whole Pulleys. Yocom
Works, Drinker St., l'hiladelphia. Pa.
Supplement Catalogue.-Persons in pursuit of infor-
mation on any special engineering mechanical or scienmation on any special engineering. mechanical, or scien-
tift subject, can have catalogue of contents of tiflc subject, can have catalogue of contents of the SCI-
ENTIFIC AMERICAN SUPLEMENT sent to them free. entific amblican supplement sent to them free.
The Supprigment contains lengthy articles embracing the whole range of engineering, mechanics, and physi-

## NEW BOOKS AND PUBLICATIONS.

Die Anna-Lise. A German Play, by Her mann Hersch. With an interlnear trans lation and directions for learning to read
German. Bv Prof. Charles F. Kroeh New York: D. Appleton \& Co.
The second part of Kroeh's German course. The plan
of the course is eminently reasonable; and in carrying it out the author keeps always in mind the immediate re quirements of the beginner. We have seen nothing better calculated to secure easy, rapid, and intellige progress in learning to read German
Die Asphalt-Strassen. Von E. Dietrich, Berlin, 1882. $\quad$ Commissions-Verlag von
Julius Bohne. $8 \mathrm{vo}, 207 \mathrm{pp} . \$ 2.50$.

## Professor Dietrich's book describes very fully the crude materials, the manner of preparing the roadbed

 and footpath, the cleaning and repair of asphalt streets with all the tools and machinery illustrated.The Silk Worm: being a brief Manual
of Instructions for the Production
of Silk. By C. V. Riley, M.A., Ph.D
of SILk. By C. Vis. Riley, M.A., Ph.D.,
U. S. Entomologist. Washington: Gov-
ernment Printing Office.
In this second edition of ProfessorRiley's Silk Worm Report (Special Report No. 11, Department of Agriculture), the author says that every year's experience with
osage orange as food for silk worms confirms alrthat osage orange as food for silk worms conirms alithat
he has said of its value. For elever consecutive years he has obtained the best quality ot silk from a race of worms fed on this plant (osage orange, Machura aurandelphia showed that a larger yield of silk was obtaine from worms fed on osage orange than from mulberry fed worms.
Insects Injurious to Forest and Shade
Trees. By A. S. Packard, Jr., M.D. 8vees. By A. S.
8vo pap. pp. 275.
This Bulletin, No. 7 of the U. S. Entomological Commission, is intended to give a brief summary of the little that is known of the habits and appearance of insects
injurious to Americau forest and shade trees. There is a vast amount of necessary work to be done in this de partment of entomology; and Mr. Packard's compila-
tion seems to be well suited to interest tree owners and thon seems to be well suited to interest tree owners and report observations and s
gists of the department.
Conversations on the Principal, Subjects of Political Economy. By William
Eider. Philadelphia: Henry Carey
Baird \& Co. 8vo, cloth. pp. 316. $\$ 2.50$. The author belongs to the American school of politiof social and commercial affairs are more apt to be determined by the facts of history and the requirements of our national life than by the theories of closet philo-
sophers or the interests of British trade. The discussophers or the interests of British trade. The discusof the protective development of home industries ma Comparative New Testament. Philadel phia: Porter \& Coates.
A goodidea well carried out. The King James version of the New Testament and the new revision are arranged in parallel columns, the most convenient form possible for comparison and reference. The type is
large and clear. The volume contains a history of the mittee; notes, etc.
First Lessons in Geology. By A. S. S.
Packard, Jr.
dence Lithograph Company. 8vo, paper. pp. 127.
Discusses in a popular way the action of water in action of heat; and sketches in a hasty manner the varying aspects of America during the several geological periods. It is intended to accompany the "Chautauqua Scientific Diagrams," to which it constantly refers.
The illustrations should be in the book to make it genThe illustratio
erally useful.
Relatorio da Administraçâo geral das
Matas relativo ao anno economico de
$1879-1880$. Lisboa. Imprensa nacional,
$1881 . \quad$ pp. 298 . 4vo. 1881. pp. 298. 4vo.

In addition tonumerous statistics and other valuable tables contained in this volume, we have a series of colored plates, 16 in number, in which are shown the iso-
thermal lines and the geological formations of Portugal, as also the regions where different species of pines, gal, as also the regions where dis,

Bright F ; or, Some North AmeriBeauty. By Frank R.
the Auth.
Each $\$ 1$.
The birds illustrated in these numbers of Brigh Feathers are the rose-breasted grossbeak, the America goldfinch, and the summer warbler, giving in each in tance male and female. Progressive improvement i

Die Kilectrische
Die blectrische Beledectidung und ihre ANWENDUNG IN DER Praxis; von Dr.
Alfred von Urbanitzky. Mit 85 Abbil dungen. Wien, Pest, Leipzig. pp. 215. CAL I
This little book, which forms volume 95 of Hartleben's historical development of electric lighting, and after discussion of when and where electric illumination will pay proceeds at once to describe every known form of
electrical machine; the Gramme, Buergin, Siemens, Brush, Weston, Wallace-Farmer, Guelcher, Schuckert Edison, etc. The secondary battery is also described All the forms of lamps are also described, and the
methods of dividing the current. In the appendix the cost of electric lighting is given.
Der Praktische Eisen- und Eisenwaaren enner. Kaufmanischetechnische Eis enwaarenkunde, von Eduard Japing.
Wien, Pest, Leipzig. pp. 568. Small of Iron and Iron Ware.'
This forms volume 97 of the above series. It is intended as a liand book for dealers, impore 98 wood cuts. Price $\$ 1.50$.
Revista General de Marina. Tomo X. Cuaderno $4^{\circ}$. Abril, 1882. Madrid, 1882 The number and excellence of the scientific publica in this direction.

## Mules (4urins

HINIS TO CORRESPONDENTS.
No attention will be paid to communications unless
accompanied with the full name and address of the accompanied with the full name and address of the
writer. Names and addres
iven to inquirers.
We renew our req
We renew our request that correspondents, in referring to former answers or articles, will be kind enough to
name the date of the paper and the page, or the number of the question.
Correspondents whose inquiries do not appear after reasonable time should repeat them. If not then published, they may conclude that, for good reasons, the Editor declines them.
Persons desiring special information which is purely of a personal character, and not of general interest as we canno be expected to spend time and labor to as we cannol be expected to spend time and la
Any numbers of the Scientific American SuppleAny numbers of the Scientific American Suppleoffice. Price 10 cents each.
Cor examination, should be careful to distinctly mark or abel their specimens so as to avoid error in their identiication.
(1) O. F. H. asks how to bend half inch iron pipes into a coil 12 inches in diameter. Would it
have to be heated? How many square feet heating surface should a coil boiler have for an engine 2 inches by inches, with 80 pounds steam, and 300 to 380 revolutions per minute? Would it run a boat 13 feet long, $21 /$ feet beam, 6 inches draught, with a 1 foot propeller, $51 / 2$ miles an hour? A. For your coil boiler you will have
to heat the pipe, which should be extra strong, to a full to heat the pipe, which should be extra strong, to a full
red, and carefully draw it to the curve you require. You will scarcely be able to manage more than six to eigh inches at once. Your engine, at your statement, figures
three-fourths of one horse power. it would have to turn the propeller 12 inches in diameter, 300 revolutions per minute, to accomplish 5 miles per hour, allowing 50 per cent slip. We think you would fail in the speed, from the relative size of engine and propeller. and cer-
tainly in the coil boiler. Fifty feet of half inch pipe tainly in the coil boiler. Fifty feet of half inch pipe
would be equivalent to three-fourths of a horse power: his will make 17 turns in your coil of 1 foot in diameter. You would have to inject the water as fast as it would be required. This
badly in practice.
(2) A. E. B. asks: What can we use to make etting or seines waterproof? A. See "Waterproofing,"
(3) R. B. C. asks if a piece of hard steel is tempered to yellow, cooled, the surface brightened
and drawn to the same color again, is the tool of the same emper as it was the first time it was drawn to yellow. I am told the steel is not any lower in temper in
the operation is often repeated, and dispute the idea. A Steel hardened and temper drawn to a straw color only will not be effective in hardness perceptibly, if it be
polished and redrawn to a straw color only once. But if the operation is repeated severaltimes, a change can be noticed. If the drawing be carried to the brown or
deep straw color each time, the change in hardness will deep straw color each time
(4) A. W. M. writes: I have a portable engine for thrashing purposes and farm use; but it
stands idle for six or seven months in the year. 1. Is here anything to put in the boiler to prevent it from rusting? A. If you lay up your boiler in the early part
of winter, when it would be liable to freeze, you may put of winter, when it would be liable to freeze,you may put
draw off all the water and as much of the oil as will run off, then close up the boiler tight so that no air can get in. Clean all the flues and put the boiler in a dry place in the barn or tool house, if it is a portable one. When you are ready to put it into use again, fill it full or water,
get up steam, and blow out any oil that may be left in he boiler through the safety valve. Do this outside of any building. The handling of kerosene oil around a fire is dangerous at any time If yon can prevent the
boiler from freezing you can do nothing better than to close up tight and full of boiling water and let it stand until you need it again. It will not rust inside. Yon can take care of the ourside by cleanliness, oiling, and shelter. Oil is really better outside of $\mathfrak{i}$ a boiler than upon the inside. 2. Would crude petroleum or common coal oil answer the purpose? Has hard or lime water any other bad effect on a boiler other than to scale it? A. Lime water does no harm to a boiler other than covering
the flues and shell with scale. (5) G. R A rate.
(5) G. R. A. asks: 1. Is there any way to drill holes in plate glass? A. Can be done with a hard
drill and spirits of turpentine-a tedious and uncertain process, and only for small holes. A diamond drill is much better and cheaper, if there are many holes to drill. If large holes are wanted, from a quarter inch to one inch or larger, prepare a piece of thin tubing of
brass or copper, of the required size of hole, of 1 or 2 brass or copper, of the required size of hole, of 1 or 2
inches in length, with a small spindle and grooved pulinches in length, with a small spindle and grooved pulley attached, something after the style of the watch maker's bow drill. Fasten upon the plate of glass, at the point to be drilled, a ring of metal or wood for a guide
to keep the tubular drill in its place, until the cut is started sufficiently to steady the cutter. Lay the glass plate horizontaliy, and work the drill perpendicularly with the bow, using one hand to steady the upper end of the drill stock. Feed emery (about No. 90) and water into the open end of the tube as fast as required. In a very short time you will cut a disk out of the plate. 2. Where to get a book containing information of steam engines and machinery, giving rules for reckoning power
and speed of same, also sizes of boilers, amount of and speed of same, also sizes of boilers, amount of tions of "Pocketbook of Practical Rules "3. How is the speed of gearing reckoned? Do you take the mean diameter of each, i.e., to center of teeth of each cog, and reckon same as pulleys? A. In planning gearing
to work together, the diameters of the pitch lines are always considered; but in laying out the teeth, it is often found that the required number of teeth do not exactly
match on a given pitch line. In this case, one or both of the assignments may be varied to make the teeth match. In laying out speeds for general machinery the computations are made by the relative number of teeth in the various $w$ heels. Divide and multiply the same as
you would the diameter of pulleys, using the number of teeth in place of the diameters of the pulleys.
(6) F. C. T. asks (1) what I can use as a fux while brazing cast iron? A. Cast iron can be brazed with brass by using borax rubbed upon a slate with
water and a little caustic soda. Have the surfaces clean either by file scratching or grinding; rub the ground borax and soda well between the surfaces; tie he pieces closely with wire, and place the brass solder
upon the top, so that it will not melt until the iron is hot enough to take it. A better solder can be made by melting ordinary brass with one-sixth of its weight of block tin, and pouring it slowly into water, which will separate it into granules that are very convenient for use. 2. Whether I should use common brass or brazing solder? I have tried borax, but it won't do. It all runs off the iron as soon as it becomes liquid, and acts like
water thrown on a greasy surface,and the brass acts the same way as soon as it melts. It will brass acts the the joint at all, but run off to the fire. What is the matter? A. Silver solder or coin is still better, but expensive for large work. Heating the work quickly will
melt the solder before the iron is hot enough 10 receive melt the solder before the iron is hot enough to receive (7) M. J. S. asks: How can I'make a thermostatic bar, so that I can regulate the heat in an incubator and maintain it at about $100^{\circ}$ ? A. Take a
strip of sheet steel and a strip of sheet brass, about one strip of sheet steel and a strip of sheet brass, about one
inch wide and one-thirty-second of an inch thick, and inch wide and one-thirty-second of an inch thick, and
from one to two feet long. Tin one side of each and from one to two feet long. Tin one side of each and
bind the tinned sides together; heat and solder the pieces together with pure tin. Take off the wire pieces together with pure tin. Take of the wire
binding, and screw one end fast inside of the incua considerable will be your thermostatic bar, having end can be attached to a delicate shutter, which will operate as a ventilator; or to close and open the warm air passage, as you may find best upon trial. If you find the above combination not strong enough, you may
make the pieces a little thicker, but the range will also make the pieces a little thicker, but the range will also be smaller. A glass rod or strip of plate glass and a bar
of zinc about two feet long, with one end of each clamped together, the other ends fastened about one inch apart, have a great range, and have been used very success--
fully as a registering thermometer-their difference f expansion being
(8) E. E. M. writes: Considerable anxiety in this part about the "Wells comet." Would you
please inform me through inquiry column of the ScIENtific American, when the above comet can be seen with the naked eye-where, and the exact time of
night? A. The "Wells comet," night? A. The "Wens comet" does not show as well close to the horizon on the sun's track just after sunset. It may show up brighter after it passes its perihelion.

(9) A. S. asks: Can you recommend some apparatus or beer faucet to prevent beer becoming flat in the keg after tapping if not drawn off in a short time? A. Where such beverages cannot be drawn off within a few hours after tapping it is best to tap from barrels in the cellar by means of an air pressure pump | and connecting tubes. $\begin{array}{c}\text { There are several patented } \\ \text { faucets in the market } \\ \text { See our advertising columns and }\end{array}$ |
| :--- | faucets in the market. Se

Hints to Correspondents.
(10) T. C. H. asks: Is all lead pipe manufactured by hydraulic pressure? A. As a rule it is. pipe cannot be obtained, that short pieces are made by hand.
(11) J. F. writes: 1. My friend says that
is right? A. Every physical part of any solid body turning upon an axis or certer, moves; but the axis or center being an imaginary line only, is not supposed to tink you will be able to divide with your friend. How long does it take the planet Jupiter to make a revo lation around the earth? A. The earth revolves to the in about 398 days. 3. How long does it take Venus to make a revolution around. the earth? A. Venus does notrevolve around the earth, but swings apparently like a pendulum across the heavens as it revolves
around the sun in an orbit inside the earth's orbit. It becomes evening star, or comes to the same position in egard to the sun and earth, every $5841 / 2$ days.
(12) L. N. S. asks how to keep steam boiler from corroding. Inave seen in your paper a prescription for that purpose, but have forgotten what it was. The
boiler is new, and I want to keep it clean. A. If you are using clear hard water, your boiler will become coated upon the inside with lime. Blow off daily, at least one cock. Clean out by washing and scraping once a month, tion. Put into the boiler a day beforc cleaning about tion. Put into the boiler a day before cleaning about tan bark, oak, or hemlock per horse power. If this is not to be had then use one half pound caustic soda or potash to the horse power. Dissolve the soda or potash in water, and pump it into the boiler through the usual channel, as also for the tanners' liquor. The day's boiling will dissolve and crack off the scale, so that the boiler can be readily wasbed out. If you are using ater that is considered soft, such as creek or rive water, you may not need one-half the above quantity, or
possibly nothing but thorough washing out every two possibly nothing
or three months.
(13) C. W. P. asks: Will you inform me through the columns of your valuable paper, the Scien-
Tific American, wherein English steel comes into comTific American, wherein English steel comes into competition with American, and in what particular lines of
manufacturing it does so most successfully? A. We manufacturing it does so most successfully? A. We
do not think that English steel now holds a successful competition against American steel, especially in the grades that are much used. The vast increase inthe American steel trade during the past few years, the ingenuity displayed in economizing machinery and labor to meet the increasing demand, have brought
prices low enough to command the market. Our maprices low enough to command the market. Our ma-
chinery, tool, and heavy spring steel is now fully equal chinery, tool, and heavy spring steel is now fully equal
in performance to the English, and ranges from 10 to 20 per cent less in price. The only kinds of foreign steel that have little or no competition here are the except in the forge and uponf the grindstone; it is very tough, and is growing in favor for rough work; and the
flne kinds of spring and Swiss steel, much used for lock and watch springs, gravers, and very small turn ing tools. More skill is required in the working, hardening. and tempering tools than falls to the lot of most machine shop blacksmiths. It is not advisable to put
into the shop two or three brands of tool steel that requires to be often reworked and tempered Take the dvice of some large dealer in steel as to the kinds of steel soid for various uses; you can generally rely upon
(14) M. L. S. writes: I wish to devise large cog wheel to be operated by a smaller wheel and a to it a draw and rope, which will lift 1,000 pounds, from a depth of 500 feet. The machine to be worked by une or two man power. Please inform me what must be the circumference, weight, and number of cogs in large and small wheels. A. A man can exert upon a crank
15 inches long, or a swing of 30 inches, a lifting power 15 inches long, or a swing of 30 inches, a lifting power
of 30 pounds for ten hours with occasional rests. With of 30 pounds for ten hours with occasional rests. With
the above crank, a pinion of 6 inches diameter at pitch the above crank, a pinion of 6 inches diameter at pitch
line., working in a wheel of 6 feet diameter and windline, working in a wheel of 6 feet diameter and wind-
ing drum of 1 foot diameter, a man will hoist 1,000 pounds from a depth of 500 feet in one hour and forty minutes. If you make a double crank for two men, you in one hour. Make 18 teeth in pinion; 216 teeth in the arge wheel, 2 inches face for both. Cannot give the weight without making a detail drawing. You should decide as to the kind of rope you will use before you lay ont the wheels. A hemp rope will have to be $11 / 4$ inch or $11 / 2$ inch diameter for safety for such a load. The one
foot drum would have to be 20 feet long to wind up 500 feer, unless you double up, which is injurious. If you can make the drum 3 feet diameter and 7 feet long, and putin a pair of intermediate gears to increase the power hine. The first pinion may be4 inches, geared into 12 inch wheel, and the 6 inch pinion into the 6 foot wheel. With this combination, the faces of the first and second should be 2 inches and the third and fourth
should be 3 inches for safery, should be 3 inches for safery. If you use wire rope, the
drum should not be less than 4 feet diameter, wire rope five-eighths inch diameter, which would require the rum to be only 30 inches long. In this case youmust increase the ratio of power in the gearing to suit the
(15) R. L. M. asks: Can you inform me if there is any way of testing cutlery while purchasing
without injury to the looks? If so, what is it? examination of general appearance, in workmanship temper, character of edge, etc., are generally sufficient
to enable a buyer to form a fair opinion of such goods. to enable a buyer to form a fair opinion of such goods. We know of no chemical or other special test applica-
ble. 2. Also, can you give me a good receipt for silver ble. 2. Also, can you give me a good receipt for silver
plating? A. You will find good silver plating formule, plating? A. You will find goo
etc., in Supplement, No. 310 .
(16) F. and T. ask: Would a steam launch, 16 feet in length, 4 feet 3 inches breadth of beam, and 2 feet deep, be a safe craft for two men to use in and
about the inlets near Rockaway and Long Beach, and about the inlets near Rockaway and Long Beach, and
would she be able to make the trip from this city? What weight, including boiler and engine, would she est speed practical in such a craft? Would we require a license to run her? A. We should consider the boat too small to be efficient with steam power. You would require a licensed engineer to run the boat, and proba-
bly the boat would have to be inspected and licensed.
(17) P. S. M. asks: W and immersion of the lower end of a Jightning Uřia a leaching cesspool, which always contains more or less water, make a
good ground connection? The cesspool receives the waste from the house, and, therefore, the water is somewhat greasy. Would such greasy nature interfere with onduction? A . The lower end of the rod should be attached to a metallic conducting surface that has an area of at least eighteen superficial feet in contact with
water or moist earch. The mere insertion of the rod in the liquid, say for four feet, is, therefore, not a proper of an inch square such insertion would only give an area of a little more than one superficial foot in contact
with the liquid, iustead of eighteen feet as required.
with the liquid, iustead of eighteen feet as required.
(18) A. W. says: I have been trying to draw water from a well with one inch gas pipe. It is feet in the first 300 feet, and falls 36 feet in the next 700 fect. I filled the pipe from the highest point and then
plugged it, and opened both ends at once, and it ran about twenty minutes and then stopped. I can draw water through it with a Douglass pump, but it will not in 1,000 feet of pipe; or what is overcome the frictio friction in the long length of pipe is too grat for the pressure, when it acts as a siphon. With the pump you have nearly double the pressure to force the water
through the pipe. It may be there is an air leak in the through the pipe. It may be there is an air leak in the
(19) H. D. B. asks: Can you please tellm which is the fastest steamboat in the United States, where wasit built, what line does it belong to, and how fast does it go? A. We know of no fastersteamerthan
the Mary Powell, a fine passenger vessel now runniu daily on the Hudson River, between New York and
dath Rondout. This boat, we be
twenty-two miles an hour.
(20) H. and S. ask how the mould boards of plows are tempered so as to leave them in their proper shape, or rather to keep them from springing while tem-
pering. A. Steel mould boards should be annealed before hardening, and receive their final fit, so that there should be no hammer-hardened surfaces or bend ng strains in the steel when it receives its heat for
hardening. They must be dipped plumb, so that water will touch both sides of the plate even, or al the same time, and not quickly, but rather slowly, with the point end down. If they spring, in spite of these precautions, you can heat the plates to about $300^{\circ}$ Fah., and clamp them quickly to a former of the proper
shape, and cool them with warm water. This will not draw the temper materially, and works well where accuracy is required. It is supposed, of course, that you you use oil instead of water for hardening, the same recautions apply.
(21) G. J. R. asks: Does steel get larger or smaller in hardening? A. It gets both larger and
smaller; in fact, so erratic is its nature under various forms, and the variety of ways of heating and hardening, that nothing but a careful study and trial of th
articles that you wish to harden will knowledge of its tendencies. For instance, a ring die $\mathrm{f} ? \mathrm{r}$ punching boiler plates made of Krupp steel and fitted into its socket, say 2 inches or $21 / 2$ inches diameter, will not enter after hardening by about the one-hundredth of an inch. A 2 inch pipe die of English steel shrink little over one-hundredth of an inch upon the inside As a general principle rings shrink and solids swel
Blocks cut from hammer-drawn Blocks cut rom hammer-drawn flat steel are fou
sweross the grain and shrink with the grain.
(22) A. M. S. asks: 1 . What is the best method of quickly and thoroughly removing scale fro steel forgings after annealing in wood or charcoal fire . Treat your forgings to a bath of hydrochlori parts water, for frem water, one part acia to eight or te ing to requirement of surface and strength of acid bath If the work is small, a stone jar answers well. Use th misture continuously, adding acid and water as may be required. If your work is large, you can swab the work over with a stronger acid, as is done with sulphuric acid upon cast iron. 2. Also of removing oil after "burning red work in a hot solution of caustic soda, theu in boiling water, and dry quickly
(23) H. H. B. asks: 1. What is the best have been in the habit of using costor onent. slipping but $I$ find that it causes the rubber coating on the pul ley side of the belt to peel or strip off. My belts run where the temperature is high and full of hard coal gas. An ordinary leather belt will rot outina very
short time when run in this same bought a second-hand belt that was saturated with we sort of oil, so much so that it dripped from it for month and it is in a good state of preservation to-day after fou years' hard work. A. Use no oil of any kind upon rubber belting. Rub the belt with a piece of beeswax It is the best for both leather and rubber belting. It does not require to be piled on; a little occasionally will make even a loose belt do large duty. 2. Is there any common oil that I can soak my lacings in to preserv them, as they rot out in about two months now? A.
The only proper oil for lacings is that used by the tanYour lacings will keep well by wrapping in strong brown paper, and putting in a close drawer out of the influence of light and air. 3. What works can you recommend for the study of electricity, beginning at the Electricity and the Electric Telegraph," "Gordon' Electricity," also back number of the Scientific Amerand scibs,
Minerals, etc.-Specimens have been re eived from the following correspondents, and examined, with the results stated:
E. A. W.-It is a variety of chalcedony. If found it can be used for making articles of ornament,such a clocks, vases, etc.
[OFFICIAL.]

INDEX OF INVENTIONS for whice Letters Patent of the United States
Granted in the Week Ending May 30, 1882,
AND EACH BEARING THATC DA'TE. ['Those marked (r) are reissued patents.]

A printed copy of the speciffcation and drawing of any
patent in the annexed list, also of any patent issued since 1866, will be furnished from this office for 25 cents In ordering please state the number and date of the
patent desired and remit to Munn \& Co., 261 Broadway. corner of Warren Street, New York city. We
also furnish copies of patents granted prior to 1866 ; but at increased cost, as the sp.
printed, must be copied by hand.

## Addr Adze Alka

 Alkaline solutions obtained in the manufact.........258,5\% of soda, puriflcation of, E. Carey et al......... w. Hamilton
## næsthetics, administering, Cooper \& De....................................

 Annunciator, electrical, F. E. Fisher. Anvil and vise, combined,Axle box, car, J. O. Scott. Axle, carriage, A. E. Smith........... Battery. See Galvanic battery.
Bed buttom frame, Thompion \& Wells Bed bottom, spring, W. L. Phillips...

```
Bell, gong., R. Mcshane
```

Billiard cue. H. A Bow
Bit stock, W. A. Ives
Blackboard and map case, combined, A.C. Elli....................
Blarkboard and map case. combined, A.C. Elliott,
Board. See Base board. Electric switch board.
Plow Mould board. Telephone exchange
switch board.
Boat plug. G. A.I.
Bolt and key fastener, combined, w. White.....................78.775
Bookcase, E. R. Young.............................. 258.844
Boot and shoe crimping machine, J.W. D. Fifield. 258,734
Boor or shoe holding jack, E. Bertrand ............. 258,699
Bottle washine, v. Cox , machine, K. Hofmann ...................258,768
258,579
Box. See Work box.
Bracket. See Roofing bracket.
Brake. See Car brake. Carriage brake. Vehicle
Brake. See
brake.
Brick burning kiln, J. Johnson....................... 258,583
Brick compound, fire, E. A. Martin................ 258,661
Brush
Buckle, E. A. Cooper ... .. ............................. 258.815 258,715
Bureau, etc., G. F. Richardson............................. 2588,604
Burner. See Lamp burne
Button, B. Fischer.......
Can. See Creaming can
Car brake, automatic, D. To
Car coupling, J. M. Bailey
Car coupling, J. C. B Blocher...
Car coupling, P. M. Bracelin
Car coupling, S. Bray
Car coupling, H. G. H. Reed
Car frame, Brant \& Harris
Car, railway, J. Patterson.
Car unloaders, nose casting for. G. W. Rol. Roph...
combs of, P. Laflin
Carding machine top flat, w. E. Whitehead
Carpets, tumbling ree for cteaning. T. A. Naylor. 258,791
Carriage brake. W. R. Mortimer.............258793
Carriage curtain fastening, w. H. Weaver........ 258,831
Carriage curtain fastening, W. H.
Carriage top clamp, B. B.
Carrier. See Cash carrier.
Carre. See Book case. Brush case. Check case.
Case
Packing case. Sample exhibiting case.
Cash carrier, automatic. W. s. Lamson....258,584,
Chain, drive. D. D. McKernan
Chair, See Opera chair
Check case, J. S. Crane...............
Chuck jaw, reversible, c. Maduell.
Churn, w. D. Leavitt.......................
Cigarn, T. W. Duby
Cigar, Mox catch, J. E. Margo
Cigar lighter, E. A Parker
Cigar lighter, E. A Parker.
clamp. See Carriage top clamp. Rope clamp.
Cloak, reversible, H. F. Bindseil.
Clock bell, G. W. \& A. C. Sanford
Clock dial, J. R. Payson, Jr ........... ....
locks, electric motor for, L. H. Spellier
Clocks, electric motor for, L. H. Spellie
Clothes bars, folding, , S. s.
Clothes pin, J. T. Haskis.
Clothes pin, J. T. Haskins...
Clothes pounder, C. \& T. Ha
Clutch, friction. O. E. Wait.
Coffee pot, J. McA nespey.
Colander and fruit press, combined, .................
Colander and fruit press, combined, L. Br
Collar fastening. horse, A. B. Robinson...
Corset, W. S. Allen.
Cotton gatherer, hand, B. F. Lamb
Cotton gain brersh hand, B. F. Lamb..... ........
Cotinder, E. Van Winkle...
Cotton gin condenser, Burdine \& Brewer............
Coupling. See Car coupling Thill couplin
Coupling. See Car coupling. Thill coupling.
Lightning rod coupling
Lightning rod coupling.
Creaming can, E. B. Clement..
Crib, convertible, J. W. Barto
Cultivator, t. C. Dodsworth
ultivator, T. C. Dodsworth.
Damper regulator, automatic, J. W. Funck.
Dentist's flask, E.
Damper regulator, automatic
Dentist's fask, E. H. Locke.
Desk, school, G. Dinsmoor..
Detachable handle for utensils, Neider \& Gross

Detector. See Time detector.
Detector. See Time detector.
Diaphragm, separating. G. B. Whiting ............... 258,835
Disinfecting

Blackiman................
Ditching machine, F. Pidgeon$\left\lvert\, \begin{aligned} & \text { Door hanger and pulley., C. W. P.ierce e.............. 255,597 } \\ & \text { Door or window frame. . . H. Willson............ 258839 }\end{aligned}\right.$

| Door spring, M. C. M |
| :--- |
| Drill. See Rock drill. | ..... $\begin{array}{r}2588.839 \\ \hline\end{array}$

Dustpan, W. N. Clark ..... 258,631
2588,693
258,811
Egg tester. T. H. B. Sanders .. ..... 258,693
258,811
Electric individual signal
Buell ..... 258,627
Buell............................................ ..

Electric machine, dynamo, E. J. Houston..258,648, ..... | 255,625 |
| :--- |
| , 258.649 |
| 58864 |

Electric machine, dynamo, H.J. Müller...
Electric machine, dynamo, W. s. Parker. ..... 258,864
2588.800
258,561
Elevator. See Mail elevator.
Elevator gate, automatic, B. C. Vanduzen..

Elevator safety a pparatus, C. W. ..... | 2588,691 |
| :--- |
|  |
| 10,127 |

Elev
Ele
r ..... 10,127
Traction engine. Wind engine.
Iraction engine. Wind engine.
Envelope, D. Lubin...................................
Envelope for ice cream, etc., non-conducting,Excrising apparatus, J. M. Laflin.
Expansion foint, J. J. Mos
Express signal call, H. S. St
Faness signal
Fan, Brueck .
Fan, automFan, fiy, T. A. Martin..
Farm gate, G. I. Blynn258,861A. \& G.W. Sammet...................Fence, barbed, J. \& w. M. Brinkerho
Fence, portable, i. . B. WagneFence, parbect, Jo, \&. w. M. Brinkerhoff. ............. 258,606
Firearm, bree, D. Wanner.............. 258,830
Firearm, magazine. W.H. Elliot.Flask. See Dentist's flask.
Flatiron heater, I. R. Angell.
Forging carriage bolts, machine for, G. \& J. т.Forging hammers, machine for, W.................. 25vans... 255,641
Frame. See Bed bottom
Frame. See Bed bottom
Door or window trame.
Druiur or icking implement, C. Allen... ..... 258,846
Galvanic battery, J. Kidder.........................
Game piece and method of exhibiting the same,
258,857
258.821
Gas, apparatus for the manufacture of combusti-
ble, E. Langen................................. ..... 258.774
Glassware, ornamentation of, F. Rhind.. ..... 258,808
Muller ...................... .....  258,795
255,342
258,687
28,887
Grain binder, C. Young
Grain binder, C. Young ...
Grinding mill, G. \& A. Ray
Grinding mill, G. K. Smith Grinding mill, G. K. Smith
Halter, E. Barnard...Hanger. See Door hanger. Plumber's pipe han-dle. Shaft hanger
arrow, E. P. Lynch
Hatchets, die for making. W. Evans ..258,782
258,568
Heater. See Flatiron heater.
Hoisting, stand frame for. w. S. Blunt............
Holder. See Rein holder. Sash holder. ShadeHolder. See Rein holder. Sash holder. Shad
holder. Spooling machine bobbin holder
Hook. See whiffetree hook.
Hoop cutting machine, barrel, Hook. See whimetree hook.
Hoop cutting machine, barrel, J. B. Pike.........
Hosiery, method of and apparHosiery, method of and apparatus for exhibitin.
Hot and cold air register, R.
Hub fastener, N. Clark.....258,804



OYBCONTINENT

NOTABLE AITRACTIONS. 1. Julian Hawthorne's striking serial story, " Dust.,"
2. Judge Tourgee's new and greatest story, - Hot Plowshares." 3. Serial Stories by E. P. RoE
E. S. PHELPS, W. M. BAK KER, and others of nationa reputation. 4. Short Stories, Poems, Articles on Science,
Art,Literature, and Politics, by the first writers of the
 Thought, Book Reviews. etc. . . Editorial and contri
puted discussions of all current social literary, and political topics, without regard to sect or party. 7. The
Illustrations are drawn and engraved by the best Miss Emily Sartain.

PARTIAL LIST OF CONTRIBOTORS.




Judge Tourgee's New Story, 'HOT PLOWSHARES," treats of a most interesting and exciting period of
American history, nd while ertirely dissimilar is yet
happily germane to his previous works. Special Terms for Immediate Subsc iption If ordered at once we will send OUR CONTII-
NENT, beginning with J udge Tourgee's Story, until the end of the year (Feb. 15, 1883) for
$\$ 2.00$; or with all the back numbers rrom the beginning (Feb. 15, 1882) for $\$ 3.00$. This offer numbers are exMausted.
OUR CONTINENT contains annualy one-third mor matter than any Monthly Magazine-an excess equal to
four montriy numbers. gee's Story. Back numbers cannot be prom
after "Hot Plowshares" begins. Address OUR CONTINENT, Philadelphia, Pa


Sant mation



 Descriptive Catalogue and Price List free.
W. F. \& JOHN BARNES, No. 1939 Main St.; Rockford, 11. (IITH
 Nume PATENTS. MESSRS. MUNN \& CO., in connection with the pub-
lication of the SIENTIFIC AmRICAN, continue to exmine Improvements, and to act as Solicitors of Patents or Inventors.
In this line of business they have had thirty-five years' experience, and now have nnequaled facilities for
he preparation of Patent Drawings, Specifications, and he preparation of Patent Drawings, Specifications, and the prosecution of Applications for Patents in the
United States, Canada, and Foreign Countries. Messrs. Munn \& Co. also attend to the preparation of Caveats, Copyrights for Books, Labels, Reissues, Assignments,
and Reports on Infringements of Patents. All business trusted to them is done with special care and promptness, on very reasonable terms.
A pamphlet sent free of charge, on application, containing full information about Paterts and how to pro cure them; directions concerning Labels, Copyrights,
Designs, Patents, Appeals, Reissues, Infringements, Assignments, Rejected Cases, Hints on the Sale of Pa-
tents, etc. We also send. free of charge, a Synopsis of Foreign
Patent Laws, showing the cost and method of securing Patent Laws, showing the cost and method of securing
patents in all the principal countries of the world.

MUNN \& CO., Solicitors of Patents,
261. Broadway, New York.
BRANCH OFFICE - Corner of $F$ and 7 th Streets,

ILLUSTRATIONS.


|  |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

##   

East Rock Park, New Haven,

## 


 for Arg
$\mathbf{F}$

| Teed-water heater, Häli's $\qquad$ |
| :---: |
| ce, McNall's im |
| Fence, Reichling's |
| Fence, wire, Ruane's ............ 66 |
| Fib |
| rs, leaf, machine to clean.... 207 |
| ng mach. fo |
| er stand, Tiffany's........... 354 |
| Filter, the multiford Finger-supporting device $\ldots \cdots \cdots{ }_{23}^{4}$ |
| Fire alarmbox, Brophy's........3 ${ }^{346}$ |
| Fire escape, Decke |
| Firearm, breech-loading.......... 370 |
| Firearms, improvement |
| Fire escape, a new |
| Fire escape, Shaw's.;............ 167 |
| Fire-extinguishing a aparatus.... 118 |
| Floating dock for crevasses |
| Flower stand, McCallum's.....i. 354 |
| Foundry, Lane \& Bodley's.....15, 19 |
| kusu, Berlın |
| 8 |
| me, wioking |
| tion clut |
|  |
|  |
|  |
| Furnace and boiler. |
| sting, new....... ${ }^{343}$ |
|  |
|  |









Nail, horseshoe. Hyslop's........ 384
Nut lock, Berryhill's........... 382



## 



Seed planter and fertilizer......
Seed planter, checrow new
Sewage purifying machine.....
Shear, bar-iron, powerful........
Shears for cuting fowers, ete..
Sheep shears, Mann's







## MISCELLANY. <br> Figures preceded hy a star (*) refer to illustrated articles.












H

 Harvesting etc machine








|  |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |










U
United States and Terr., areas...



## June 24, 1882.] <br> Payne's automatic engines.

§rixntific Amptican.
TARGEST ESTABE CNE
YOSS NEWYROMESS
SPERIORTO ANM

## MOSS ENGRAVING COMPANY


 $\$ 5$ to $\$ 20$ der day at home. Samples worth $\$$ fres free.

 THE SEIBERT CYLINDER OIL CUP CO,
 No URPHINE HAB
no pay till cured.



PENCILS, HOLDERS, CASES, \&c. The CALLI-GRAPHIC Pen.
 ho care to preserve therir ind ividuality in writing
MABIE, TODD \& BARD, 180 BROADWAY,
OUR GOODS ARE SOLD Pr Price-List. NEW YOR FIRST-CLASS DEALERS.

## STEL STAMPS

 ERICSSON'SIer Cadric Puninig Bigine DWELLINGS AND COUNTRY SEATS. Simplest cheapest, andmost economical pumping engine
for domestic purtoses. An servant gil cang operate.
Absolutely safe. Send or circulars and price lists. DELAMATER IRON WORES C. H. DElAAMATELR \& CO., Proprietors,
No. 10 Cortlandu Street, New York, N. Y. THE COMMON SENSE DRY KILN.





BOOKWALTER EVVGINE. Compact. Substantial, Econom-
1cal, and easily managed guar-
anteed to Work well and give full power claimed. Engine and
Boiler complete, includine Gov.
ernor, Pump, etc., at the low ernor, Pump, etc., at
pricoof HO
3H6 HE POWER....


THE DUPLEX INJECTOR. The constantly increasing demand for this Boiler
Feeder povesitits superiority over other machines now
in use. Send for illustated circuarand price ilis.
Manufactured by JAIIES JENISS, Detroit, vich.


TRUNKENNESS EASILY CURED.

WIRE ROPE, BRIDGE CABLES, SHIP RIGGING, Tramway Ropes, Champion Barbed Wire, etc, Omice and Works: $\left.\} \begin{array}{c}\text { Send for } \\ \text { WILKESBARRE, PA. }\end{array}\right\}$ price list. $\{87$ Lifice and Warehouse: RUBBER BACK SQUARE PACKING.
For Packing the Piston Rest and Vais Worsi. For Packing the Piston Rods and Valve Stems of Steam Engines and Pumps.
hich the packing which, when in use, is in contact with the Piston Rod.
hich part $B$ against the rod with sufficient pressure to be team-tight, and B represents that part of the packing which, when in use, is in contact with the Piston Re,
A, the elastic back, hich keesp the part $B$ against the rod with sufficient pressure to be st
creates but little friction. This Packing is made in lengths of about 20 feet, and of all sizes from 14 to 2 inches square.
JOHN H. CHEEVER, Treas. NEW YORK BELTING \& PACKING CO., 29 Park Row, New York SPECIAL NOTICE.-Owing to the recent great fire in the " World" Building, our office has

## Whathrantyiss men

WATCHMAKERS.

Before buying lathes, see the "Whitcomb," made


## RUPTURE <br> 

Geonge Westinghouse, Jr.,
President.
Ralph
Sec'y
The Westinghouse
THE WESTING
CORRESPONDENCE
The Westinghouse
 $\underset{\&}{\text { Bagalet, Treas. }} \quad \begin{gathered}\text { H. H. Westing } \\ \text { Superintendent. }\end{gathered}$ Machine Company with Manufacturers of High
DRIVE DIRECT with HOUSE ENGINE
 Machine
 MACHINISTS' TOOLS




High Speed Steam Engine.

## to + shepards gelebrated

 SHEPARDS ©ELEBRATED
Screw Cutting Foot Lathe
Foot and Power Lathes. Drill Presses





"BLAKE'S CHALLENGE" ROCK BREAKER.


blake crusher co., Sole Makers, New Haven, Conn.


SPEAKING TELEPHONES.
THE ANERICAN BELL TELEPHONE COMPANY,
 Alexander Graham Bel's patent of March 7, 1876,
owned by this.company, covers every form or apparatis.
including Microphones or Carbon TTelephones, in which ncluding Microphones, or Carbon Telephones, in which
ine voice of the speaker causes electric ind ulations
corresponding to the words spoken, and which articulathe voice of the speaker causes electric undulations
corresponding to the words spoken and which articula-.
tions produce similar articulate sound at the receiver
That The Commissioner of Patents and the U. S. Circuit Court
have decid col this to be the true mennin.
the validit of of the patent has been sustained in the Cirite validity of the patent has been sustanead in the cir-
cuit on fnal hearing in a contested case, and many im-
juntions and fllal decrees have beeno obtained ont hem.
This company also owns and controls all the other Thephomic inventiso owns and controls all the othe
Bell, Edison, Berliner, Gray
Blake. Phelps, Watson, and others
 agents or the company,
All telephones obtanined excent from this company, or
its authorized licensees, are infringements, and its authorized licensees, are infringements, and th
maters. sellers, and seers will be proceded against.
Information furnished upon application. again



WTPHEBX, RUGG \& RICHARDSON. Manfacturers tion. Facilities unsurpassed. Shop formerly ocupuped
by E. Bail \& Co., Worcester, Mass. Send for Catalogue BEATTY'S $\begin{gathered}\text { ORGANS, } 27 \text { stops, } \$ 90 \text { Factor Pianos. } \$ 125\end{gathered}$ Free. Adaress Daniery F. Bentty, Washington, N.J.

 Horizontal Steam Engines,
 LAMBERT JILLE IRON WORKS,

| Series For 1882. <br> (1) Elegan mog Imported designe, all Chroo |  |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
| Adjustable Stroke |  |
|  |  |
| Can be Changed while in Motion. E. GOULD \& EBERHARDT |  |
|  |  |

$\$ 72$ A WEEK. \$12a day at home easily made. Costly FOR SECOND-HAND ENGINES,


Heavy Punches, Shears, BOILER SHOP ROLS,
1 RADIAL DRILLS, Etc.
HILLES \& JONE8,

R. LOW, SON \& HAYDON'S TOILET SOAPS
Leave no unpleasant odor on the hands. The popular kinds are
RLDER FLOWER, IN $\frac{1}{2}$ LB. BARS,


OLD BROWN WINDSOR, IN PACKETS. Triple Handkerchief Extracts, Royal Windsor Toilet Water, Eau de Cologne, Violet Nursery Howder Rose Leaf Powder Acknowledged to be the best and

FOR SALE EVERYWHERE.

## SHAFTS PULEEYSHMEETS

 At Low Prices, Large Assorted Stock:

GOLD MEDAL, PARIS, 1878. BAKER'S Briextais Cicone Warranted absolutely pure
Cocoa, from which the excess of Oil hasbeen removed. It has three times the strength of Cocoa mixed
with Starch, Arrowroot or Sugar, and is therefore farmore economical. It is delicious, nourishing, strengthening, easily digested, and admirably adapted for invalids as
well as for persons in health. well as for persons in health. W. BAKER \& CO., Dorchester, Mass. 0 0 PERA GLASSES $\frac{M i}{\text { incrosopeses, } \text {, Spetactele }}$
 For cleaning Boller Tubes, TUBE CLEANER.




THE J. L. MOTT IRON WORKS,









## WM. A. HARIRIS.

PROVIDENCE, R. IR (PARRK STRREET), HA ORIN-CORLINS ENGUNE

and Shaped Diamond Carbon Points, indispensable for
Truing Porecaiain, Hardened Steel, Chilled Iron, and
Paper Calender Rolls. Practical Mechanics and Paper Calender Rolls. Practical Mechanics and irape
Makers using them pronounce them a marvel of the age
 a micr oscope, the re is no perceptible wear. They are
now extenivelyused in Roline and Paper Mill, both
in this country and in Europe. Send stamp for circular


Bolt Cutting Machinery manverecrumeres,
Howard Iron Works, Buffalo, IV. I.
廿utal
PEARSONS PATENT ROOFING COMPOSITION



New and Valuable 0iler for Loose Pulleys. Its use on Loone Pulleys sill prove
it to be efficient, keeping the pulley oited from three to for weeks with
one flling. Price from whe to 75 .
each. Sample sentby mail on receipt each. Sample sent by mail on receipt
of price. Give diameter and speed
of pulley Send of catalogue et.
VAN DVZUN \& TIFT, Cincinnati, Menion this paper. Cin
Stevens' Roller Mills, GRADUAL REDUURTION OF GRAIN. THE JOHN T. NOYE MFG. CO., B
SAWS 40.000 SAWS


## DR. SCOTT'S ELECTRIC HAIR BRUSH.

An Honest Remedy
PRESCRIBED AND USED BY OUR BEST PHYSICIANS




## Not a Wire Brush

 But Pure Bristles. IT IS WARRANTED TO CURE Nervous Headache in 5 minutes! BinousHeadache In 5 minutes! Neuralgla In 5
minutes! Dandruff and Diseases of the minutes: Dandruff and Diseases of the
Scalp! Prevent Falling Hair and Bald-
ness! Promptly Arrest Premature Crayness! Make the Halr grow Long and
Clossy! The continued use of Pllis, etc., works Irreparable In jury. Ask any Physi-
Will positively produce a rapid growth of hair
on bald heads, where the glands and follicles are not totally destroyed.

## ALL DEALERS WILL REFUND THE PRICE IF NOT AS REPRESENTED.

$$
\begin{aligned}
& \text { prietors : ciation of Londonectric Ass } \\
& \text { New York Branch : } 842 \text { Broadway. }
\end{aligned}
$$

## TAKE for $\mathbf{A R}$ R. SCOTTT'S.

that name Is on the
box Avold those WIRE
Brushes which Injure
Brushes which Injure
the Scalp and promote
Baldness.
Mention this Pape
Paper ,
Remittances should be made parable to GEO. A. SCOTT, 842 Broadway, New York. They can be mad
Send for a Circular of Dr. Scott's Electric Flesh Brush and Electric Corsets,for Ladies and Gents.

Engineering, Physics, Chemistry. Thioroughoursesos study in ine tublitings.


 Os, SIBLEY COLLEGE OF MECHANIC ARTS,


 KORTING UNIVERSAL DOUBLE TUBE INJECTOR

 OFFICES AND W WR EROROMSS:
PHILADA., 12TH\& THOMPSON STS. NEW YORK, 109 LIERTY ST.
 HARTFORD
STEAM BOILER Inspection \& Insurance COMPANY
W. B. Pranilin,V. Pres't. J. II. allev, Pres't. J. B. PIERCE, Sec'y.

## COLUMBIA BICYCLE

 sh what every boy wants andWhat every man ought to have.
Send stamp for illustrated
catalogu with price lists and full catalogue, with price lists and full
informat THE POPE M'F'G CO., 597 Washington St., Boston, Mass.

## HW.JOHIS asbesyos

 LIOUID PAINTS Asbeghe wick packiciog,
 Descriptve price lists sand samples sent free. H. W. JOHNS M'F'G CO.

## MIRE ROPE

 Double Screw Parallel, Leg Vises.


## ROOFINC.




 "UAFARGE"POTHANGENENWN:



ROCK DRILS \& ATR GOMPRESSORS
PRINTING INKES:


