weight, and furtbermore prescribed that a daily fine of two piastersshould be levied upon each peasant whoshould fail to fulfill the duty thus imposed upon him in the general interest of the province. The practical results of this wise and prudent decretal were as follows: During thefirstday or two of the period appointed for the collection of theova, a few rustics brought in their quota of eggs, but the large majority of the peasantry, far too indolent to take the trouble of digging them up, compounded with the powers that be by privily purchasing the necessary quantity of eggs from the officials at one piaster per kilogramme, and then making public delivery of the quantity to the employes empowered to receive it. Thus the two or three hundred kilogramme of eggs really collected and delivered by law-abiding peasants were sold over and over again to the malin gerers. These trickster saved half the amount of their fines, the official their fins, the official pocketed a piaster by eac transaction, and the crop of locusts for the coming season will, in all proba bility, turn out even finer than that which all but ruined the Angora vilaye last year.-London T'ele graph.

Dyestuffs irom Salicylic

 AcId.We are not surprised to learn that salicylic acid now so cheaply prepared from carbolic acid, has been called upon to yield a dye, which will no doub give a fresh impulse to its manufacture, as hitherto the consumption has been limited to medicinal and antiseptic purposes. A so-called salicylic-acid-yellow can Eliza McDonough, who preceded Dr. Cutter in this field be made from it, which is distinguished by its resistance to weak alkalies, and threatens to replace picric acid, which latter is known to be explosive and easily washed off from the fiber. According to the process employed in Schering's works sulphosalicylic acid is nitrated by treatment with nitric acid, sp. gr. 135 , for a long time at 40° to $50^{\circ} \mathrm{C}$. $\left(100^{\circ}\right.$ to $120^{\circ} \mathrm{Fah}$.). Or a mixture of sulpho acid and barium nitrate is treated with concentrated sulphuric acid. The nitrosulphosalicylic acid, as well as its salts of the alkalies and alkaline earths, is very solnble in water The solution dyes silk and wool yellow without any mordant. If the nitric acid acts very energetically on the sulphosalicylic acid the sulpho group will be split off entirely. Bromine can also be introduced into it, forming either a mono or dibromo nitrosalicylic acid, which dyes still more intensely yellow. We should suppose that it would be advantageous to introduce the bromine first directly into the salicylic acid and afterward nitrating with care, since it is said that hot nitric acid converts bromosalicylic acid into picric acid.
Sulphosalicylic acid also forms dyes with the phenols; thus resorcine produces a bronze red, strongly fluorescent when in alkaline solution. With diamidobenzole it yields a when in alkaline solution. With diamidobenzole it yields a

Bordeaux red, with diazometaxylidine a fuchsine red, and | Bordeaux red, with diazometaxylidine a fuchsine red, and |
| :--- |
| with diazoamidonaphthaline a violet dye. |

IMPROVED PLOW.

The annexed engraving shows an improved device for preventing plows from choking with weeds and stalks in plowing, patented by Mr. Fernando Gautier, of Pascagoula, Jackson coun ty, Miss. In this device the arrange ment of stationary cutters and oscillating cutter is such that when the cutters are ground away by sharpening they may be readily adjusted so as to work as at first. The oscillating cutter is connected with an eccentric at it rear end, the ecsentric being operated by the toothed driving wheel through gear wheels, which are inclosed in a suitable case to prevent clogging with soil or weeds. When the plow is drawn forward the drive wheel is revolved and by means of the gear wheels and the cam, theoscillating cutter is moved vertically, passing the stationary cut ters and cutting weeds or stalks tha would otherwise choke the plow. The plow beam is made of cast metal, and at its forward end has an enlargement containing a vertically flaring recess, of sufficient depth to receive a short T shaped clevis, which is pivoted in the bottom of the recess by a bolt, and adjusted in a raised or lowered position by a second holt, which is passed through one of a series of perforations in the beam and a perforation in the clevis. The clevis is simply a T-shaped bar of iron requiring but little material, and can be more easily made than any other clevis. The handles of the plow are so arranged as to be adjusted to the height of the plowman.
nd pretense on the part of manufacturers in this field shall serve to protect mothers from further betrayal and to rescue infant life from quact articles of nutriment, his work though giving a tremendous shock to our sensibilities and to our faith in medical certificates, will not have been done in vain. $-N$. Y. Times.

Copying Drawings.

Tilhet's method of copying drawings in any desired color thus described in the Polytechnisches Notizblatt
The paper on which the copy is to appear is first dipped in a bath consisting of 30 parts of white soap, 30 parts o alum, 40 parts of English glue, 10 parts of albumen, 2 parts of glacial acetic acid, 10 parts of alcohol of $\varepsilon 0^{\circ}$, and 500 parts of water. It is af terward put into a second bath, which contains 50 parts of burnt umber ground in alcohol, 20 parts of lampblack, 10 parts of English glue, and 10 parts of hichromate of potash in 500 parts of water. They are now sensitive to light, and must, therefore, be preserved in the dark. In preparing paper to make the positive print anothe bath is made just like the first one, except'that lamp black is substituted for the burnt umber. To ob tain colored positives the black is replaced by some red, blue, or other pig ment.
In making the copy the drawing to be copied is put in a photographic printing frame, and the negative paper laid on it, Eliza McDonough, who preceded Dr. Cutter in this field, and then exposed in the usual manner. In clear weather

GAUTIER'S IMPROVED PLOW.
has been in a measure discredited; but it appears that he assertion-that the starch, so far from being transformed into dextrine, was not sufficiently altered to render the recogni tion of its source difficult, whether from wheat, rye, corn, or barley-was strictly true, and that these preteptious fonds are, without exception, nearly valueless for dietetic purposes. All of them consist of baked flour mainly, either alone or mixed with sugar, milk, or salts. In some cases, the baking has bzen very inadequately performed, and the doctor found one that consisted merely of wheat and oat whose starch cells were proximately in their natural con dition.
The general result of Dr. Cutter's examination may be stated in brief terms as follows: There was scarceiy a sin gle one of the so-called infant fonds that contained a quantity of gluten as large as that contained in ordinary wheat flour. That is to say; a well-compounded wheat gruel is superior to any of them, particularly when boiled with a little milk; and mothers are in error who place the slightest dependence upon them. As respects one very expensive article, professing to possess 270 parts in every 1,000 of phosphatic salts in connection with gluten, Dr. Cutter was unable to find any gluten at all. The thing was nearly pure starch, sold at an exorbitant price as a nerve and brain food and a great remedy for rickets. So all through the list. Sometimes a trace of gluten was present; more frequently none at all. In one case there were 90 parts of starch to 10
of gluten; but this was exceptional, and the majority were
and then exposed in the usual manner. In clear weather
an illumination of two minutes will sulfice After the exposure the negative is put in water to develop it, and the drawing will appear in white on a dark ground; in other words, it is a negative or reversed picture. The paper is then dried, and a positive made from it by placing it on the glass of a printing frame, and laying the positive paper upo it and exposing as before. After placing the frame in the sun for two minutes the positive is taken out and put in water. The black dissolves off without the necessity of moving back and forth.

Pasteurization of Beor

In other countries, notably in Germâny and America, thi system of preserving beer has been extensively adopted, and very favorable results have been obtained. Pasteur's investigations proved that a temperature of $131^{\circ} \mathrm{Fah}$. is fatal to diseased ferments, but that yeast cells are capable of with standing this temperature. In his celebrated work on beer, Pasteur describes the following experiment:
" A number of bottles of beer which had been heated on October 8, 1871, were compared with those of an equal num ber of bottles of the same beer which had not been heated. The examination took place on July 27, 1872. The bee which had been heated to $131^{\circ} \mathrm{Fah}$. was remarkably sound well flavored, and still in a state of fermentation. As a matter of fact, we have proved by exact experiments that alcoholic ferments, heated in beer, can endure a temperature a temperatur of $131^{\circ} \mathrm{Fah}$. without losing the powe of germination; but the action is ren dered somewhat more difficult and slower. Diseased ferments, however existing in the same medium, perish at this temperature, as they do in the case of wine. The beer which had not been heated had undergone changes which had rendered it quite undrinkable; its acidity, due to volatile acids, wa higher than that of the other beer in the proportion of five to one; the beer which had been heated contained one half per cent of alcohol more than the other."
So important a result as is here de scribed ought to be extensively applied there can be no practical difficulties in the way of pasteurization but such as can be easily surmounted. The first objection that was raised to this pro cess was the risk of the bottles, bursting during the process, but this might be easily obviated by firmly fixing the corks in the bottles, and by conduct ing the process in a vessel so conHess valuable, ounce for ounce, than ordinary wheat flour. structed that the pressure on the outside of the bottle is Considering the semi-philanthropic pretensions that have about the same as the internal pressure caused by the expanbeen put forth by the manufacturers of these foods, some of sion of the contents of the bottle hy heat. Another objec them sustained by the certificates of eminent physicians, the tion that has been raised to pasteurization is that it cause report of Dr. Cutter is one of the dreariest comments upon the beer so heated to become cloudy, but this is the case only human nature that has recently fallen under the notice of to a very slight degree when the beer is raised very graduthe journalist. But if the revelations he has made of fraud ally to the requisite temperature; sudden heating, will render
he beer turbid and also endanger the bottles, but by gradu ally raising the temperature these two drawbacks are greatly obviated. It has also been urged in opposition to pasteur ization that the process develops a peculiar and unpleasant flavor in beer, but this objection is not supported by any well-established facts, and we think if the process be conducted gradually no objectionable tlavor will be developed. The Brewers' Guardian says that this systełn of preserving beer appears to offer many advantages, and no difficul ties but such as enterprise ought easily to surmount, and we are therefore surprised that English brewers have made no real attempt to practically apply it.

Alloys.

From a recent work on "Metal Alloys," published in Ger many, the author, Mr. Guetlier, gives a few suggesti. ns on the subject of fusing the metals, with which the Jevoelers Journal prefaces the recipes selected.

1. The melting pot should be redhot (a white heat is better), and those metals first placed in it which require the most heat to fuse them.
2. Put the metals in the meltivg pot in strict order, fol lowing exactly the different fusing points from the highes degree of temperature required down to the lowest, in regu lar sequence, and being especially careful to refrain from adding the next metal until those already in the pot arecom pletely melted.
3. When the metals fused together in the crucible require very different temperatures to melt them a layer of charcoal should be placed upon them, or if there is much tin in th alloy a layer of sand should be used.
4. The molten mass should be vigorously stirred with a stick, and even while pouring it into another vessel the stir ring should not be relaxed.
5. Another lint is to use a little old alloy in making new, if there is any on hand, and the concluding word of caution is to make sure that the melting pots are absolutely clean and free from any traces of former operations.
Sofi Alloy.-This alloy will adhere so firmly to metallic, glass, and porcelain surfaces that it can be used as a solder, and is invaluable when the articles to be soldered are of such a nature that they cannot bear a high degree of temperature. a nature that they cannot bear a high degree of temperature.
It consists of finely pulverized copper or copper dust, and is obtained by resolving copper sulphate, or vitriol of copper, into its original elements, by means of metallic zinc. Twenty, 30 , or 36 parts of this copper dust, according to the hardness desired, are placed in a cast iron or porcelain-lined mortar, and well mixed with some sulphuric acid having a specific gravity of 188 . Add to the paste thus formed 70 parts (by weight) of mercury, constantly stirring. When thoroughly mixed the amalgam must be carefully rinsed in warm water twelve hours it will be hard enough to scratch tin. When it is to be used it should be heated to a temperature of 375° C., when it becomos as soft as wax by kneading it in an iron mortar. In this ductile state it can be spread upon any sur face, to which, as it cools and hardeus, it adheres very tenaciously.
Alloy for Small Articles.-This alloy melts at a lower degree of temperature than the one just described, and is very hard without being brittle. Bismuth 6 parts, zinc 3 parts, and lead
13 parts. The three metals, after having been well melted and stirred together, should be poured into another melting pot and melted again. This alloy cools with remarkably clear-cut edges, and if the articles made of it are dipped in diluted nitric acid, then rinsed in clear water, and polished with a woolen rag, the raised parts of the surface will have a fine polish, while the sunken parts will have a dark-gray, antique appearance, which forms a pretty contrast. Th proportions of the different metals, dividing the alloy into 100 parts, are: bismuth 27.27 , lead 59.09 , zinc $13 \cdot 64$.
Alloy for Small Castings.-Bismuth 6 parts, tin 3 parts, lead 13 parts. This alloy should be melted, run into bars, and laid aside till wanted, when it should be remelted.

Bismuth 3 parts, tin 1 part, lead 1 part. This second alloy for small castings is harder, and yet it is not brittle. It can be finished with a contrasting surface of bright polish and dark-gray, if it is washed in nitric acid, well diluted, rinsed, and polished with a woolen rag, as described in the alloy for small articles, given above.
Hard Solder for Gold.-Gold 18 c. (0.750 fine), silver 10, pure copper 10.

Hard Solder for Silver. -Silver 66 parts, copper 23 parts, zinc 16.

Solder for Platina.-Pure gold, with one-half per cent of platinum and iridium added.
Hard Solder for Aluminum Bronze.-Gold 88.88, silve 4.68, copper 6.44 .

Another Hard Solder for Aluminum Bronze.-Gold 54:4, silver 27, copper 18.6 .

Whete Alloy.-This amalgam can be turned, filed, and bored; does notadhereto the mould, and will retain its polish a long time after exposure to the air. Cast iron 10, copper 10, zinc 80 .

Solder for Iron and Brass, which Contracts and Expands at the Same Degree of Temperature as the Latter Metal.-Tin 3 parts, copper $391 / 2$, zinc $7 \frac{1}{2}$.
Solder for German Silver.-German silver 5 parts, tin 4 parts.

Alloys for Medals, Coins, etc.-Kraft's alloy, melting point 104° C. Bismuth 5, lead 2 , tin 1.

Homberg's alloy, melting point 122° C. Bismuth 3 , lead 3 ,

Rose's alloy, melting point $93^{\circ} \mathrm{C}$. Bismuth 2, lead 2, in 2.
Amalgam for Coating Plastic Castings. - Tin 1 part, quickilver 1 part, bismuth 1 part. Thequicksilver is to be mixed with the white of an egg, and added to the tin and bismuth when they are thoroughly melted and blended. The alloy while still hot forms a pasty liquid, which should beapplied with a brush.

Safoty Car.

The many lamentable accidents which have occurred by eason of the inability of passengers and others in railroad cars to extricate themselves, or to be rescued, in cases of colisions, derailing, or other accidents, make it highly desirable that better means than are at present afforded should be furnished to meet this difficulty. The ordinary doors and windows of a car are generally blocked, or are otherwise in accessible. And the object of the invention that is shown in the annexed cut, and is patented by Mr. Alfred A. Starr, of Westfield, Union county, N. J., is to provide an improved means of escape in case of accidents. Theinvention consist in constructing railroad assenger coaches with trap-doors in their floors
within the aisles of the within the aisles of the
car, and so arranged that they open inward and oward opposite sides. Each of these doors may be nearly the whole width of the aisle, and of any desired length, and when closed are preferably flush
 n their upper surfaces with the floor of the car, su as to offer no obstruction to walking in the aisle. It is also desirable to hinge them in close proximity to the seats, so that the hinges shall offer no obstruction.
It is proposed to hinge the doors alternately on the opposite ides of the aisle, and it is preferred not to secure them by bolts or fastenings, so that they will be free to open of their wn weight, not only when the car is inverted, but als when it falls upon its side. To facilitate the opening of the doors, they are made beveling downward on their opposit ides, and their corresponding seats are made beveling in a eversed direction, so that if violent end pressure is brought to bear upon the car the seats will act as wedges on theside of the trap-dnors to ease and open them. A car thus con tructed with trap-doors that are self-opening, or may be con eniently opened either by the passengers in the car or by others from the outside in case of an accident, combines in Sheminent degree the elements of safety and simplicity would be saved thentroads many

New Millstone Driver

The engraving shows an improved millstone driver for which a patent was recently issued to Messrs. Callahan and Davis, of 51 Market street, New York city. This is a sec ional driver made in two separate arms, having semicircular inner ends. These arms are separated by an intervening cushion of rubber, and are connected together by circular plates provided with lugs which fit into corresponding re esses in the arms.

By this construction a self-adjusting and elastic bearing is provided for both arms of the sectional driver, and all ja and back-lash common to the rigid bearings are avoided. This driver adjusts the stones perfectly and insures uniform rinding, either ligh or low, and removes a number of diff culties that are met with in the use of the ordinary driver.

Pompeian Surgery.

An interesting sketch of the surgical instruments collected at Pompeii, aud preserved in the museum at Naples, has been given in a recent number of the Revue Médicale by M. Jouin. At the museum they are arbitrarily divided into surgical and obstetrical instruments, but there is little in the latter to suggest that they were intended for obstetrical purposes. A pair of forceps, for instance, classed among the obstetrical instruments, does not appear to have been ever intended for such use. The blades are twenty-one centipivot; the handles are curved; they are apparently similar to the instruments now used to remove sequestra, etc. There is, however, a tube clearly intended for injections into the vagina. It is twelve centimeters long; one extremity is mani festly designed to receive the nozzle of a syringe, while the other is perforated with holes, one terminal and the others
arranged in two circles, so that the jet may be broken and arranged in two circles, so that the jet may be broken and There is also a very ingenious trivalve speculum, evidently intended for the vagina, so made that the three blades can be opened or closed simultaneously. There is a rectal speculum, ffteen centimeters long, composed of t wo blades which
can be closed or opened by mieans of a pivot placed in the
center of the instrument, and presenting the type according center of the instrument, and presenting the type accordin
to which all similar specula are made at the present day There are catheters for women, straight, made of silver. A curious instrument, which consists of an iron rod, at the extremity of which is a small rectangular plate of iron, two centimeters long and three wide, fixed to the rod at an angle of 135 degrees, is exhibited as a cautery for wounds, the Italian surgeons believing that it is intended to cauterize deep structures, such as the uterus or pharynx. The perfect resemblance in form to the laryngeal mirrors now in use suggested to M. Jouin that it may really have been intended for a similar use, to examine deep structures, if nct the larynx. Catheters for men have also been found; they are twenty-seven centimeters long, and have a very peculiar double curve like a very long S. M. Jouin thinks that this form shows a very imperfect knowledge of the real curves of the urethra; but under ordinary circumstances this is nearly the form of the urethral canal, and although the introduction of such an instrument may have been a matter of some difficulty, its shape would facilitate the emptying of the bladder.
Among the other instruments are a metallic trocar in two pieces, similar to those in use at the present day, bistouries, very large lancets, various forms of stylets, curved and straight, some probably intended for the exarnination of carious teeth, curette spatulas, small forceps, and various needles and hooks. There are also some surgical cases with instruments, and cases for pills, ointments, etc. All these instruments were found in one house, and in number they will certainly bear comparison with those possessed by an average practitioner in a provincial town at the present day. -Lancet.

Electric Photo Shuttor.

At a recent meeting of the South London Photographic Society, Mr. G. F. Williams exhibited an instantaneous shutter with an electrical liberating attachment, being an efficient trigger, which can be applied to almost any known kind of shutter or exposing valve. It can be converted into either a horizontal or rising shutter by the mere addition of an elastic spring, with a suitable catch or clutch to retain the movingpart of the shutter at the end of its travel.
Mr. Williams has improved upon the clever arrangement f Gaiffe, of Paris-who patented the chloride of silver bat-tery-by cramming two elements into one cell. As is known among electricians, this battery depends for its energy upon the reduction to the metallic state of chloride of silver by the passage of the electric current. A small plate of zinc, no larger than the little finger, has a piece of millboard nlaced upon it; then chloride of silver is melted in a porcelain crucible, and poured into a mould, which may be made of wood-thus casting a plate of similar size to the zinc. This plate of fused silver chloride is wrapped up in muslin and placed so that the millboard separates it from the zinc. A silver wire or thin plate of silver, laid on the plate of fused chloride, completes the "element;" but, as before stated, Mr. Williams has placed two such elements within an ebonite cell. of about two ounces capacity. When so arranged the composite battery is dipped into a saturated solution of sal ammoniac and the excess allowed to drain off. No fluid is used in this battery-the elements are merely kept moist. A suitable touch-button and conducting cord completes the arrangement. The shutter being set "full cock," a touch on the button sets the electric current free; this circulates the wire of the electro-magnet, the keeper is attracted, the detent removed, the shutter moves, and the exposure is made.

Fast Railload Lines.

The innovation of the Pennsylvania Railway in its fast trains between New York and Chicagosuggests comparisons with lines abroad. The famous Flying Dutchman on the Great Western Railroad, England, makes the run from London to Exeter, 194 miles, in four hours and fourteen ininutes. With four stops it attains a speed of almost 46 miles an hour. A train on the Great Northern Road makes the distance from London to Leeds, 187 miles, in four hoursalmost 47 miles an hour, with four stops. The train carrying the Irish mail to Holyhead, over the London and Northwestern line, and dubbed "The Wild Irishman," has now sunk into comparative obscurity with its rate of a little less than 40 miles an hour. The morning express on the Great Northern Road makes only four stops along the line from London to Edinburgh, 395 miles, and flies over the whole distance in nine hours, with an average rate of 44 miles an hour; and on the Midland line the night Scotch express runs the 425 miles to Glasgow with a speed of $471 / 2$ miles an hour. These are the four swiftest trains in England, and, as will be seen, the Leeds express, with its rate of 47 miles an hour, is the fleetest of them all. Three out of the four trains probably beat the running time for the same distance on any other roads in the world. They are all, however, far outstripped for a shorter distance by the train on the Pennsylvania Railroad, which leaves Jersey City at 4:10 P.M, and makes the run of about 89 miles to Philadelphia in 100 minutes, with one stop, at Trenton. The 52.8 miles an hour made by this American train is probably without parallel in the schedule time of any railroad company on the globe. On both the American and English railroads it must also be iemembered that for short stretches of straiglit rack, with good road bed and favoring grades, a speed of 60 miles an hour is not very uncommon.-Nat. Oar Builder.

The Acorn-Storing Woodpecker.

 by robert e. c. stearns.The acorn-storing labit of the Californian woodpecker (Melanerpes formicivorus) has long been known to the "country folk" and others who frequent the country and take notes by the way. Before the American occupation, the Spanish Californians had observed this curious habit and gave the bird the appropriate and musical name, " $e l$ carpintero." No doubt, still further back the aborigines had their name for the carpintero, and regarded the bird as in vested with superior power, or possessed by some unseen or hidden influence, which placed it above its feathered congeners and proved it to be in some mysterious way a little closer to the heart of nature
It is highly probable that if we knew the traditions of the former red men of California, we should find some quain story or curious legend connected with this ingenious and interesting bird. I find no mention of this woodpecker in either Bancroft's * or Powers' \dagger ethnological volumes, relat ing to the California tribes.
During a recent visit to Napa county, I noticed near the house where I stayed, on Howell Mountain, a fallen pine of the species known to botanists as Pinus ponderose, the yellow pine of the woodsmen, the bark of which was full of acorn holes.

The tree was a noble specimen, and its prostrate position gave me a chance to learn not only its dimensions, but also to ascertain very nearly the number of holes which the woodpeckers had made in its bark.
In falling, the tip of the tree had broken off, and was so hidden in the general debris of fragments of branches, cones, and underbrush, as to escape detection. The length was not less than 175 feet, the diameter of the butt just above the ground, five feet ten inches. At ninety feet the diameter was three feet eight inches. A bove the ninety foot line the holes continued, but were so scattering that they are not included in the reckoning. Neither are those in the first ten feet of the trunk, as between the ten foot line and the ground they were comparatively few.
Between the ten foot line and the ninety. foot line the number of holes to the square foot, with a fair allowance for verification, was from sixty to twelve. A piece of the bark, sawed from the tree by my own hands, which
measures exactly twelve inches by twelve inches, contains measures exactly twelve inches by twelve inches, contains
sixty holes; this is a much smaller number than could be counted in the same sized piece in a great part of the section of eighty feet, whiletwelve is a very low minimum.

The two diameters as above given when added make eight feet and eighteen inches, the average diameter being one-half of this, or about four feet nine inches; this multiplied by three, to get the circumference, gives fourteen feet and three inches; and this again multiplied by the length of the section, eighty feet, produces 1,140 square feet.
Now, if we add the maximum and minimum of acorn holes to the square foot (sixty and twelve), we have seventy-two, which divided by two, gives an average of thirty-six to the square foot, and thirty-six times 1,140 gives a product of fo:ty-one thousand and forty (41,040) acorn holes.
The holes are of different sizes, varying with the size of the acorn which each hole is made to receive, for these birds are good workmen, and each acorn is nicely fitted into its special cavity. Making a fair selection of acorns as to size, I find that it takes on an average seven to wake an ounce (that is, picked when green); and taking that number for a divisor, it shows the total weight of acorns required to fill the holes in the tree is three hundred and sixtysix pounds seven ounces, avoirdupois. Whether any particular species of acorn is preferred, I am unable to say. The acorns in the tree above described, so far as it was possible to determine them without the cups, which the woodpeckers reject, appeared to belong to the nearest adjacent oaks, Quercus chrysolepis. This oak is very abundant all around the mountain, and is itself peculiar in having two
forms of leaf on the same twig. forms of leaf on the same twig.
At the upper end of Pope Valley, not far beyond . Ctna Springs, I noticed a standing pine of the same species as that described and of about the same dimensions as the foregoing. which was full of holes. In Knight's Valley, in Angust, 1879, I observed woodpecker holes closely set in the bark of a large Douglass spruce (Tsuga douglassii); and I have been informed by various parties that these woodpeckers also bore and deposit acorns in the bark of various species of oaks.
Sometimes the acorn holes are made in the wood, as I have been informed by a friend, Mr. C H. Dwinelle, of the University of California, who has seen such holes in a species of white oak in Alexander Valley. He also related an instance of the "carpintero" sticking acorns in a crack between the boards in the porch of a house in Redwood City, San Mateo county.
Mr. J. W. Bice, of the University, has also observed acorns stored in the white oaks near Healdsburg, in Sonoma county, as well as in the cracks between the boards in and round the projecting eavesof barns and houses. Where the projecting rafters are boxed in, sometimes they will find a hole, and at other times make one, and store acorns in large quantities in such places.
In clearing land the trees are girdled, and in about two years the bark drops off, leaving the exposed wood of the * "Native Races of the Pacific states." + "Con tributions to Ethnology," U. S. Geog. and Geol. Survey, Powell,
ol. iii., 4to.
usually in the shade, and this side is especially selected by
the woodpeckers for their purposes. They not infrequently the woodpeckers for their purposes. They not infrequently
drop acorns down chimneys, where of course the result of drop acorns down chimneys, where of
their labor is without any advantage.
Upon turning to the volume on Ornithology in the Geological Survey of (California) publications, in reference to this species of woodpecker, it says: " They are fond of playing together around the branches, uttering their rattling calls, and often darting off to take a short sail in the air, returning to the same spot. They have a habit, peculiar to them, of drilling small holes in the bark of trees, and fitting acornstightly into them, each one being carefully adapted and driven tight. The bark is often so full of these as to scarcely leave room to crowd in another without destroying the bark entirely. These are generally considered as laid up for a winter supply of food; but while in this climate no such provision is necessary, it is also very improbable that birds of this family would feed on hard nuts or seeds of any kind. The more probable explanation is that they are pre served for the sake of the grubs they contain so frequently, which, being very small when the acorn falls, grow unti they eat the whole interior, when they are a welcome deli cacy for the bird. Whether they select only those contain ing grubs, or put away all they meet with, is uncertain; bu as they leave great numbers in the tree untouched, it is pro supply to the squirrels and the jays."
Without questioning the foregoing as to the preference of the woodpecker for animal food, and especially for the larvæ often contained in the acorns, it is undeniable that in common with the jays, they are exceedingly fond of fruit, as many an orchardist can testify; and their predilection for almonds before these nuts are quite ripe, is well known to the cost of many almond growers; that they eat other nuts and also acorns to some extent, I have no doubt. The jays and squirrels are quite likely benefited by the acorn-storing babit of this species of woodpecker; and I have been told that the jay sometimes assists the woodpecker by bringing acorns for the carpintero to deposit in the bark; and further that sometimes the jays put pebbles in the acorn holes " to fool the woodpeckers;" but these latter statements, though perhaps true, need confirmation
As several woodpeckers are engaged in the work at the same time on the same tree, their operations, as may be imagined, are carried on with a good deal of vivacity and noise, in which the jays become interested, and dart about, adding to the tumult in their own peculiar chattering way.
The latter haverelated singularities in the matter of frood storing, as will be seen below. The friend, Mr. Dwinelle, whom I have already quoted, states that the large thistle, which is abundant in certain places in Alameda county, owes its distribution in part to the jays, who take the seeds, which are of good size, and plant them in the ground. He further states that a friend of his, who fed Indian corn to his chickens, had observed the jays fly down and pick up a kernel and then go off a short distance and plant it; in this
way he discovered how it was that stalks of maize came up way he discovered how it was that stalks of ma
and were growing where he had never planted.
Mr. Dwinelle has himself seen a jay plant an acorn in the ground of his (Mr. D.'s) house-yard or garden in Oakland. The bird deliberately made a hole, thrust in the acorn covered it, and hen put a chip on the spot, perhaps the latter as a mulch; then flew away, found another acorn, which it accidentally dropped in a growth of periwinkle (myrtle), and after searching for it without finding it, gave up and flew away.
As it is hardly presumable that the jays plant either the corn or the thistle for the purpose of perpetuating those species of plants with the object of obtaining food from future crops, it is likely that being full fed at the time, with appetites satisfied, they simply buried the seed for future need, as a dog buries a bone, and forgot all about it, or not needing the same, the seeds remained where the blrds plant ed them, until they germinated and grew into plants.
The holes made by the woodpeckers in the bark of trees also serve as a lurking place for beetles, ants, and other insects, so that both vesetable and animal food are brought together side by side to furnish a meal in time of need, in which perhaps the jays sometimes participate. Judging•by the tree herein described, it would seem as if there were enough for all.
Mr. Bice is of the opinion that the acorns are stored simply for the larvæ, which the carpintero eats after the maggot has attained a good size. He also relates the following, which is worthy of note: "On cutting down a hollow oak on his father's place, a woodpecker's nest was discovered after the tree had fallen, and a young bird of the carpintero species was found and caught, being unable to fly. It was carefully reared, and became a great pet with the family. After it had reached maturity and was perfectly able to fly, though no restraint was placed upon it, it would come at once in answer to call, leaving its fellows in the trees. Upon oneoccasion, when the family went several miles from home to visit a friend, the bird followed them, though at the time they were not aware of it, and only learned the fact from he friend whom they had visited, and who caught and kept the bird until an opportunity offered for returning it. Probably if it had not been caught it would have followed the family back."
There is a larger species of woodpecker, with plumage much resembling that of M. formicivorus, which sometimes stores laid up by el carpinterio, who or tries to do so, to the

rauder. I have been unable to learn to w depredators belong. - American Naturatist.

Dubrunfaut on the Manufacture of Starch-Sugar.
In 1823 Dubrunfaut, whose death occurred last year, laid efore the Society of Agriculture in Paris a memorial on the "Saccharification of Starch." In 1825 his celebrated work entitled "Art de fabriquer le sucre de betteraves," appeared. Afterward he discovered osmose, and also an "elegant" method of separating the two constituents of inverted sugar iz., glucose (maltose, grape, and starch sugar), from lævulos fruit sugar). A few days before his death, which was aused by the inhalation of illuminating gas, he published he following article.
The success that has attended the technical preparation of rystallized or "block" maltose, as well as the crystal sirup that can be made from it, leaves no doubt of the existence of very decisive results of the laboratory experiments, as well as improvements to be effected on a larger scale for brewers and distillers. It must be confessed that, for very important reasons, we have not been able to carry out these improve ments smoothly in practice
The question is of great interest to our own (the European) sugar makers, because the manufacture of maltose is called to be at once the helpful sister, and perhaps the rival of this industry.
Maltose correctly prepared by our method is perfectly free from the impurities which are found in commercial glucose, and the crystal sirups made from it have the properties of refined sugar and its derivatives as a pure substance fo sweetening or fermentation. In this respect there can be no doubt that this new sugar, which like starch sugar, for in tance, is less severely taxed by the government, can advan tageously replace the crystallizable sugar for many industria purposes, especially for sweetening wine.
These uses unavoidably infringe upon the domain of the wonderful products of the sugar beet (that don't apply in this country-Ed.), but it must be remembered that the manufacture of glucose is destined to invade the sugar-boiling establishments themselves, because it makes it possible to keep the whole of the auxiliary apparatus going during the entire year. Then, too, if we recollect that the foundation of this sugar, its raw materials, are agricultural products, which, when used in this ray, leave nutritious residues, it will be easy to see that the new maltose industry is really an element of progress for the interests engaged in the manufacture of sugar comparable with those which would arise from a new use of crystallizable sugar.
Although in our domestic factories the maltose industry would naturally take its place at the close of the sugar campaign, we do not need to postpone our project of introduc ing this industry until the end of the season, and if, as we do not doubt, our other new process of " making sugar without molasses" ends with the year, the campaign will end in January. Then those factories that use our "no molasses process" will be able to introduce the new maltose manu facture as early as January too.

The editor of the Chemiker Zeitung, from which we take the above, expresses the opinion that the distillers who are already converting sugar into starch by rational methods, would be better able to undertake the manufacture of maltose than the beet sugar factories referred to by Dubrunfaut.

Effects of Heat on Electrical Conduction.
Prof. F. Guthrie, F.R.S., recently read a paper on the discharge of electricity by heat. He showed by means of a gold leaf electroscope that a red hot iron ball, when highly heated, would neither discharge the positive prime conductor of a glass electrical machine nor the negative one, but on cooling the ball a temperature was found at which the ball discharged the negative conductor, but not the positive one. Lastly, on cooling the ball still further-but not below a glowing temperature-it was found to discharge both positive and negative electricity. A platinum wire rendered red hot by the current also discharged a negatively-charged electroscope more readily than a positively-charged one. When placed between two electroscopes, one having a + and the other a - charge, it discharges neither. When the + one was withdrawn the - was discharged; but when the - was withdrawn the + was not discharged. There therefore seemed a tendency in a hot body to throw out + rather than - electricity. These are interesting experiments, and open a little room for discussion versus positive and negative electricity.

Magnetic Properties of Stecl and Iron.
Many investigations upon the relation between the molecular conditions of iron and steel produced by heat, by torsion, and by annealing processes, and the resulting changes in magnetic conditions, have been made. It appears from the paper of Louis M. Cheesman that the effect of mechanical hardening has not been properly investigated, and this paper contains the results of his investigation upon this point. The method of research consisted simply in determining the magnetic moment of the magnetic bar after it had been subjected to well devised mechanical pressures. The result of his investigations is summed up as follows: Iron in a mechavically hard condition can receive more permanent magnetism than in a soft condition. The magnetic moment of a steel magnet in a mechanicaliy hard condition greater or smaller than in a soft condition, according as the ratio of its diameter to its length is less or greater than a certain limit.-Ann. der Physik und Chemie.

