the outer port being at the time shut off by the main valve. Valves are provided to put the two cylinder ports at each end in communication to regulate the extent of cushioning. The pump valves consist of rubber disks arranged in chambers above and below the plungers. Each plunger runs without packing ia a long grooved ring in a central diaphragm. In operation, one engine, while in full action, moves the valves of the otler, when the pistons of the latter gradually begin to move and tinally attain full velocity, as those of the first are checked by the steam cushions, and gradually come to rest, the pump valves meantime seating quietly.

The first engine pauses a moment till the second engine adinits steam, when it commences a return stroke, and the second comes to rest-the action of one blending into that of the other as each alternately takes up the load-the result being that the discharge is uniform, a uniform pressure is maintained in the main, and the pumps under heavy or light pressure operate without jar or noise.
In the Ninety-eighth Street works there are two compound condensing Worthington pumping engines, each capable of raising 7,500,000 gallons 100 feet high in 24 hours. This is equivalent to 132 horse power each. The high pressure cylinders are 21 inches diameter; the low pressure, $363 / 8$ inches; water plunger, 26 inches diameter; all 48 inches stroke. The high pressure cylinders have cut-off valves in the steam ports, so that part of the expansion takes place in the small cylinder. This is a new feature introduced for the first time on this engine.
According to the department report, these engines are showing a duty of $70,000,000$ foot pounds with 100 pounds of coal. They are pumping over $8,000,000$ gallons per 24 hours, or about one-eighth more than contract capacity. There are 4 return flue tubular boilers, each 6 feet diameter by 16 feet long, with 754 -inch tubes. Thėy are set in pairs in brickwork. The stand pipe on delivery main is 6 feet diameter and 150 feet high. It is made of boiler iron, one-balf inch thick at the base, and thinner toward the top. The tank on the suction pipe is 8 feet diameter and 44 feet high. Suction and delivery pipes are each 36 inches in diameter.
The engine and boiler house extends from Ninety-seventh to Ninety-eighth streets, and is 50 feet by 200 feet, and has room for a third engine and more boilers. In connection with the main engines there is a Worthington pump of 16 inch steam cylinders, $10 / 4$ inch water cylinders, and 10 inches stroke, which returns the water of condensation of the large engines back into the mains. This small pump exhausts into the condensers of the large engines.

The water is supplied to these works through a 36 -inch main from the Central Park reservoir.

Taken all in all, this system of pumping is as fine an example of the direct and economical application of the power of steam as could be desired. The pumping proceeds with perfect regularity, without noise or jar, and is accomplisbed without rotating shafts, wheels, or gearing of any kind.

The Fastest Steamer.

A recent trial of the new Clyde built steamer Stirling Castle gave results upon which her owners claim her to be the fastest ocean going steamer in the world. Six consecutive runs at the measured mile gave a mean speed, on the Admiralty method, of 18.418 knots, or $21 \frac{3}{10}$ miles per hour. The actual time taken in running each mile respectively was 3 minutes 13 seconds; 3 minutes 23 seconds; 3 minutes 12 seconds; 3 minutes 18 seconds; 3 minutes 13 seconds; and 3 minutes 18 seconds.
On the trial there was a cargo of 3,000 tons dead weight on boari. Her length is 430 feet, breadth 50 feet, and depth 33 feet, and she registers 4,300 tons. Her engines are of the three cylinder type, and bave developed 8,237 horse power. The diameter of the high pressure cylinder is horse power. The diameter of the high pressure cylinder is
62 inches, and the two low p ressure 90 inches, with a 5 foot 6 inch stroke. Surface condensers are used with Gwynne's "Invincible" circulating pumps. The boilers are of steel, and present a total heating surface of 21,161 feet; the grate surface is 787 square feet; and the working pressure 100 pounds to the square inch. The propeller is made of manganese bronze, is 22 feet 4 inches in diameter, with a pitch of 31 feet. The maximum number of revolutions at the trial was $661 / 2$ per minute, accompanied, the Engineer says, by was $661 / 2$ per minute, accompanied, the Engineer says, by
absolutely no vibration, except in the immediate vicinity of the screw shaft. The hull is built of steel, on plans approved by the Admiralty, with a view to national requirements, and is capable of carrying coal for a twenty dass' cruise.
The Stirling Castle is intended for the tea trade. In view of her performance the recommendation of our board of naval advisers to build "fast" cruisers having a maximum speed of 15 knots would seem to be a trifle out of season. Twenty-five knots should be the figure aimed at.

A Foolhardy Project.

Captain Fred. Norman, who crossed and recrossed the Atlantic with George Thomas in the Little Western ($161 / 2$ feet long hy $61 / 2$ feet wide), now proposes to row across the Atlantic alone. He says he will use a boat built under his own supervision, about 12 feet long by 4 feet wide, and from 2 to $21 / 2$ feet deep, partly covered fore and aft. He will take a floating sea anchor to keep the boat's head to the wind while he sleeps. He will have no fire but a lamp, and will use prepared food, condensed coffee, and carry about fifty gallons of water. He thinks he could make the voyage in 100 days.

Srientifir Amontan.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. published weekly at
No. 261 BROADWAY, NEW YORK.
o. D. MUNN.
A. E. BEACH

TERMS FOR THE SCIENTIFIC AMERICAN.
One copy. one year postage included....
ne copy, six months postage included
8320
160
 ame proportionate rate. Postage prepaid.
Remit by postal order. Address
un

NEW YORK, SATURDAY, APRIL 22, 1882.

TABLE OF CONTENTS OF
THE SCIENTIFIC AMERICAN SUPPLEMENT No. 329,
For the Woek ending April 22, 1882.
For the Weets endino April 22, 188
Price 10 cents. For sale by all newsdealers.

UNIFORMITY IN CHEMICAL NOMENCLATURE.

We possess authority for the statement that a rose would smell as sweet by any other name, and we have had olfactory demonstration that hydro-sulphuric acid, hydric sulphide or sulphureted hydrogen retains its characteristic repuliveness under all its numerous aliases. Notwithstanding that the premises are granted, it must be confessed that too many names for one substance are objectionable. Chemists have long recognized the fact, and while they have no desire (or power) to change the old familiar terms used in trade and in the arts, such as bluestone, aquafortis, and vitriol, they are making a vigorous effort to establish uniformity in scien tific womenclature. A convenient basis for such a change is offered in the circular recently issued by the editor of the Journal of the London Chemical Society, containing "Instruc tions to Abstractors." The nomenclature here advocated is employed in the new supplement to "Watts' Dictionary of Chemistry." As both of these works are widely read and acknowledged as authority on scientific matters, whatever nomenclature is adopted therein must soon become familiar to most English-speaking chemists, and ought to come into use sooner or later in their writings.
Some of the rules laid down in the circular seem rather arbitrary, and many familiar names give place to those that are new or unfamiliar. Without, however, stopping to criticise, we will proceed to describe some of the most important points.
In naming salts, use the name of the metal followed by an adjective representing the acid or negative radical: sodium chloride, potassium sulphate, ferrous sulphate, mercuric chloride. The terminals ous and $i c$ are used only when there are two salts of the same metal, differing only in degree.
W hen a metal or alcoholic radical unites with hydroxyl (OH) the compound is called a hydroxide instead of a hydrate thus, potassium hydroxide for caustic potash, or potassa, KOH ; and phenyl hydroxide for carbolic acid, $\mathrm{C}_{6} \mathrm{H}_{5}(\mathrm{OH})$. The name hydrate is reserved for compounds supposed to The name hydrate is reserved for compounds
contain waterof combination or crystailization.
The term acid is applied only to compounds of hydrogen with negative radicals, such as $\mathrm{HNO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{3} \mathrm{PO}_{4}$. Oxides which replace acids are called anhydrides as before.
Salts in which all the hydrogen of the acid is displaced by the metal are called normal instead of neutral salts. The old bisulphate or acid sulphate of soda becomes hydrogen sodium sulphate.
The principle of naming hydrocarbons is best shown by a few examples; thus, CH_{4} is methane; $\mathrm{C}_{2} \mathrm{H}_{6}$, ethane, etc. $\mathrm{C}_{2} \mathrm{H}_{4}$ is, as before, ethylene; $\mathrm{C}_{2} \mathrm{H}_{2}$, acetylene; $\mathrm{C}_{3} \mathrm{H}_{4}$. allene.
All alcolols have names ending in ol; thus, quinol for hydroquinone, resorcinol for resorcin, glycerol for g tycerin, mannitol for mannite. Words like indol that now end in ol have an e added, thus, indole. Furfurol becomes, however, furfuraldehyde. Ethers derived from phenols have name ending in ö̈l.
A lcohols are to be spoken of as mono-, di-, or tri-hydric, instead of monobasic, etc.
Bodies such as acids of the lactic series containing the group OH should be termed hydroxy- and not oxy-derivatives.
Th
The term ether is applied only to the oxides of hydrocarbon radicals, and the word esther is not used.

Compounds of the radical $\mathrm{SO}_{3} \mathrm{H}$ are called sulphonic acid or sulpho-compounds.
Basic substancer have names ending in ine, as aniline, instead of anilin, the termination in being retained for certain neutral compounds like palmitin, albumin, etc. The compounds of basic substances with hydrogen chloride, bromide, or iodide receive names ending in ide and not ate, as mor phine hydrochloride and not hydrochlorate.
For formulæ dots are employed instead of dashes; Me is used for CH_{3}, Et for $\mathrm{C}_{2} \mathrm{H}_{5}, \mathrm{~Pb}$ for $\mathrm{C}_{6} \mathrm{H}_{5}$, etc. ; and the for mulæ is written in one line if possible. This latter point wil mulæ is written in one line if possible. This latter point will
make a large saving in the cost of composition, and be a make a large saving in the cost of com
welcome change to editors and printers.

CARELESSNESS AS A CAUSE of FIRE

The records of the city. Fire Department for 1881 show that the commonest cause of fire was sheer carelessness. There wete 1,785 fires in all, in 70 per cent of which the damage was less than $\$ 100$. Eleven fires were proved to be of incendiary origin, and the causes of 168 were not discovered.
The largest item in the classification of causes was careless ness with respect to matches, smoking, lights, and hot ashes. There were 413 such fires, and nearly as many more were attributed to accidents, not necessarily through carelessness, with stoves, fires, furnaces, and grates.
Sixteen fires were traced to boys' bonfires, 81 to children playing with fire and matches, and 13 to malicious mischicf on the part of children. Sixty-three fires originated in kitchens, many of them by the falling of fat meats and the like into the fire. Ten cases are attributed to contact of clothing with stoves. Defective flues, fireplaces, chimneys, stove pipes, and grates caused 62 fires; beams built in flues, $14 ;$ overheated stoves and pipes, 41 ; foul chimneys, 186 ; falling soot, 41 ; coals from stoves and grates, 18. Six ñres were soot, 41 ; coals from stoves and grates, 18 . Six inres were
caused by overturned or leaky kerosene stoves, and 127 by caused by overturned or leaky kerosene stoves, and 127 by
accidents to kerosene lamps. Fires from gas werefewer: 28 from escaping gas; 3 from explosion of gas; one gas meter exploded, and one gas stove was upset, causing fire Still fewer were the fires charged to electricity, only 4 being attributed to this agent. One of these fires, which occurred in the Germania Theater building, was in its origin decidedly
peculiar. According to the Fire Marshal's explanation the insulation of a wire that ran over the tinned arch over the Thirteenth street door was defective, and water that fell around the wire during a rain led the electric current from it to the tin. It melted the solder, burned the tin, and ignited the woodwork under the tin.
There were 24 fires caused by fireworks, the number from this cause diminishing year by year. Window curtains, goods in shop windows, Christmas trees, clothing, drapery, goods in shop windows, Christmas trees, clothing, drapery,
and woodwork were ignited by gas jets, lamps, and candles in 99 instances. In the opinion of the Fire Marshal the placing of gas jets near window frames should be prohibited.
The total estimated fire loss for 1881 on buildings and vessels was $\$ 726,291$, and on stock, $\$ 5,093,968$. The estimated insurance loss on buildings and vessels was $\$ 54,893$; on stock, $\$ 1,062,514$. Total, $\$ 1,117,401$. There were two fires with a loss each of from $\$ 50,000$ to $\$ 60,000$; one of from $\$ 60,000$ to $\$ 70,000$; one of from $\$ 70,000$ to $\$ 80,000$; two of from $\$ 150,000$ to $\$ 200,000$; one of from $\$ 262,000$ to $\$ 350,000$; one of $\$ 1,025,800$; and one of $\$ 2,302,691$.
Of the 1,785 fires 1,552 were confined to pointsof starting; 109 to the building itself; 33 extended to other buildings; 17 were on vessels; and 74 were in woods and such places.

testing chocolate.

In a lecture delivered before the chocolate manufacturers of Cassel, E. Herbst said that, although the adulteration of food is nearly as old as its preparation, yet it had made greater progress in recent times owing to the progress attained in the development of chemical methods. Fortunately the progress of chemistry aids those engaged in detecting and exposing these adulterations equally with those engaged in the opposite pursuit. The more deceptive the methods employed in adulterating the more complete and certain are the methods employed in detecting and exposing them.

It is easy to see that the necessary certainty and clearness has not yet been at tained in all cases, since the art of testing food by scientific methods is scarcely more than fifty years old, and because we rarely have to do with simple chemical substances, but mostly with mixtures very difficult to separate. Certainly chemistry should not be blamed for such flaws in its methods, for every science has similar imperfections, but the representatives of those sciences should know these flaws so as to know just how far their metbods are reliable and to what degree these reactions are conclusive.
That these self-criticisms are not sufficiently practical by all chemists has frequently been proven by experience. Within the last decade, since the chemical examination of human food bas received special attention, we have seen how often the most incredible analytical results used for the judicial prosecuition of dealers and producers, and the exaggerated srosements which bave been made regarding the extent of food adulterations, have excited in the public a mistrust and suspicion which, with the siugle exception, perhaps, of wine adulteration, is out of all proportion to the actual frequency. One case may here be adduced as proof of what has just been said. Some time since twenty samples of chocolate were tested in Stettin, and declared adulterated, and the manufacturers indicted. Upon an appeal of the indicted persons, the chocolates were again examined, and in the second instance were all pronounced pure and unadulterated.
Unpleasant occurrences of this sort have produced a lamentable sense of insecurity among producers as well as consumers, and a justifiable mistrust of the reliability of chemical tests. They form a welcome tool for the manufacturers with which to combat the enforcement of the food and victuals law. Tbe honest manufacturers oppose the law because they have reason to fear injury to their good name and credit, as well as to their pockets, from careless tests of
their goods; while the disbonest parties prefer to conduct their goods; while the disbonest parties pr
their adulterations without any law to fear.

This explains, but does not justify, the opposition of manufacturers to the law. The honest manufacturer is as ceit and adulteration, and what is allowable.
The lecturer had had occasion to test forty kinds of chocolate in the experimental station at Carlsruhe. He determined the quantity of water, fat, sugar. of dried cacao mass, and of ashes, in all these chocolates. He also tested the purity of the fat, and examined the cbocolate microscopically.
The determination of the water by drying a weighed quantity of chocolate at 60° or 80° C. offers no difficulty; to render the mass more porous it is mixed with twice its weight of dry sand. The fat was extracted with ether from 10 grammes of chocolate in Soxhlet's extraction
apparatus, and dried at $100^{\circ} \mathrm{C}$, before weighing. It was apparatus, and dried at $100^{\circ} \mathrm{C}$. before weighing. It was found that the same chocolate, treated in the same apparatus, gave $1 / 2$ to 1 per cent more fat in the first analysis than in the second; and that in the first analysis the etbereal solution of fat was turbid, but in the second it was clear. The cause of this was found to be that the ether extracted a resinous substance from the new cork stopper the first time it was used, and this contaminated the fat and caused turbidity; hence it is advisable to boil the corks in ether several times before using. The etbereal fat solution had also, almost always, some brown flakes, which were shown by the microscope to be cacao substance, bence it was necessary 10 filter the solution before evaporating it. The purity of the fat, after drying and weighing, was tested by aid of
its melting point and solubility in ether; its odor is not of much use, as it is concealed by the cbaracteristic cacao aroma which adheres to it very tenaciously. The fusing point of cacao fat determined in capillary tubes is not, as frequently stated, between 27° and $31^{\circ} \mathrm{C}$., but remains quite constant at 21° C. (70° Fahr.). Since tallow melts under like conditions at 34° to $37^{\circ} \mathrm{C}$., any considerable adulteration could easily be detected by the melting point. It would be still more distinctly seen by the so-called ether test. Cacao fat dissolves completely and easily in twice its weight of ether, while tallow requires much more ether for solution, so that when tallow is present a turbid white paste is formed instead of a perfect solution of light yellow color.

Although it is not difficult to detect tallow, many chemists have racked their brains in vain in seeking a test for sesame oil; but really it is scarcely worth the trouble, for experience has shown that it is impossible to put more than four per cent of sesame oil in chocolate without its striking through the paper wrappers; or, if tin foil is used, the chocolate has a greasy and suspicious appearance. The
addition of so small an amount of a nutritious substance addition of so small an amount of a nutritious substance
like sesame oil is not calculated to greatly enrich the manufacturers, and is scarcely added for pecuniary reasons, but rather to give it a smoother and finer appearance, especially on the fracture.
The sugar is determined in the chocolate from which the fat has been extracted by ether. It requires some attention and experience to obtain figures not entirely unreliable. Herbst employs the extraction with alcohol as the handiest and best. The chocolate mass is wrapped in filter paper and boiled in fifty per cent alcohol as long as it imparts to it a reddish brown color. It is not advisable to employ water alone to dissolve the sugar, as that dissolves the cacao starch, and the result would be much too high, especially when there is flour in it.
By evaporating this extract to dryness and weighing the residue, figures are obtained that may be six per cent too high, because the alcohol dissolves other extracting substances present in chocolate. It is, therefore, necessary to dissolve the residue in cold water, filter, evaporate again, and dry at $100^{\circ} \mathrm{C}$. in a stream of coal gas.
One circumstance deserves notice here, that may cause
the manufacturer and analyst to the manufacturer and analyst to differ. In most cases a chemical analysis shows a rather higher percentage of sugar than the proportions used in making it. One reason for this is that in making chocolate the substances are weighed in a moist condition corresponding to the moisture in the atmosphere, and are afterwards dried, so that the percentage composition, when finished, differs from that of the recipe Then, too, a small part of the starch in it may easily be con verted into sugar. As yet Herbst never has found the amount of sugar to differ more than two per cent from that required by the recipe.
The mass from which fat and sugar have been removed is dried and weighed. The sum of water, fat, sugar, and residue must equal 100. [He seems not to take into account the extractive matter dissolved by alcohol.-Ed.]
As pure cacao contains, on an average, fifty per cent of fat, the quantity of fat found in manufactured chocolate ought to be about equal to one-half the weight of the choco-: late after deducting the sugar. For example, chocolate made from 63 parts of sugar and 37 of cacao mass would normally give about the following results:

If this chocolate contained much more or less than $100-$ $63 \div 2$ per cent of fat, we should suspect adulteration, and carefully test the extracted fat.
The percentage of ash in normal chocolate should not much exceed two per cent. It may, of course, be tested for mineral substances, like ocher, bolus, and barytes, which are added sometimes to give weight or color.
Microscopic examination serves to detect flour, sago, chiccory, acorns, etc.
From the results of the above-given tests it is not difficult for a chemist to judge of the value of a sample of chocolate and to detect gross adulterations worthy of punishment.
In constructing a law to regulate and prevent the sale of
adulterated chocolate, the above facts must be taken into adulterated chocolate, the above facts must be taken into account, and then the legal definition of chocolate would be nearly as follows: "Chocolate is a mixture of nearly equal parts of sugar and ground cacao mass, with the addition of certain flavors and spices, but excluding all foreign fats and grease.
An addition of flour can only be permitted when the kind of flour is plainly stated on the label." This would work no injustice to manufacturers, while it would indicate
to the chemist what to direct bis attention to, and would to the chemist what to direct his attention to, and would
As regards the chemist himself, if he is unable to recognize the foreign fats with sufficient sharpness, he will be aware of the flaws in his own knowledge and keep silent until he has filled up thegap, or until he has found a reliable test for the purity of cacao butter. In this, as in every other case of the chemical examination of food, much injury is done by chemists who claim to be able to do the (at present) impossible, and make their reports too sweeping. It were better to confess ignorance than to try to palm off an inge

The secrct of the Keely Motor.
Some weeks ago the Keely Motor Company brought suit against Mr. Keely to make him keep his.promises and take out patents.
It was charged by the company, who, it is said, have put $\$ 150,000$ into his schemes, that be agreed to apply for letters patent by July of last year. The company's attorneys, it was arranged, should superintend the preparation of the necessary papers, and they were to tell the secret to no one. Wben July came Keely asked until November to put the finishing touches to his inventions. This was granted, but it resulted in nothing, and the shareholders were obliged to resort to the law to force Keely to keep his contract. Keely's defense was purely technical. Joshua Pusey, who represented him, argued that the inventor could not be made to expose that which was hidden in his own brain. If he were directed to divulge his secret, who could say whether what he might say would be a secret or not? The court could not make a decree, he said, because there were no reasonable means of enforcing it.
Nevertheless, after hearing the argument at length, Judge Pierce, of the Court of Common Pleas, Pbiladelphia, overruled Keely's demurrer, and ordered him to make known his process according to his contract with the company. The court, no doubt, treated the suit with becoming seriousness, but it is suggestive, to say the least, to see that the order was given April 1.

Manompter for High Pressures.

To avoid the use of very long and cumbersome mercury ubes, Dr. M. Thiessen, in Berlin, has invented one consist ing of several sbort tubes. These are arranged vertically and terminate at both ends in a larger steel tube provided with stopcocks, so that the tubes can be cut off from each other in pairs, so that Nos. 1 and 2 are united at the top, 2 and 3 at the bottom, 3 and 4 at the top, 4 and 5 at the bottom, etc. The apparatus is first filled with water, avoiding tom, etc. The apparatus is first filled with water, avoiding
air bubbles, and then part of the water is displaced with pure mercury, so that when all the cocks are opened each tube will be half full cf mercury. The tubes are then shut off from each other in pairs as above described, connecting alternately above and below. When pressure is exerted on the water in the first tube, the mercury will rise to about the same height in every tube, but the pressure exerted will nearly equal the pressure represented by the sum of the differences of levels of the mercury in each tube. For greater ferences of levels of the mercury in each tube. For greater
accuracy in arriving at results for scientific purposes the columns of water must be reduced to mercury pressure and each tube corrected by previous experiment. By making use of a suitable comparator for measuring difference of height it is said that very accurate results can be obtained.

The Kingship of Cotton.

Whoever controls the cotton goods of the world controls the exchanges of the world. In this sense, "Cotton is king." The great mistake of the Southern people, in thinking that cotton was king, consisted in believing that raw cotton was king. Tbere was a little of truth in their belief, as there is in most wide-spread popular delusions. Whoever controls the cotton cloth is a king, and powerful though not an unlimited monarch. Very few people want raw cotton; or can do anything with it, individually; every one wants cotton cloth, in some form, and every one can individually turn it to his purpose. The Southern people did not see this truth, and therefore never perceived that they were this truth, and therefore never perceived that they were
more completely dependent on the mamefacturer of cotton than almost are the raisers of any other agricultural product whatever upon the consumer of that particular article. Of all the great products of agriculture, cotton in its raw state is one of the least necessity to the individual man. It requires the capital, skill, and mechanic arts to make it available.-Senator Bayard.

Dangerous Car Couplings.

The needless maiming and killing of brakemen and yard men in making up railway trains has often been deplored in these columns, and the belief expressed that such unaccidental "accidents" might easily be prevented. We are glad to see that a court in Orange County, in this State, has awarded John Gottheb, a brakeman on the Erie road, $\$ 5,000$ for damages so received. Automatic couplings, or coupings safely operated from the side of the car, will be generally adopted just as soon as the courts make the present style unprofitable to the railroad companies.

Large Arrival of Immigrants.

Thursday, April 6, was a busy day at Castle Garden, New York. There were landed that day 6,481 immigrants, the argest number received at this port on any day this season. All were in good health, and there is every reason to expect that the great majority of them were desirable additions to ur working force as a nation. The next day the arrivals were sufficient to swell the number to nearly 10,000 . Last year there were two successive days in which the arrivals ex ceeded 11,000.

Inventions Needed.

A writer on cranberry culture, in the Rural New Forker, says that there is much needed a machine for separating the rotten and frozen cranberries from the sound in preparing them for the market. A machine of this kind that will do perfect work is not known. A machine for harvesting the berries is also greatly needed.

