Brimifir ©mmina.

ESTABLISHED 1845

MUNN \& CO., Editors and Proprietors published weekly at
No. 261 BROADWAY, NEW YORK.

TERMS FOR THE SCIENTIFIC AMERICAN.

 One copy, one ye re postake included...One copy, six months, postage included
Clubs.-One extra copy of The scientific American will be supplied gratis for every culub of flve subscribers at 83.20 each - additional copies at
same proortionate rate. Postage ame proportionate rate. Postage prepaid.
mit by postal order. Address
UUNN $\&$ a
The Scientific American Supplement
is a distinct paper from the Scientific anerican. The supflement is issued weekly. Every number contains 16 octavo pages, uniform in size with Scientific American. Terms of subscription for Supplem fint 85.00 a year, postage paid, to subscribers Single copies, 10 cents. Sold by
all news dealers throughout the country. Combined Rates. - The Scientific
will be sent for one year postage tree, on receipt of seven dollars. Both papers to one address or different addresses as desired.
The satest way to remit is by draft, postal order, or reeistered letter.
Address MUNN \& CO . . 281 Broadway, corner of Warren street New
Scientific American Export Edition.
The Scientific amlizican Export Edition is a large and splendid periodical, issued once a month. Each number ccntains
large quarto pages, mrofusely illustrated, embracing hundred
(1.) Most of the plates and pages of the four preceding weekly issues of the scues tific AMMRICAN, with its splendid engravings and valuable ? information ; (2.) Terme for Export Edition, $\$ 5.00$ a year, sent prepaid to any part of the
world. Single copies 50 cents. Manutacturers and others who desire to secure foreign trade may have large. and bandsomely displayed an nouncements published in this edition at a very moderate cost. The Scievtific ambican Export Edition has a large guaranteed circuco., 261 Broadway, corner of Warren street, New York.

NEW YORK, SATURDAY, APRIL 3, 1882.

TABLE OF CONTENTS OF
THE SCIENTIFIC AMERICAN SUPPLEMENT, NO. 327,
For the Week ending April 8, 1882.
Price 10 cents. For sale by all newsdealers.
I. ENGINEERING AND MECHANICS. - Driving Dynamo-electric
Generators. 1 Agure. Gramme dynamo machine driven by three-cylinder engine.
Machine for Bending
Three-Cylinder Compound Engines of the Steamship La France
Two foot sectional plan, and half complete plan.
Loads which Locomotives will Haul..........
Loads which Locomotives will Haul...
Experiments on Losses in the Steam C
Experiments on Losses in the Steam Cylinder..
Conditioning Apparatus for Wool and Yarn. 1 figure.
New Take-up Motion for Looms.
Improved Fuling Mill. 1 figure..
On Some New lndustrial Apparatus. By A. DE HEMPIINNE. 10 figures. Furnace for burning sulphur.-Injector for corrosive
liquids.-Concentration of acid in vacuum.-Vacuum cocks,-Ap-liquids.-Concentration of acid in vacuum.-Vacuum cocks.-Ap-
paratus for raising water.-Steam trap.-Fire extinguishing appa-
ratus cal history of the art of turning. Modern developments.......... 5
On Warming and Ventilating Occupied Buildings. By Artyur On Warming and Ventilating Occupied Builings. By Arme
Moris. (Continued from No. 326.) Figs. 15 to 29. Lyceums and
. colleges.-Workshops.- Manufactories.-Drying chambers.- Bar-
racks.-Hospitals..... ..
II. TECHNOLOGY AND CHEMISTRX.-Some ofthe Industrial Uses of the Calcium Compounds. By Thomas BoLas s.-Distribution, etc.,
of calcium in nature.-Carbonates.-Some calcium minerals.-The of calcium in nature.-Carbonates.-Some calcium minerals.-The
chemistry of calclum and its derivatives..................... 5
On the Estimation of Saliclic Acid in Articles of Food. By On the Estimation of
PELLET and DE Grobert
iil. Natural history, etc.-Whale Skeletons at the Paris Museum. 1 figure....................
Orchids and Howling Monkeys.
 Dyir.
The Nice Observatory. 1 figur
Conifers. - Size.-Age.-Hardness.-Eco................... Southern Development.
Paper Pulp.-A new industrial king
V. ELECTRICITY -Kecent Wonders of Electricity. By W. H.
PREECE.-The frst of two lectures before the society of don-Work and Energy.- Potential and kinetic energy,-Tran-don- - Work and Energy.- Potential and .kinetic energy.-Trans-- Electric magnetism.-Electric alarms-Telegraphy.-Automatic telegraphy.-Submarine cables.-Electricity in railroading.-The

THE STEERING AND PROPELLING GEAR OF THE ALARM.
The report of the Board of United States Naval En gineers, on the Mallory steering and propelling gear as ap plied to the torpedo boat Alarm, develops results likely to have much influence in determining the conditions of future naval warfare.
The peculiar design and construction of the Alarm have already been described and illustrated in these columns, (Scientific American, March 17, 1877). The vessel, it will be remembered, is intended as a harbor and coast wise cruising torpedo boat, carrying in the bow one heavy gun and a torpedo spar of special construction. The single gun has no carriage in the ordinary meaning of the term, the vessel as a whole serving as a carriage, while the training of the gun in azimuth is effected by the steering and propelling gear, the boat moving with the gun so as to fight always "bow on."

For this purpose steering gear of great capacity and deli cacy was needed, so as to hold the vessel steady while at rest and to make her movements always priompt and thoroughly controllable, as well when backing as when progressing The maneuvering qualities desired were first obtained by means of a horizontal feathering wheel, which failed, how ever, to give the requisite speed without too great a cost in power. Accordingly the propelling and steering gear in vented by Colonel Wm. H. Mallory was substituted. The stern of the Alarm was ill-adapted to the use of the Mallory propeller; and such seems io have been to some extent the cas also with the machinery used for driving the propeller; still in the opinion of the board of engineers the tests showed the syster to be satisfactory in all respects. In their own words, "the results of the experiments show the durability, relia hility, and practicability of the Mallory propelling and steer ing screw, and the efficiency of its application to vessels of at least the size of the Alarm, and its entire appropriateness for all the purposes to which a cruising torpedo boat carrying a heavy gun can be employed."
The Mallory system consists of an ordinary screw propeller combined with actuating mechanism for changing its axis with respect to the axis of the vessel so as to absolutely control the speed and direction of the vessel's motion, while , the propelling machinery remains in permanent connection with the screw and unchanged in its movement. The shift ing of the axis of the propeller is effected by a pair of auxi liary steam cylinders called steering engines, whose action is controlled by the commanding officer on deck. By means of the steering engines, the screw as a whole, together with its horizontal shaft, can be turned horizontally entirely around the axis of a vertical shaft, on which it is supported either while it is being revolved by the motive engines or when the latter are at rest. When driven by the motive engines it is a propelling screw; moved by the steering engines it is a steering screw; and it may be either or both together at will. The screw as a whole can be turned horizontally around the axis of its vertical supporting shaft with the motive engines either at rest or in motion. Neither the motive engines nor the steering engines are ever disconnected from the screw. The horizontal screw shaft does not extend into the vessel, but is supported in two pillow blocks situated in and forming part of a hollow brass vertical shaft, the lower end of which is made into a journal and held in a lignum vitæ vertical bearing secured on the upper side of the shoe at the stern of the vessel. The upper end extends into the overhanging counter of the vessel, and to it is secured a horizontal worm wheel of phosphor bronze, the lower side of which is supported by and revolves upon the face of a engaged in this wheel, and the horizontal shaft of the worm is rotated by the steering engines in the usual manner by means of cranks. The steering engines thus rotate the hol low vertical brass shaft and all it contains about its axis. The total weight of the apparatus, with a ten foot propelling screw, was a little overten tons. To obviate certain difficul ties developed in steering at high speeds with large powers, Colonel Mallory has invented an improved system, which employs two duplicate screws, having their axes in the same vertical and horizontal planes, but situated on opposite sides of the vertical hollow shaft and revolved in opposite directions by means of a system of beveled gear within the ves sel, the power of the motive engines being applied through the gear, instead of through a crank, to the engine shaft. By this improvement the steering is done as easily when turning in one direction as when turning in the other, and with the same power when the motive engines are working at their maximum speed as when they are absolutely at 3 rest.

In summing up the results of the trials the board mention as demonstrated several important advantages to flow from the use of the Mallory apparatus on gun boats. It enables such a vessel of small dimensions to support a gun of the largest size, and to use it with a promptness and precision of aim not otherwise attainable. The vessel can be kept bow on to an enemy when in advance, when at rest, or in retreat; 0 and it can be maneuvered as efficiently when backing as when advancing. The turning power of the screw is unrivaled, and it may be so operated as to apply the entire motive power with the best possible leverage.
The maneuvering of the vessel is entirely in the hands of the commanding officer, who can, by the movement of a handle conveniently placed on deck, direct his vessel as he will, the motive engines always continuing to work at uniform speed in the same direction. "The vessel can thus be steered,
lateral resistance, laid crosswise to its course, and maneu vered in every conceipable manner, all by the power of the motive engines." The importance of this ready and efficient handling of a vessel, especially in the case of torpedo boats, small rams, and gunboats, is beyond question.
The superior capacity of the Mallory propeller is necessarily attained by a ccassiderable increase in complexity and cost of the propelling and steering gear, which must also be somewhat less reliable and durable than simpler mechanism; nevertheless the board are satisfied that its advantages enor mously outweigh its disadvantages, certainly for the smaller naval craft. ‘‘With this system of propulsion and steering,' they say, " the torpedo boat becomes a certain as well as a dreadful factor in naval warfare, and a gunboat of minimum size is able to carry the largest gun and train it in azimuth with a rapidity and accuracy not possible with any separate gun carriages," and the gun's crew may be no more than is necessary for loading and firing. For coast and harbor defense, where no large coal-carrying capacity is required, the heaviest guns may, by this system, be floated upon boats too small to be hit at long range; and when operated with the Mallory gear such boats can be handled with a celerity and precision which must make them formidable antagonists even for the hea viest ironclads.
The failure of the Alarm to make any creditable record for speed is attributed by the board to the exceedingly foul condition of her bottom, which was found to be covered with barnacles a quarter of an inch high, and overgrown in spots with sea grass four or fire inches long.

VIRCHOW ON SOUPS AND BROTHS.

This distinguished German professor and politician has been accused of being the chief opponent of soup. He says that this is not true, for he had merely said that meat broths are neither nutritious nor "substantial." That if all the meat which one uses should be boiled and soup made of it the meat would become for the greater part indigestible, and the soup would not be a substitute for it. Broth, he says, is an article of luxury which only the comparatively well-to-do can afford. A family that can only just make both ends meet should learn to deny themselves this luxury, since they bave a similar one in their coffee. A rich man can afford to eat soup; while the sick sometimes must have it.
Ordinary meat broth or bouillon in its pure form can only be recognized as a condiment. By the addition of eggs, flour, fat, and other things it may acquire a certain nourishing and heating value. It is, primarily, only a very dilute aqueous solution of substances that are in part of low value as heat producers, such as gelatine, and in part of the stimulating aromatic parts of the meat. Taken warm it is of nearly the same value as coffee or tea, but is inferior to wine, schnapps, or beer; it only stimulates the nerves. It has one advantage over every other condiment, namely, it contaius no poisonous substance, it is incomparably milder, hence much better adapted to feeble persons, and finally it can be very conve niently combined with substances that are actually nutritious, and imparts to them an agreeable and "substantial" taste. It must be admitted that thesestimulants (soup and coffee), because they are stimulants, have more significance than mere condiments. By their stimulating power they awake the slumbering energies. So lung as power is left to exert this energy these stimulants are able to vitalize these forces. Hence it produces the impression of being itself strength ening. It has not of itself this power; it can only awaken other forces already present, butcannot create them. A tired organ, a tired laborer, can find new strength in a stimulant because it arouses within him certan powers which would not otherwise have come to his aid. In this lies the secret, and at the same time the beneficial effect, of many stimulants, so that they are, of course, more than mere condiments or flavors, and become, to a certain extent, tools. Used in moderation they can do much good in this direction. But t must not be forgotten that they are not food, and that every energy brought forth by stimulants requires a double influx of substance to replace that consumed, so that it may not result in exhaustion. Condiments can never take the place of nourishing food.
A large portion of our food, it is true, acts at the same time as a condiment, and even as a stimulant. By this is not meant those natural mixtures of nutritive and stimulating substances so frequently found combined in vegetables, nor yet those artificial compounds prepared by skilled cooks, but rather food which has been eaten refreshes and strengt hens a person long before the real digestion has been finished. A aborer, who is tired and hungry, has set before him a meal of meat and potatoes, and as soon as his meal is eaten he feels refreshed and ready for work again. Nevertheless it is hree or four hours before the meat is dissolved and absorlued into the blood, and even if a portion of the potato starch is converted into sugar or glucose while he is chewing it, it is decidedly the smallest portion. The feeling of strength which the man is sensible of cannot possibly come from the assimilation of his food into the tissues. Its direct effect upon the surface of the organs of digestion and a very slight absorption of the material into the blood exert sufficient stimulus to overcome or relieve the weary condition. It is only on this ground that we can explain why a drink of fresh cool water, a sip of wine or beer, seems to be as invigorating as, or even more so than, a piece of roast beek, although not to be compared with it in permanent effects.
The first invigorating effects that we experience after a sult of those properties of food which condiment or is the re-
footing with mere condiments. Afterward the true digestion takes place, the replacing of the material consumed in work and with it the sensation of permanent strengthening.
It is this point of view which is often lost sight of by the new school of physiologists who treat of nurture and sustenance. The confusion that exists in regard to the best method of giving nourishment is a natural result of the very one sided treatment of the whole question, from a purely chemi cal view, and the error is increasing rather than otherwise. Chemical investigations have a very subordinate importance in recognizing the exciting power of real food and of condi ments; the physiological view must here be taken. Virchow therefore, attempts to restore to the latter science, physiology its old rights, and hopes to protect scientists and laty from that one-sidedness which always supplants one error by another, and which has nowhere led to more visible results than in this important and interesting domain.
The words of so careful a writer and so thorough an in vestigator deserve the attention of thinking men on both side of the question.

Water from Lake George to New York City.
Surveys have been made for an aqueduct 225 miles long to bring to this city and the towns along the Hudson a sup ply of water from Lake George. The lake is about 34 miles long, and averages from $12 / 3$ to $13 / 4$ miles in width, and has an area of about 50 square miles. By a short turn at the head of Dunham's Bay, the report says, a new outlet can be made toward the south. The lake has a little more than 3,000 square miles of watershed. It is assumed that by a short canal the surplus waters of the upper Hudson tribu taries may be conducted into Lake George to re-enforce the reservoir.
It is estimated by Col. J. T. Fanning, the chief engineer of the projectors of the scheme, that a daily average of $1,500,000,000$ gallons of exceptionally pure water would thus be made available for city supplies. It is proposed that the conduit shall be at the first construction an open canal, with a capacity of $500,000,000$ gallons a day. At Lake George it will be 323 feet above mean tide water, at
Yonkers 213 feet, and above the Harlem River 200 feet. It is anticipated that the entire canal will be covered in time, and its capacity thus increased in midsummer by the conse quent reduction of evaporation, and in winter by reduction of thickness of ice. It will be paved its entire length and the smoothness of its sides improved, and thus the rapidity of flow and capacity of the canal enhanced. Short tunnels will be required in several instances along the route to reduce the length of line that would be required to pass around prominent spurs, as, for instance, at Fishkill Moun tain and Anthony's Nose. Siphons will be required in sev eral instances, and where the pressure exceeds twenty feet they will be of boiler iron in a series of 72 -inch diameter riveted tubes, iu number according to the required delivery of water. These tubes will be placed side by side, and the number will be increased as the demand for water increases. Stop gates, waste weirs, and waste sluices will be introduced as the topography of the line and other conditions shall make it desirable. The canal from the river to the lake will be larger in section than the conduit, so as to provide for the rapid storing of water when the flow of the river is above the average. From the terminus of the canal, near High Bridge, the water may be conveyed into New York, Brooklyn, Jersey City, and adjacent towns by iron pipes.
The approximate estimate of the cost for 210 miles of canal is $\$ 26,250,000 ; 7$ miles of tunnel, $\$ 4,900,000 ; 10$ miles of siphon, $\$ 10,000,000$; and the Hudson dam and canal, en. gineering, land and water rights, and roofing and paving 10 miles of the canal, will bring the whole cost to $\$ 49,475,000$. It is estimated that three years would be required for the construction of the entire works.

A Church Steeple Thermometer

The Meteorological Society have placed one of Siemens' electrical thermometers on the summit of Boston Church, in Lincolnshire, which is 270 feet high, and situate in a flat country near the sea. Ordinary thermometers have been placed on the belfry roof, 170 feet from the ground, and also in the churchyard. The electrical thermometer 18 connected by wires to a galvanometer and battery at the base of the tower. The instrument is read by depressing a key, which causes the needle of the galvanometer to deflect; a pointer or vernier (moving a contact rolier upon a wire in a circular groove) is then pushed to the right or to the left upon a divided scale until the needle remains stationary on the zero point, when the electrical resistance of the wire is measured upon the scale. The number indicated by the vernier is then read off, and, by referring to a table of equivalents, the actual temperature in degrees of Fabrenheit is readily ascertained. Simultaneous readings of the electrical thermometer at the summit of the tower and of the dry bulb thermometer in the churchyard will be made frequently during the day by the verger of the church. The society hope by this means to throw light on such questions as the vertical decrement of temperature, the rate of asce. sion of vapor, etc.

The Six Companies.

Kwong-Ki.Chin, late a member of the Chinese Education Commission in the United States, says that the object of the Six Companies (of whom so much is heard in connection with Chinese immigration) is not mercantile but protective.

The word "association" would better characterize them. They are not stock companies organized for trade or profit, but associations, rather, for the sake of looking after the in erests of Chinese who are away from home, such as adjust ing differences and deciding questions and claims one with another and securing justice between parties without going to law if possible. They are not peculiar to America, but are established wherever Chinese emigrate or settle, as in Australia, Singapore, French colonies in Cochin China, etc Three of the Six Companies, so called, belong to three dif ferent districts in China; two of the other three represent to gether several districts, and the last, or sixth, represents al China. Cases of injustice or difficulty of any kind which occur will, on complaint to the company, be investigated and assistance rendered. Each company has two presidents, one of whom must be a good Chinese scholar, and the other must understand English well They are chosen by the merchants of the company, and hold office for a period of three years. These, with necessary clerks and servants, comprise ali the officers of the company. The committees of the company are merchants. They, in conjunction with the presidents, act in cases requiring interference of the company. The ex penses of the company are met by the payment of $\$ 10$ or $\$ 15$
by each merchant or taborer on his way to China so it is not by each merchant or caborer on his way to China; so it is not cooly importing company at all, but a mutual benefit as sociation.

Malarial Germs.

M. A. Laveran has found, in the blood of patients suffering from malarial poisoning, parasitic organisms, very definite in form and most remarkable in character; motionless, cylndrical curved bodies, transparent and of delicate cutlines, curv d at the extremities; transparent spherical forms pro vided with fine filaments in rapid movement, which he believes to be animalcules: and spherical or irregular bodies, which appeared to be the "cadaveric" stage of these, all marked with pigment granules. He has also detected peculiar conditions in the blood itself. During the year that has passed since he first discovered these elements, M. Laveran has examined the blood in 192 patients affected with various symptoms of malarial disease, and has found the organisms in 180 of them, and he has convinced himself by numerous and repeated observations that they are not found in the blood of persons suffering from diseases that are not of malarial origin. In general, the parasitic bodies were found in the blood only at certain times, a little before and at the moment of the accession of the fever; and they rapidly dis. appeared under the influence of a quinine treatment. The addition of a minute quantity of a dilute solution of sulphate of quinine to a drop of blood sufficed to destroy the organisms. M. Laveran believes that the absence of the organisms in most of the cases (only 12 in the whole 192) in which he failed to find them was due to the patients having undergone a course of treatment with quinine.

Burnishing

By burnishing the roughness of an object is flattened down until the surface is smooth and polished like a looking glass. Burnishing is an important operation for electro deposits, which consists of a multitude of small crystals, with intervals between them, and with facets reflecting the light in every direction The deposited metal is hardened, and forced into the pores of the underlying metal, and the durability is thus increased to such an extent that, with the same amount of silver, a burnished article will last twice as long as one which has not been so treated. The instru ments employed for burnishing are made of different ma terials, and must be of great hardness and a perfect polish. Such are hardened cast steel, agate, flint. and blood stone. For metallic electro deposits steel and blood stones are especially employed. There are several qualities of bloodstoné; its grain should be close, hard, and without seams or veins; it should leave no white lines on the burnished parts, nor take off any metal, and its color should be of an intense black red. The steel must be fine and close grained, and perfectly polished. Should the polish of any burnishing tool alter by use, it is restored by friction upon a skin or leather attached to a wooden block, which is fixed to the bench. The leather is covered with polishing rouge in impalpable powder, or, preferably, with pure alumina, obtained by calcining ammonia alum in a forge fire. Venetian tripoli, rottenstone, tin putty, emery, or many other hard substances flnely powdered may be employed. The burnishing tools are of various shapes, such as a lance, a tooth, a knife, a half spbere, or a dog's tongue, and a considerable stock is necessary. The burnishing is divided into two distinct operations. The first consists in roughing, and the second is finishing. The tools for the first have a sharp edge, while for the second operation they have a rounded surface. The tools for the hand or the lathe are fixed by copper ferrules into short round wooden handles, so that the hand is not in fluenced by their weight. The tools for the arm or vise are fastened to wooden handles sufficiently long to rest their slender part upon the arm or shoulder. The stouter lower portion is grasped by the hand. The burnishing tools and the cbjects must be frequently wetted by certain solutions, some of which facilitate the sliding of the instrument, or with others which have a chemical action upon the shade of the burnished articles. Of the first are pure water, solutions of soap, decoctions of linseed, and infusions of the roots of marsh mallow or licorice. The second includes wine-lees, cream of tartar, vinegar, alum in water. When burnishing
with a dead luster by that method, use pure water, for fear of producing a disagreeable red shade. A solution of green soap is sometimes preferred by operators, although when old, it imparts an unpleasant tinge, owing to the sulphides of the liquor When the burnishing is completed, the sur face is wiped longitudinally with a soft aud old calico rag. The polish obtained by burnishing is called black when it reflects the rays like a mirror; and should the presence of mercury or a bad deposit prevent the tool from producing a bright surface, the object is said to be greasy. Articles which have been previously polished, and which generally receive a very trifling deposit, are not burnished, but rubbed with chamois leather and the best polishing rouge. Too thick or too rapid electro deposits cannot be burnished, but must be polished by rubbing with a leather and a mixture of oll and powdered pumice stone, tripoli, or tin putty. Coarse powders are used at the beginning, and impalpable ones at the end of the operation. Polished silver deposits are more agreeable to the eye than burnished ones, but the hardening of the latter renders them more durable.

A Three-Story Nest.

To the Editor of the Scientific American:
Since my article upon the summer yellowbird and its twostory nest appeared in the Scientific American of March 18, I received Part IV of "Bright Feathers," in which Mr. Rathburn describes and illustrates a three-story nest that was found upon a honeysuckle. I mentioned the fact of three story nests being sometimes found, but this one described by Rathburn is an interesting specimen, from the fact that the second compartment is said to have contained oue cow blackbird's egg and one of the legitimate eggs of the D. æstiva. According to Baird Mr. Nuttal says that " where the para sitic egg is laid after her own, the summer yellowbird acts faith fully the part of foster parent." But from the specimen described by Mr. Rathburn we must be led to believe with Mr. Baird that the yellowbird will not act the part of foster parent, and rather than do so will sacrifice her own eggs with those of the obnoxious cow blackbird.

$$
\text { Yours truly, } \quad \text { Daniel C. Beard. }
$$

New York, March 28, 1889.

Remarkable Brain Wound.

Coroner Merkle was called, March 29, to the Eye and Ear Infirmary, at Second avenue and Thirteenth street, to hold an inquest in the case of Lewis \mathbf{E}. Avery, aged 18, a resident of Gilman's Depot, Sullivan County, N. Y., who died at the nfirmary from the effects of an accident which occurred on September 18, 1881. While out shooting near Forrestburg, Sullivan County, the breech of his fowling piece blew off, and the breech pin entered the head through the orbital plate of the skull over the right eye and embedied itself in the anterior lobe of the right hemisphere of the brain. Dr. M. J. B. Messemer. Deputy Coroner, made an autopsy, aud found the breech pin-a piece of iron $13 / 8$ of an inch in length and half an inch in thickness-embedded in the an terior lobe of the right hemisphere of the brain. Death re sulted from exhaustion due to the injury of the brain. The case is a peculiar one from a surgical point of view, owing to the long time the patient lived with the breech pin embedded in his brain.
This case was noticed in this paper a few weeks ago. The patient appeared to recover from the wound in about a month after the accident; but his eyes began to trouble him last January, and he came for treatment to the in firmary in this city, where he died.

Glass Obtained by the Aid of Photography.
An iugenious method of obtaining mirror-like designs on glass has been devised by Leclerc. The glass, having been silvered by the chemical process, is coated with a thin and uniform layer of sensitive bitumen, and this is exposed under a transparency, the next step being to wash away the unaltered bitumen with oil of turpentine, so as to leave the bituminous design on the silvered glass. The application of moderately strong nitric acid removes the silver, excepting where it has been protected by the bitumen, so that the me tallic design shows like a mirror from the reverse side of the glass. The plate may be backed by paint or any other suitable material.

Water Works for Havana, Cuba.

The same firm in this city which furnished the city of Havana with gas works last year, have contracted to con struct works for supplying that city with water. One of the contractors states that the system wili resemble that of New York city. The water will be brought from mountain springs, about six miles from Havana, to a central reservoir, from which it will be distributed over the city. The pumping engines and machinery will be supplied from this city, and the work will be done by a corps of American engineers.

The Fastest Ocean Trip.

The steamship Alaska, of the Guion Line, now stands at he head of the list of fast ocean vessels. The recent trip across the Atlantic was accomplished in 7 days 6 hours and 43 minutes actual time. She sailed from this port on March 21 and passed Fastnet at $5: 20$ P.M. on the 28 th. The fast est veyage which had been made previous to this was by the famous Arizona, also of the Guion Line, which crossed the Atlantic in 7 days 7 hours and 48 minutes. The weather is not reported to have been unusually fine.

