NEW TOOL HOLDER FOR GRINDSTONES
We give an engraving of au improved device for holding tools - such as chisels, plane bits, etc. etc.-to a grindstone in such a way that one person can turn the stone and control the position of the tool conveniently at the same time withoutdamaging or mutilating the cutting edge of the tool and without danger to the operator.
The device consists in tongs with adjustable jaws for hold ing the tool to be sharpened, the end of the tongs being pivoted in a block sliding on an upright of the grindstone frame. When not in use the tongs is supported by a ratchet bar passing through a slot in the upright.
The article to be sharpened, a plane bit or a chisel, for ex ample, is clamped between the jaws by means of the ring which holds the shanks of the jaws together, the upper jaw

BAYHA'S TOOL HOLDER FOR GRINDSTONES.

baving been previously adjusted according to the thickness of the plane bit or chisel. The sliding block is then adjusted higher or lower, according to the desired bevel of the cut ting edge, for the bevel varies with the inclination of the tongs, and this inclination varies with the position of the block, on which the end of one sbank of the tongs is held by a ball-and-socket joint. Wben the tool that is being sharpened is to be beld above the peripbery of the stone the ratchet baris drawn upward a suitable distance, and the tongs'is allowed to rest on the upper end of the bar.
This invention was recently patented by Messrs. George G. and Benjamin D. Bayha, of Niobrara, Neb., who should be addressed for further informatiou.

FOUR-BARRELED HAMMERLESS GUN.

There has always been an obstacle to using a revolving gun for sporting purposes, because of the inconvenience experienced by the revolutions of the barrels. The inven tion illustrated, however, completely solves the difficulty.
This four-barreled gun, although constructed on the principle of the.ordinary revolver, differs in that, instead of the chambers turning before each discbarge, a piston-like bammer rod is made to perform a similar office by the pull of the trigger, its head being brought to bear in turn on the :enter of the four barrels, wbich are brazed together in tbe usual way, so asto form a square, and are fitted to break-off, which is necessarily of double the usual height. The action may be either the "double grip" or "suap;" but, thougb the prong of the break-off is solid, the extra leverage brought to bear on it by the unper pair of bar rels requires some top con nection, and a " doll's head" is therefore used to give great er security.
To understand the construction of the lock, it must be considered as having three offices to perform: First, the simple blow necessary for the explosion of the cap; second ly, the cocking process; and thirdly, the rotation of the bammer rod which it has to perform-the three being here placed in the reverse order of that which they go througb in practice. To effect the blow a solid steel rod is firmly socketed, parallel with the axis of the barrels, and opposite the central point between the four Its forward evd is turned to a right angle, enabling it to reach a little beyond the centers of the four barrels, when it revolves in succession toward them, and is then capable of giving a blow to the selected striker, of which there are
four fixed in the usual way in the break-off. On this rod i a collar, which receives the blow of a flat tumbler placed on one side of it, and furnished with a swivel and a flat main pring hung on the rebounding principle.
To cock this rod there is behind the tumbler another col lar, by which it brings back the hammer rod to full-cock from the half-cock, where it was left by the rebound. There is only one trigger, which is either of the usual form or like a ring, as shown in the engraving. To this is hinged a lifting scear, which fits into a deep bent or notch, cut in the tumbler in such a form that as the trigger is pulled it lifts the tumbler backward over its center or axle, and at the same time compresses the mainspring.
There is a quarter revolution of the hammer rod to be effected, so as to bring its head in turn on each of the four barrels. This is done by cutting four inclined grooves or slots on the rod, as well as a corresponding number of straight slots in front of the tumbler and opening into one another. Into these slots there is fitted, on a spring plate, a stud, so placed that the hammer rod, being drawn back by the tumbler, is made to rotate one-quarter of a circle by the inclined grooves; and, this being done after each barrel is fired, the four are discharged in succession by so many pulls of tbe trigger. These slots are cut of different depths, the spring of the stud dropping from one to the other at the desired points, so as to effect the revolution, wben in the inclined slot, and yet permit the hammer bolt to pass straight forward in striking the blow, and return to the slanting slot for the next quarter turn. By a combination of these three movements, as the trigger is pulled, it, by the aid of its lifting scear, raises the tumbler (and with it the hammer rod) to full cock. While doing this, the stud in the spring plate above mentioned has caused the rod to revolve a quarter turn, and has consequently brought its head from the center of the barrel last fired to that next in succession. The scear then leaves the bent free, when the tumbler drives the bainmer rod forward to explode the cap. Immediately after this, a long straight spring under the front of the trigger carries the scear into the bent of the tumbler, ready for the next shot, in which it is assisted by a light spring between the scear and trigger.
It is difficult to imagine anytbing more simple than this piece of mechanism, though it requires the elaborate description we have given it to make it intelligible.

Six Cents a Piece for Wasps

Wasps are such an obstacle in the way of English fruit growers that one of them, Mr. William Taylor, thinks it worth while to pay three pence each for queens. And ast season he bought and destroyed no less than 1,192 . About 230 nests have been annihilated within a mile of his premises, and still there is enough left for seed. He declares that the price named is not too high, "since it takes considerable skill to catch them," and because of their enormous fecundity, of which he says, in the Cottaye Gardener "Understand that every wasp seen before the middle of June is a queen, and liable to bave a nest of 10,000 at least. I lately estimated the number of cells in a rather large nest, and made out 9,000 of them. A great many of the young bad flown, and fresb eggs were laid in their places, and I bave reason to believe that there is often more than one succession of young insects from the same cells, therefore 10,000 is a comparatively small family."

A Schooner Sunk by Rats.
The fishing schooner Addie Thatcher bad a singular mishap recently. She was laid. up at Wilson's wharf, Fall River, for the winter, and during the recent cold snap rats

LANCASTER'S FOUR-BARRELED HAMMERLESS GUN.

ocation of the surface of the ice, if they gnawed their way out.-Providence Journal.

IMPROVED FIRE ESCAPE.

The engraving represents an improved fire escaperecently patented by Mr. John S. Sbaw, of Rosita, Custer County, paten
Col.

The window-sill is made bollow, of cast iron or other suit able material, and is provided witb a door opening downward. In the chamber of the sill is stored a folding iron ladder, the links and rounds of which are bent from one piece of wire and jointed togetber, as shown in the engraving.

The upper link of the ladder is attached at one end by a ring surrounding a vertical rod fixed in the bollow sill. The

SHAW'S FIRE ESCAPE.
other end of the link is attached to a short piece of chain ecured to the window sill.
The ladder is compactly folded and stored in the chamber of the sill, and when desired for use it can be readily dropped at a moment's notice. This device is simple, inexpensive, and always ready.

To Prevent Plaster from Adhering.

Liquid silex, carefully applied with a small bristle brusb, and allowed to dry before packing the flask, leaves the plate with a durable polish less liable to absorb the fluids of the mouth than is the ordinary finish, especially the palatine surface of plates with deep undercuts. Of course, a first requisite is smooth plaster casts. Keep the liquid silex in a short bottle with a rubber stopper. Wash the brush in hot water after using. Don't leave the brusb in the bottle.Denzal Register.

Demand for Practical Men.

One of the bappiest outcomes of the Allanta fair is the demand that bas sprung up, not for more money, but for more men in the South, practical men, as they are pleased to style them down there, by which they mean mechanics, not those whose trades are their masters, but who are masters of their trades; farmers who can bandle a plow as well as direct some one to do it.
And this demand is not coming from those who are dazed with the cotton manufacturing craze, but from farmers, blac̣esmitbs, tailors, machine shops, and other industries quite as much needed and vastly more profitable than cotton manufactories.
There is scarcely an operative now at work at the fair who has not had from one to a dozen proffers of employment at the South, some of which bave been accepted. This demandon the partof tbe business men of the South gnawed a bole through her planks just above the ice, the is of the utmost significance, inasmuch as it implies a recog. bottom of the hole being on a level with the ice. The hole nition on their part of the fact, so patent to us bere in the was not noticed at the time, and the weight of snow upon North, tbat men are needed vastly more in the South to-day the deck caused the vessel to settle until the water ran in than money. The future development of the wonderful through the hole and she sank. She has since been bailed natural resources of the South depends vastly more on men out and the hole has been patched up. 'The wiseacres of than on money.
the neighborbood are discussing the problem whether the The land is teeming with richness for other things besides rats gna wed their way out or in, there being a difference of cotton, and when they get the "practical"farmers, whetber opinion concerning the ability of the animals to fix upon the from the North or from among their own people, a radical
evolution may be confidently looked for in the manner of doing things agriculturally and otherwise in that section of
the country. Brain and brawn have in part made the North what it is to-day. The South needs the same elements.

Railway Matters.

At the recent annual dinner of the Manchester Association of Employers, Foremen, and Draughtsmen, held at Man chester, Mr. F. W. Webb, of Crewe, the president, spoke a length on matters connected with the management of rail ways.
Alluding to the increased use of steel, he claimed that the London and Northwestern Railway Company had been the first great firm to recognize the importance of the improve ments of Bessemer and Siemens. Steel had been substituted in nearly every portion of the locomotive which formerly was made of iron. At present the company had 1,679 engines with steel boilers, and so far they had every reason to be satisfied with the result. The company was also one of the first to use Bessemer steel plates for its passenger vessels It now had four first-class steamers constructed of this mate rial running regularly between Holyhead and Ireland, and from the examination made from time to time of the hulls of these vessels it was found that the material admirably answered its purpose. The plates had been manufactured underhis superintendence. They had the misfortune last year to get one of their steel vessels on a sunken rock at the entrance to Carlingford Lough. Hadit been built of iron he felt certain it would have become a total wreck. As it was, ninety feet of her keel passed over the sunken .rock, which bulged it in some places to the extent of five or six inches, but there was not a single crack in the plates, and no water got into the vessel.
Notwithstanding improvements in material the quantity of rails annually required for repairs and renewals on the London and Northwestern Railway was now 20,000 tons. For every mile run, the actual loss of rails was about one third of a pound of steel, so that on the London and North western Railway 15 cwt. of steel disappeared from the rails every hour of the day. The collective wear and tear of loco motives on the Loudon and Northwestern Railway necessitated a new engine being put into the traffic every five work ing days. The question of the future permanent way was a very important one, and one that sooner or later would have to bedealtwith, as with the immenseconsumption of wooden sleepers going on all over the world we would be sure in a short time to find ourselves on the very verge of a terrible famine. They had tried to solve the problem themselves on the London and Northwestern Railway by introducing a sleeper made of iron or steel, the chairs themselves being made of steel, worked up from the crop ends of rails. Most of the schemes which had been adopted had failed for want of elasticity from the facts that the bolts and nuts had been used to a large extent. In the chairs on which several miles had been laid down on the London and Northwestern Rail way they had tried to avoid all these defects, and certainly they had every promise of success. Between the surface of the chairs and the rail, and also between the rail and the sleeper, a sheet of bitumenized brown paper was placed before the chairs were riveted by hydraulic power to the sleeper itself. This was intended to obviate the grinding away of the metai surfaces. The wooden key had been retained, and placing it outside, as they did, they got a most perfect cushion between the rail and chair, and as far as they had tried it, in consequence of the key swelling into the hollow made in the chair bracket, stamping up. They had not had a single instance in which the key bad worked back. If iron or steel could be introduced successfully for sleepers the world would be able to find for iron and steel industries work equalin amount to that required forthe making of rails. The constantly increasing weights of passenger trains, and the question of how to provide more powerful locomotives than existing ones without having more weight upon a pair of wheels than a road will carry with economy, was a problem yet to be solved, as also was the question of further economy in the working of the locomotive. Thinking the compound principle, if simply carried out, would do something toward this end, he had designed an engine in accordance therewith. The engine had two pairs of driving wheels, one pair being driven by the high-pressure cylinders, and the second pair by one low-pressure cylinder, the use of couping rods, whick gave trouble at high speeds, being abandoned. He had been enabled to do this without complicating things, hanks to the valve motions brought out by Mr. David Joy. This system did away with the old eccentrics; not that the old eccentrics had been a bad contrivance, but on the nar row gauge there was no room for wide bearings for them, so as to allow the engine to run without hot brass. He bad called the engine " Experiment," but from her performance he thought it was an experiment they would repeat. Last week he had the engine out for its first run in the traffic, starting from. Crewe as the assisting engine with a very heavy train to Euston. Next morning he ran the engine with the 7:15 Irish mail from Euston to Holyhead, arriving there 1:40, and leaving again at 3 o'clock with the boat express. The engine maintained its steam to the point of blowing off the whole journey, and only consumed 23.54 pounds of
coal per mile for the whole trip, including that for raising steam. Seeing that theengine was new, and the men strange o one of this construction, he thought it showed that something might be done in still further economizing the fuel in comotives. The fact that a new compound engine ran durigg its first round trip upward of $\boxed{2} 8$ miles, and was as
cool at the end of its journey as when it started, promised ell for the future.
Another problem which had been before them for the last few years was the question of continuous brakes. There were many inventions in the field, but out of over a thousand patents for brakes which he had examined, one taken out by Messrs. Swinburne \& Laining, in 1865, had the germ of a good many of them. Most of the leading engineers had been against the automatic action, firmly believing that these machines would be more liable to cause mischief than to help in avoiding it, and this belief had been verified by more than oue unfortunate accident. On looking at one of the engineering papers, which were supposed to deal impartially with these questions, he was really surprised to see the remarks made in one of them relative to the Blackburn accident. The paper went so far as to state that a snubbing had been given by the president of the Board of Trade to one of their oldest and most respected officers. The factwas, there was not so much snubbing in it, after all. The appendix to the eport states things very clearly. It is essential the defects in the automatic brake should be provided against, and every precaution taken to insure the brake acting only when re
quired. So far as the principal English railways were conquired. So far as the principal English railways were con they had to thank in some degree Messrs. Gresham \& Craven, who had rendered considerable assistance, and who had made the manufacture of the necessary details a specialty

Manufacture of Clog soles and Wooden Shoes.
The works of the Mersey Wood Working Company, Bed ford place, Bootle, is the occasion of the following particu ars in the Bootle Times
The principal manufacture carried on at these wooks is that of wooden soles for what are called in Lancashire clogs," in France "sabots." Familiar as are the " wooden hoon," few persons would conceive how ingeniously the manufacture of the soles is conducted and how vast are the quantities which are issued daily, weekly, and hourly from hese works. The yard was first visited where there is usually stored from two to three thousand tons of timber. The native timber is first stripped of its bark, the foreign logs being already barked when imported. The logs are then raised from the yard by a crane and cut up by circular saws into segments averaging about a foot long. These segments are next cut into planks of convenient size, a dozen saws working at once and the planking being effected with marvelous rapidity, about sixty tons of wood being cut up into clog soles every day. On the side of each plank a metal gauge is laid, and a girl with a pencil roughly outlines the size and number of soles which can be cut from it. The planks pass on to a band saw, where they are cut up into blocks with the required curvature for a sole. Thence they pass to the roughening machine which roughly shapes them. Another machine cuts the sides; another shapes the shanks; yet another rounds the beels; and yet another shapes the toes. They pass next to a revolving cutter, which roughly bllows the upper side of the sole, and subsequently this pass next through the various finishing machines, where the bottoms, sides, shanks, heels, and toes are successively ren. dered perfectly smooth by friction with swiftly revolving bands covered with a mixture containing ground glass and other attritive materials which scour them in the same way as if with sand or emery paper. They next go to the gripping machine which bevels the edges, leaving
It will thus be seen that the sole of each wooden shoe, from the time when the log of wood is first cut into segments to the time when the edges are beveled by the gripping machine, passes through fifteen distinct machines, and as the required sections are marked by hand, and the right and left sides of toes and heels are separately shaped, each sole passes through the hands of eighteen different workpeople. Perhaps the hibited in any manufare with more remarke The motive power for these various processes is supplied by a pair of sixty horse power compound bigh and low pressure condensing engines. The waste wood is also manufactured at these works into a valuable commercial product. It is chopped up by machinery, treated with chemicals, steeped to a condition of softness, and all knotty pieces hav ing been removed, the softened woody fiber is drained and compressed between a series of rollers until it is transferred into sheets of pulp, or rather half made paper, which is supplied to paper manufacturers, and being mixed with other materials is transferred into some of the best qualities of paper. Lord Hamilton was shown a sample of fine rose tinted note paper which was made chiefly from the waste cuttings off wooden clog soles.
The works include a chemical laboratory and joiners fitters', and grinders' shops. The extensive cellars are stored with clog soles, which are kept there for the time necessary to season the wood before being finished, and vast quantities of finished goods are passing daily from the warerooms to English, continental, and colonial markets.

MECHANICAL INVENTIONS.

Messrs. Theophilus Tanner and Hermann H. Fischer, of Osage, Neb., have patented an improvement in post-hole diggers, in which a cogged cylinder is attached to the auger shank and follows it downward as it is rotated by the its load of earth

Mr. Nelson Arave, of Hooper, Utah Territory, has patented an improved fruit-stoning machine, which consists of a series of circular knives supported in a frame and revolv. ing in vertical planes, and converging to a common center with their edges far enough apart to permit the passage be tween them of the fruit stones, the knives being designed to dra win the fruit and to slice and strip the fleshfrom thestones. An improved speed regulator for horse-powers has been patented by Mr. Barnard L. Olds, of St. Albans, Vt. This invention relates to devices for insuring regular and uniform motion to horse-powers, and preventing sudden increase of speed in case of accidents, such as the belts slipping from their pulleys; and it consisis in an equalizing lever, com bined with centrifugal weights and a winding drum for ope rating on the brake.
An improved moulding machine has been patented by Mr. James Anderson, of Boston, Mass. This improvement relates to machines for forming spiral mouldings upon stairway posts and similar articles. This is accomplished by automatic mechanism and by devices which allow variations in the character of the ornamentation.

An improved rock-drilling machine has been patented by Mr. August Pirch, of Denver, Col. The object of this in vention is to combine a number of drills in such manner that they can be operated singly, or two or more, so that a hole may be drilled of any size desired and according to the nature of the material operated upon.
An improved saw frame has been patented by Mr. Charles H. Bennett, of Blossburg. Pa . The invention consists of externally inclined clamps, one of which has an inside stud passing through the other clamp and through the saw, and the triangular yokes on the inner ends of adjustable screws, the adjustable screws passing through opposite ends of a urved saw frame.
A cheap and efficient sand guard for the wheels of car riages, wagons, etc., has been patented by Messrs. John P Schoeni and Allen A. Link, of Hubbardston, Mich. It con sists of a folded or plicated cup adapted to fit upon the axle, in combination with an overhanging rim or flange to be se cured upon the hub of the wheel.
Messrs. William W. Wallace and John A. Kramer, of Frankfort, Ind., have patented animproved clay crusher and separator, which consists of two rolls set side by side and parallel with each other in suitable housings, each roll having formed on its face a right-hand groove, thread, or screw extending from the center to one end, and a left-band screw or groove extending from the center to the other end. The rolls are then set in their housings with the right-hand thread or screw on one roll in opposition to the left-hand groove, screw, or thread on the opposite roll, so that when the clay is introduced between the rolls through a hopper fixed centrally over them the stones in the clay are carried in the screws or grooves to the one or other end of the rolls and there ejected, while the clay passes through between the faces of the rolls, and is thereby crushed or pulverized to the desired condition.

A simple, durable, and easily applied friction clutch for pulleys, gear wheels, etc., has been patented by Mr. John J. Daly, of Boston, Mass. This invention cannot be clearly described without engravings.

A novel water cart has been patented by Mr. John G. Littlefield, of Milton, Mass. The object of this invention is to provide for filling the tanks of water carts, especially street watering carts, rapidly and conveniently in situations where water under pressure is not to be had, the cart horses being used for that purpose.
A combined lathe and drilling machine, patented by Mr. John F. Rakes, of Greenup, Ky., consists in a novel arrangement of a reciprocating drilling machine, by which provision is made for converting the frame of the drilling machine into the frame of a lathe, and for driving the lathe by the wheel used for operating the drill.

An Underground River.
Mete Green, not long since while out with his cattle, made most startling discovery and one that may possibly take its place among the grand wonders of Idaho. He was riding along early in the morning on the divide between Indian Creek and Snake River, when his horse sprang aside, snorted, and otherwise gave evidence of having seen or heard some thing unusual. The spot was on a little knoll on the comb of the ridge, and Mete, who had been almost asleep, taking sweep around with his eyes to learn the cause of his horse's behavior, finally rested his vision on what seemed to be a bole in the ground a few paces distant. Dismount ing he was soon looking into a funnel-shaped orifice fifteen or twenty feet deep by ten or twelve at its rim in diameter At the bottom of this funnel-the soil giving cut therewas a rift in the rock two or three feet in width by four or five in length, which seemed to open into the very bowels of the earth. Through this aperture came up from the depths below a terrible roaring, as if a leaping cataract, a mighty rush of waters, tumbling over rocks. The ground trembled and the subterranean noise continued uninterruptedly. Mete remained some time, and the longer he listened the more convinced he became that what he heard was running water but how far down to the stream he could not even conjec ture-it might have been a few feet or half way to China. And as the fissure was large enough to take him in should his foot slip or "head swim, his observation was not an extended one. The principal thing he did while there was to listen low and strong and think loud-at a safe distance from the brink of the hole.-Idaho Domocrat,

