Srimififir gmririn.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors.
pUBLISHED WEEELY AT
NO. B'Y PARK ROW, NEW YORK.
O. D. munx. A. e. beach.

TERMS FOR THE SCIENTIFIC AMERICAN. One copy one year rotage included...
One copy, six months, postage included
Clibso--One extra copy of The Scientific american will be supplied same pro oortionate rate. Postane prepaid.
Remit dy postal order
stage prepaid
MUNN \& CO . 37 Park Row, Nem York.
The Scientifc American Supplement
is a distinct paper from the SCIEVTific A mehican. The SU PPLEM FNT
is lssued weekly. Every number contains 16 octavo pages, uniform in s Issu ed weekly. Every number contains 16 octavo pages, uniform in size with Scientific anierican. Terms of subscription for Supplempnt,
$\$ 500$ a year, postage paid, to subscribers. Single copies, 19 cents. Sold by all news dealers throughout the country.
Combined laites. -The Scientric American and Suppicmint will be sent for one year postage tree, on receipt of seven dollars. Bo papers to one address or different addresses as desired The satest way to remit is br draft postal
Address MUNN $\&$ CO .3 Park Row. N.

Scientife American Export Edition.
The ScIMrific Amirican Export Edition is a large and splendid periodical, issued once a month. Each number ccntains about one hundred
large quarto pages, profusely illustrated. embracing: (1.) Most plates and pages of the four preceding weeklr issues of the sciectir
Asvican with its splendid engrivings and valuable information: Commercial, trade, and manufacturing announcements of leading houses.
Terms for Export Edition, $\begin{aligned} & \text { fo.00 a yeir, sent prepaid to any nirt of the }\end{aligned}$ orld. single copies 50 cents. Manufacturers and others who destre to secure foreign trade may have large. and handsomely displayed announcements published in this edition at a very moderate cost.
The ScIETIFIC AMvuCAN Exiort Edition has a large guaran The SClENTIFIC AMLILICAN Exnort Edition has a large guaranteed circu
ation in all commercial places tbroughout the world. lation in all commercial place
co. $3 \bar{i}$ 1'ark 1 Row, New York.

NEW YORK, SATURDAY, AUGUST 27, 1881.
(Illustrated articles are marked with an asterisis.)

TABLE OF CONTENTS OF
the scientific american stpplement No. 29S,
For the Week ending Aagust 27, 1851. Price 10 cents. For sale by all uewsdealers.

[^0]
"A militia for the sea

Under this title Mr. John Roach, ia the August number of the North American Reviex, discusses the old but ever new subject-the weakness of our navy and the smallness of our foreign shipping trade. Probably there is no other one question in which the general public is so profoundly interested, for it combines the tariff with a leading point in governmental policy, and touches the national pride in a matter where we have especial cause to be sensitive. Every one is hoping that we shall soon have a clange from the present situation, and the feeling is strong that some policy should be adopted to compass the desired end, but just how this can best be effected is by no means clear.
Mr . Roach brings forward a plan for the building of one bundred powerful iron screw steamships, with a speed of 15 and 16 knots, and of a burden of 2,500 to 4,000 tons, exclusively for the foreign trade, but of such special construction that all of them could, in thirty days' time, be armored with nine-inch steel plates. He would have the government encourage the building and running of these ships by American houses by the appropriation of three to five million dollars per annum in subsidies, and knows of one man who would then subscribe one quarter of the amount needed for the entire fleet. The vessels are to be built on plans approved by the government, but he gives drawings of a style of construction, with the vessels in sections, and the armor backed by coal bunkers, and quotes from the Chicf of Navill Construction of the British Navy to show fire of lieavy guns. These vessels, he claims, would be greatly superior to the best merchant ships heretofore built in their adaptability for war purposes, and quite equal to most of the modern iron-clads. The cost, also, is assumed to be less than would be that of simply taking care of an equal tonnage in time of peace, and not exceeding the annual appropriations of England and France to encourage mer cantile shipping.
It is evident that this project should be looked at some what differently from the question of free trade versus pro tection, as they affect American ships. How far the plan suggested by Mr. Roach would be practicable only a board of naval experts can determine; but, were it feasible, it is apparent that the ends sought must be attained by having the ships built as well as owned in this country, and manned by American seamen. To this extent the appropriation there for would be in the way of government protection and pro motion of American ship manuficturing and slipping interests. On the other hand, one bundred such powerful steam shifs, capable of conversion into efficient iron-clads at shor notice, would afford, in an emergency, a convenient naval force of considerable magnitude-a flcet by the side of whic our entire navy at present would make but a poor show.
The first thing to be looked at, in any question of expend ing money to strengthen the navy, is the uncertainty as to what would be the best form of construction. Arms and armor have cbanged so radically within a few years, and the important particulars, that any large investment on this account is not to he thought of. Who knows, for instance, but that our recent splendid progress in the science of elec tricity may not lead to the developinent of such forces, lieretofore unknown, as will make of little worth the best previous efforts in naval construction, and make the lightving as effectually our servant as steam and improved ex plosives now are? lockiug at the matter in this light is the best justification of our past temporizing policy with regard to the navy, but under some such plan as that pro posed by Mr. Roach the government would not have to expend much to largely supplement its naval strength according to present standards, leaving out of view entirely the national bevefit which such a fleet of American mer chantmen engaged in foreign commerce would cunfer. It concededly costs ten to fifteen per cent more to build a firs ' class iron slip here than it does in England; the capital to own and run the ship is also heavily taxed by our State laws, with no tax in England except upon net profits, and there are many petty charges here unknown abroad; but if it be possible to provide ourselves with a genuine " militia for the sea," a force on the water which would be a worthy counterpart of that which we always have on land, the plan would seem wortly of discussion on higher grounds than are usually considered in the questions which ordinarily make party issues.

THE COTTON MANOFACTURE

The "cotton year," statistically, end; September 1, when the preceding year's growth is substintially all marketed and the picking of the new crop is well under way, this part of the work extending up to the end of the year, and sometimes later. It is now certain that the crop of 1880-81 will exceed that of 1879-80, which was $5,761,252$ bales, and was the largest crop ever raised in the country up to that time The receipts reported up to August 10 were $5,735,3.56$ bales, against $4.914,226$ bales to the corresponding date last yea The quantity of cotton in a bale varies, although the im proved machinery for compresing and baling has tended to make all bales heavier the last few years. The total weight the last crop was $2,771,797,156$ pounds, the lightest bale being of Sea Island, weighing 3485 5 pounds, and the other descriptions varying from 460 to 509 pounds. Beside the American growth, India and Egypt together contribute
sale of the American staple with prices ruling as low as they have for a few years past.
Especial significance will be given to these figures this year, and to everything pertaining to the cultivation and manufacture of this great staple, by the exhibition to open at Atlanta in October, all the preparations for which are in a very forward state, and give promise of affording a worthy representation of the vast interests concerned. Many had wished that such an exhibition might bave been held in some Northern city, near the principal centers of manufac ture, but this would have reduced to a minor place wha will be a leading feature of the coming show-the illustra ration of the conditions under which the crop is raised and the practicill working of the appliances by which it is made ready for market. The exhibition, coming as it does right in the harvesting period, and in a locality where th gathering of the crop can be personally investigated by all visitors, will present more vividly to the minds of mechan ics, inventors, and business men many questions of import ance which have hitherto reccived comparatively little notice. These include not only such as relate to the merits of different improved gins and various devices to facilitate the picking and bettering the average condition of the crop, but the larger problems connected with the possibilities of the future in the more extensive utilization of the seed and the stalk for the production of oil, fced, paper, a substitute for jute, etc
We have had a large and healthy growth in the manufac ture of cotton goods for a few years past, which has covered a substantial development in this branch of industry in the South itself, where the factories already in operation ar making good dividends and many new ones are projected But we do not as yet make up into finished goods more than about one-third of the cotton we grow. In this department of industry Great Britain has long been a great way in advance of all the rest of the world, taking about one-bal of our raw cotton, and nearly all of that furnished by other cotton growing countries. For the past few years times have been "rather bard" with her in this specialty, as in many other manufactures, but the falling off in actual mount of production seems to have been due rather to depressed state of trade generally than the competition of manufacturers elsewhere. For the four years between 18: and 1875, her production exceeded $\$ 500,000,000$ annually the raw cotton costing from one-third to two-fifths of this mount, and the remainder going to pay for English labo and capital. About one fifth of this great total was ex ported, while our own exports of cotion goods for thos years averaged about $\$ 3,000.000$ yearly; they have since reached $\$ 11,000,000$; but our imports of cotton goods in 1880, notwithstanding a pretty stiff tariff, were but little below $\$ 30,000,000$
We come next to England in the manufacture of cotto goods, running more spindles than France and German together, but how far belind her we still are these figures ton plainly indicate. Undoubtedly lower wages and cheape capital give the British manufacturer his principal advan tages, to which are to be added better means of commun cation with different markets, long established connections tc.; but with all these in his favor he has been especiall alert, within a few years past, in seeking out and originating mprovements in the machiuery required in the business. Marked advances in this direction have been made in the cotton industry quite recently, and there is hardly any detail of the business for which some new device or machin has not been brought forward. The value as to advance ment in the product, or economical performance, of many of these supposed improvements are yet matters of debate n the trade here, but the exhibition at Atlanta, in whic British manufacturers of cotton machinery are to be promi uently represented, ought to be of great advantage to ou manufacturers geverally, on account of the comparison they can then make of their practical working. If the exh bition can effect anything to improve our chances of suc essfully competing in many foreign markets now closed us, so that we shall export more largely of finished instead of raw cotton, thus widening the field for the employmen of American labor and capital, its influence upon industry both here and in England, will be great.

Is CONSUMPTION CONTAGIOUS?

If our medical journals were to announce the steads approach to this country-say from China-of an ill-under stood, painful, and usually fatal malady, which if once established among us would certainly kill half a million of our citizens every year and ultimately carry off one in ever five of the entire population, it is safe to presume that th announcement would not be caluly received. As one man physicians not less strenuously than laymen, we should demand the most rigorous quarantine against the infected country. No effort would be accounted too heroic, no pre caution too costly, to shield our country from so disastrous an invasion. And if there were any doubt as to the specific nature of the threatened plague or of the mode of its trans. mission or inception, neither our medical and sanitary societies uor the government would rest until competen commissions were sent to investigate the matter. It would be accounted criminal indifference on the part of medic: and sanitary authorities to neglect to make a concerted and persistent effort to discover the causes and conditions of the plague, and how to protect the community from its ravages to cure its victims when attacked.
Would the urgency of the case be diminished in any
respect by the circumstance that the supposed invasion had already become a fact accomplished?
At first thought any one would reply: Not in the least; rather the contrary; for the evil in the latter case would be actual, not threatened merely, and the loss or saving of half a million lives a year is a matter of the gravest national mportance. Yet it is a singular fact that while we should be thrown into a panic if balf a million lives were threatened by a new disease, we accept as inevitable, almost with indifference, the certain killing of that number of people every year by an old and familiar malady. And our medical authorities tell us, withouta twinge of professional pride, that they really do not knuw positively how consumption is induced and transmitted, or whether it is communicable from the sick to the well or not; and worse yet, they confess without blushing that they do not contemplate any special or general effort to have such momentous questions critically investigated!
When balf a million of discontented natives of Europe throng to our shores in a single year we do not fail to appre ciate the importance of the gain, both immediate and prospective. When a larger number of our own citizens are cut off untimely by a disease which, while it destroys them, transmits a legacy of sickness and too often early death to their descendants, we mourn our individual losses, but make no adequate effort to put an end to the national loss by urging or aiding the scientific determination of its conditions, causes, and remedies. Already one in every five of our pop ulation dies of consumption, and the indications are that the conditions of our civilization tend to increase the death rate from this cause. If the disease is infectious, as many believe, the multiplication of cases may sooner or later reach a point -if its progress is unchecked--at which a perpetuation of our race and the civilization developed by it will become impossible. Other races and civilizations have disappeared, leaving no explanation of the secret of their decline. Others, we have good reasons for believing, have been exterminated by plagues peculiar to them, developed in all probability by something peculiar to their modes of living
That there is any imminent danger of so disastrous a result to our race and civilization from the increase of consumption no one but an alarmist would suppose; still it remains an impending possibility, more especially if there is any error in the common belief that the disease is not contagious or infectious.
In the current issue of the Scientific American Suppie MENT a valuable summary of evidence supporting the posi tion that the virus of consumption is specific and conmunicable is presented by Dr. Cogshall, of Michigan. The evidence is fuller and more cogent than is popularly believed and while it must be admitted that many cases of supposed communication of the disease may be due not to any transmission of virus but to similarity of unsanitary surroundings and family customs on the part of related victims, there is still sufficient evidence that the direct communication of tuberculosis is followed by pulmonary consumption to justify not only exceeding care in the intercourse of the healthy with consumptive patients and rigorous sanitation in connec. tion with all cases of the disease, but a special reinvestigation of the natural bistory of consumption by the medical profession
The suggestions which Dr. Cogshall makes touching the measures best calculated to prevent the ravages of consump-
tion, and his remarks' with regard to the superior efficiency tion, and his remarks with regard to the superior efficiency of bygienic treatment over medication, will be found worthy of thoughtful attention. The position he takes with regard to the curability of consumption, even in advanced cases, through improved nutrition and a judicious hygiene to the exclusion of all nostrums and so-called consumptive cures, is decidedly hopeful; and we believe that the most of our physicians will measurably agree with him. We wish we could be so well assured of their desire to investigate anew and thoroughly the question of the communicability of the virus of the disease.

opening of the paris electric exhibition.

The International Exhibitio officially opened August 10. Much work remained to be done to put all the exhibits in proper position. The delinquents were mainly in the British and American sections The French, German, and Belgian sections were more for ward. The electric railway was not completed. The Tissandier balloon was ready and attracted much attention. President Grévy, the ministers, and a few other privileged persons were treated to a telephonic musical entertainment. Four wires had been placed in communication with the opera, and the voices of the opera chorus were beard with perfect distinctness.

SCHAEBERLE'S COMET.

The approaching comet (C 1881) discovered by Professor Schaeberle, July 13 (Scientific American, page 104), is more than fulfilling its early promises. Though dinmed by the light of the full moon it is already visible to the unaided eye and is rapidly increasing in apparent size and brilliancy. It is about fifteen times as bright as it was a month ago Its bright nucleus, of an estimated diameter of from ten to twelve thousand miles, is surrounded by a bazy envelope or coma perbaps frfteen times as much in diameter. Its tail is said to surpass that of the great comet of 1858 , the most conspicuous comet of the century, when that comet was as far from perihelion. The perihelion passage will be about August 20 , and the comet will approach the earth most
nearly a day or two after. About that time it will be at its brightest. Like comet B, now slowly going out of sight, the new comet remains above the horizon all night, but its he eavth such that it will rapidy disappear atter it passes of the Great Bear, the tail pointing toward the north star.

remarkable instance of retention of heat

 by the earthEvery one knows that heat may be retained for a lon ime in a bed of ashes, but it is seldon that the period has and

My attention, a year ago, was called by Mr. Hudson, the manager of the Albion Mines, in Pictou County, Nova cotia, to a peculiar area including about two acres of ground, where the snow never lies long without melting and the frost never penetrates far, even in severe winter All over this space are scattered fused masses of clay and ironstone, resting on the outcrops of what are locally known
as the "main" and the "deep" seams of bituminouscoal, as the "main" and the "deep" seams of bituminouscoal,
which at this point are about 450 feet apart. The outcrops which at this point are about 450 feet ap
On inquiring as to the probable date of the fire that had eft this recrement of scorix and ashes, I was told that this portion of Nova Scotia was visited carly in the seventeenth entury by French explorers, and that an account of the arbor called Pictou was given in 1672 by the Governor of he Gulf of the St. Lawrence.
The name-Pictou-is derived from a Micmac word, signifying fire; and the traditions of the Indians still point to this locality as having been, a long time ago, the scene of a fierce and long-continued fire, which made them avoid the lace as being visited with the anger of the gods.
The coal measures of Pictou were discovered in 1798, a he very point now described; and the discoverers represented he spot as covered with ashes over which grew Jarge hemluck trees. Some twenty years ago, while a drain was being cut in this locality, a tree was felled that showed 230 rings of annual growth; aud three feet below the root of this tree a large piece of wood was found that had been fashioned by me sort of ax.
In Mr. Harris
In Mr. Harrison's opinion, at least 300 years must have passed since the fire at this point was extinguished. How was caused and how long it burned are wholly matters of conjecture. The ignition may bave been effected by chemical action, such as often causes what is called " spontaneous combustion" in heaps of slack about coal mines; or it may have followed a stroke of lightning; or the blaze of a camp fire may have been communicated to one of the "springs" crops of the unusually thick seams for which the out crops of the unusually thick seams for which the Pictou
area is celebrated rea is celebrated.
Last spring it was found necessary to sink a small pit at the outcrop of the deep seam on this area, in doing which a bed of bot ashes was reached. I am indebted to Mr. Edwin Gilpin, Government Inspector of Mines, for the facts, and, o some extent, for the terms in which those facts are presented. Mr. Gilpin prepared for me a comparative view of sections of the same strata made only a short distance apart, the design being to exhibit tire changes made by igueous action.

Present Section.
Technological Institutes in England.
The Prince of Wales has lately accepted the presidency有 an institute of technology, called the City and Guilds of London Institute. It is located at South Kensington, and is intended to be the central institution of its kind for England and her provinces. The corner stone of the building was recently laid by the Prince, who in reply to the Lord Chancellor's address relating to the objecte of the movement said: "Hitherto English teaching has chiefly relied on training the intellectual faculties so as to adapt men to apply their intelligence in any occupation of life to which they may be called; and this general discipline of the mind But during the last thirty years the competition of other ations in manufactures which once were exclusively carried on in this kingdom has become very severe. . . . Other nations which did not possess in such abundance essence of strength, compensated for the want of and iron the essence of strength, compensated for the want of raw ma-
terial by the technical education of their industrial classes; and this country has therefore seen manufactures spring up elsewhere, guided by the trained intelligence thus created. Both in America and in Europe technical colleges for teaching not the practice but the principle of science and art nvolved in particular industries, have been organized in all the leading centers of industry. England is now thorJughly aware of the necessity of supplementing her educaional institutions by colleges of a like nature."

The Medical Congress and Sanitary Exhibition in London.

The Seventh International Medical Congress closed its Tessions in London, Mugust 9 . In connection with the con gress, which called together five or six hundred delcgates, there was a sanitary exhibition to which nearly five hundred sanitary engineering firms and manufacturers of surgical instruments and apparatus contributed. This feiture was particularly interesting and valuable. The different sections ncluded: Surgical instruments and apparatus; appliances of he ward and sick room; electrical instruments and appliances; microscopes and optical apparatus; apparatus of other kinds used in the investigations of disease; appliances used in teaching medicine; domestic and hospital architecture; ventilation, lighting, and warming; sewerage and drainage; water supply and filtration; appliances used for the treatment of the sick and wounded during war; street ambulances, etc.; drugs, disinfectants, medical dietetic articles, and mineral waters; applications of hygienic principles to food and dietaries, clothing, etc.; school furniture; nd miscellaneous articles for the promotion or maintenance of proper sanitary conditions.

Mining under Fire and water.

In his annual report for the Eastern District of Luzerne and Carbon Counties, Pennsylvania, Mine Inspector W. S. Jones states that Butler Mine fire, which has been raging at Pittston for nearly five years, is now under control, and he anticipates no further serious consequences from it. The company surrounded the burning area with a wide ditch, varying from fifty to one hundred feet in depth, with a view to isolating the fire completely. A peculiar phase of mining is shown in the fact that while the fire raged in the upper vein the miners worked in the vein directly beneath, and at times the water dripping from above was scalding bot. This has been remedied by a costly system of ventilation. In view of the frequent fires in coal mines, Mr. Jones suggests that a strong continuous pillar of coal be left on the dividing line between collieries to prevent the spread of the flames from one mine to another. He points out a new source of danger in the fact that many collieries are now working under the beds of the Susquehanna and Lackawanna Rivers, and there is every reason to fear that sooner or later "caves" will occur, in which case the rivers would rush into the mines beneath with disastrous results, which would be multiplied by the indiscriminate system of working from one mine into another.
The present section is taken at the new pit sunk by the Albion Mines Company on the burnt area; and what termed the original section is one given by Sir W
Logan ("Geological Survey of Canada," 1869, p. 69).
The surface cover consists of clay with bowlders of sandstone and layers of gravel. The small portion of the 144 feet of black argillaceous shale filled with ironstone balls passed through by the shaft has been converted into an almost continuous mass of scorix, very hard and compact, and difficult to drill through.
The next layer represents the upper portion of the deep seam, which bas been completely burned away, leaving a compact, laminated, reddish ash. And it was in this ancient bank of ashes, known to be more than 300 years old, that the retention of heat was observed, which it is my object by this communication to place on record
Immediately on opening the pit the heat of the ashes, at a point 30 feet below the surface, was tested by a reliable thermometer, and was found to be 80° Fah., at a time when the surface temperature varied from a minimum of 45° to a maximum of 65° Fah. Soon after an opening had been made through the pit to the workings in the mine the air currents caused the temperature to fall rapidly to the normal point.
The consideration of the gradual radiation of the heat of the earth suggests the idea that abnormal increases in the temperature of deep mines may be due in some cases to the heated matter, which are, geologically speaking, modern, although they mav: be historically ancient.

Recent Changes at the Patent Office.

Mr. Robert Mason, of Tennessee, promoted to be principal examiner; Marcellus Gardner, New York; John W. Babson, Maine, and Scliuyler Duryee, New York, to be chief of divisions. Samuel B. Roane, New York; Reuben S. Parks, Ohio, and Louis W. Sinsabaugh, Ohio, from second assistant examiners to clerkships of class four. To be second assistant examiners-David Purman, Wisconsin; Marshall B. Cushman, Massachusetts; Edward M. Bentley, Connecticut; Albert C. Fowler, District of Columbia; and William Auginbaugh, Ohio. To be third assistant examiners-John W. Clements, District of Columbia; James B. Littlewood, lllinois; Rufus A. Morrison, Robert G. Read, and Walter F. Rogers, Pennsylvania.

First Steel works in Colorado.

The South Pueblo Steel Works just being completed at a cost of over $\$ 1,000,00 \mathrm{~J}$, are the first establishment of the kind in the State. The company expect to be ready to turn out steel rails in December, and have contracted to furnish the Denver and Rio Grande Railway Company with thirty thousand steel rails for their extension. This will be about the capacity of the works for the first year.
The company own several mines near Placer and South Arkansas, to which side tracks will be extended by the railroad company.

[^0]:

