hot water are added, the mixture stirred, and the suspended matter allowed to settle
The liquid is next filtered through a small piece of goo filter paper adjusted in a glass funnel, the filtrate being col lected in a small clean vessel of porcelain or glass. The residues are shaken up repeatedly with small quantities of clean water, the washings being thrown on the filter, and the filtered liquid allowed to mix with the clear acid copper filtrate. The dish containing the residues, as well as the filter, must also be rinsed with a little water, so that none of the copper liquid may be lost by adhering to them. If these operations have been properly conducted all the copper will be contained in the filtered liquid. The decomposing cell into which this liquid is next placed is shown in the illustra tion.
The cell is an ordinary flat-bottomed drinking glass. The strips, A, b, and b, are of thin platinum foil, three inches in length and two int width. Over the upper end of each piece a strip of lead foil is doubled, with the battery wires inserted and pinched between the lead and platinum
The lead-bound edges are forced into slits in the strip of wood, B, which suffice to hold them firmly enough in posi tion. The outer strips, b and b, are joined by wires and connected with the positive pole of the battery, the middle plate, A, being connected with the zinc pole. Two cell of any of the common gravity form of battery used on telegraph lines may be used, but a single element of the bichromate (carbon) type is preferable and more convenient.
In using the decomposing cell the plate, \mathbf{A} (minus the lead binding), is first heated to redness for a few moment to cleanse it, then weighed and slipped into position, with as little handling as possible. The battery being set up and connected properly, the acid solution of copper is poured into the glass, the plates immersed in it, and the decomposition allowed to proceed undisturbed until the liquid has lost its color, and a drop of it, when brought into conact with a drop of strong ammonia water on a whit porcelain surface, no longer develops a perceptible blue color. The plates are then lifted out, with care if the deposited copper does not adhere firmly, and the liquid n the glass is decanted and replaced by boiling water This cleanses the plates, and the heat imparted by it causes hem, when taken out, to dry quickly. The plate, \mathbf{A}, is a once detached, with any filaments of copper which may have separated in the cell, and weighed. This weight, minus weight of platinum, corresponds to the weight of metal lic copper in the sample of ore taken. If the sample weighed one-third of an ounce avoirdupois, multiply the weight in grains of copper fou into terms of pounds per ton.
Iron, zinc, nickel, cadmium, and other minor impurities, may be present in the copper solution, but so long as there is any copper present no considerable quantity of any of these is likely to be thrown down with the copper from the acid solution with one cell of battery.

Larce Schools of Sperm Whales.

Several incoming shipmasters have reported seeing schools of sperm whales working southward along the New Jersey coast, of late. Captain Sawyer, of the bark Ibis just arrived from Pensacola, reports " two miles of blackbacks and water spouts" off the Carolina coast, July 16 He said to a Sun reporter: "It was on Saturday and Sunday when we encountered these sperm whales going south or southwest, as if to round Hatteras. They were going very slowly, backs above the water, and were spouting all of the time. They were strolling along in groups, sunning themselves half an hour at a time, and then taking a header, and coming up to spout.
"First we met two schools of about 100 each, I should say. Occasionally they frolicked and flopped about heavily in a sort of dignified and elephantine sport. More followed, and the next morning, Sunday, we saw more. Altogether there were over 700 on the picnic. We passed within 500 feet of two big fellows, but they seemed preoccupied and didn't notice the ship. I don't think they knew we wer here."
"Had you any means of capturing them?"
'No; and it did seem a pity to have so much valuable sperm oil indolently swimming away from us. There wer some big whales there too. I said to Limerick, one of my men here, ' Now, there's a fellow that's worth $\$ 2,000$,' and he must have been, and there were bigger ones in the school. It would have been a harvest for a whaling slip. A million dollars in sperm whales is too good a haul to let go by, but we couldn't do anything. Occasionally I've seen a sperm whale cruising along as far south as Savannah, and once in a while I've heard of whale ships off about there. But I never saw so many whales at one time before anywhere."
It will be remembered that the Bermudas used to be the center of the sperm whale fisheries of the North Atlantic. Of late years the pursuit of whales has been almost aban doned, and they seem to have multiplied rapidly.

Birch Bark Rubber.

It is said that a dense black gum may be obtained from the outer lityers of the birch tree bark by distillation, which possesses all the ordinary properties of gutta percha, and has the additional merit of resisting the deteriorating influence of air and the corrosive action of acids. This advantage makes it useful as an ingredient of India-rubber and gutta percha, which it renders far more durable. Whether these statements are true remains to be proved.

A NOVEL BOTTLE

Dr. J. B. Moore, of Philadelphia, in Druggists Circular, has said that "it often happens, in dropping a medicine from a bottle a little too full or with a badly formed lip, the most steady and practiced hand can with difficulty drop a dose even with a near approach to accuracy." he nervous and careworn attendants who are so frequently found in the sick chamber the task of dropping medicine ecome doubly ilkson and and especilly it has to be din in cases of lingering illnesses, das ight sometines forsses, day and night, sometimes for weeks at a time. Besides, it is some
times impossibte, no matter with how much care and judg. ment the dropping is performed, to prevent the number of the prescription and the directions on the label from being defaced, if not entirely obliterated, as is often the case, and the outside of the bottle becoming stained and bedaubed with liquid, and especially if it be any of the stronger acids or iron preparation; and the trouble does not stop here, for the hands are liable to be stained, and the clothing, the furniture, or any damageable article that the medicine may come in contact with may be ruined or soiled."

In the ordinary prescription bottle, during the act of drop pingor pouring, the liquid is often two-thirds above the low er lip, and hence the aircannot find ready entrance, and eithe dropping or pouring becomes difficult and vexatious. In the improved bottle the liquid level (even when full) is alway on a level with the lower part of the neck. Its inclined sid and crooked neck form double inclincd planes, which, with its shape and the airway, make it a complete dropper, obvi ting all the objections to the ordinary bottle. The liquid will not, during the act of pouring, "run back" outside to deface the label, the hands, or furniture. The shape secure steadiness; but should the bottle topple over a cork inserted in the recess on the inclined side will prevent breaking or pilling of the liquid, and the cork thus used will afford sup port and aid as a rest on dispensing medicines.
This bottle may also be used for table sauces, for perfumry, for patent medicines-for any purpose for which the rdinary bottle is employed
It does away with the necessity of purchasing a dropper which takes time and trouble to adjust in the ordinary bot le, and which, besides the expense of first cost, is liable to be out of place or lost. In the new bottle the dropping feature is a part of the bottle and goes with each one, while the bot tle can be made at a cost (not above that) of those imperfect and annoying ones, now in daily use by millions of people It will become a necessity in every household.

The bottle bas a conical or pyramidal shape, so that the greater part of the weight of the liquid in the vial will be concentrated at the base of the same, thus giving the bottle or vial a much better bearing and protecting it from being hrown over as easily as the bottles in use at present. This bottle has an inclined neck, with a lip or a bead at the low est point of the edge to facilitate pouring the liquid from the vial in single drops. If the neck of the vial is inclined the flow of the liquid can be controlled much better than if the neck is straight. As is shown in Fig. 2, the liquid rests mainly on the inclined side of the bottle, and as it canno low up this inclined surface very small quantities of the iquid can be drawn by slightly lowering the neck of the vial. The vial is provided with an air channel for conveying air into the interior of the vial to prevent bubbling of the liquid. The air can pass through this channel from the neck to the extreme rear end of the vial. The cork is secured in the
neck of the vial by means of a cord or wire, catching on a projection of the neck of the vial. For further information address the inventor, Mr. W. T. Goldsmith, 64 Corn street Atlanta, Ga

Conreapandeme.

A Remedy for Sea Sickness.

To the Editor of the Scientific American

Having noticed from time to time the different remedies suggested for sea sickness, I concluded to give you my ex perience through two voyages of several days' duration, one during particularly rough weather. My first sensation on reaching the ocean was that of being in a very high swing The same sensation of nausea immediately exhibited itself It struck me at once that probably the same means adopted o overcome the sickness in the swing would prove effective u the sea, that was, to force the swinging. I therefore watched the motion of the steamer, and as she was about to descend I made an effort as though to force her down. Con tinuing this for a short time the feeling of nausea disap peared, and I had no recurrence of it during either vnyage separated by several months' duration. I have no idea that every one could be so successful, but I fully believe that nearly any one with a little determination and strength of stomach can easily overcome sea sickness by this means.

Helena, Montana, August, 1881.
How to Prevent Car-Sate Robberies
To the Editor of the Scientific American
The late roblery of the safe of the express company on the Rock Island road leads me to offer the following plan to prevent such cases: The safe to be provided with combination locks; the safe to be locked by the express company's gent at New York city on leaving that place; the number of the combination to be telegraphed to agents of the express company at Chicago, San Francisco, and any intermediate places; the safe to be opened by them ou its reaching thei places. The messenger in charge of the car, not knowing the combination, could not, even by compulsion, open the safe, nor could it be opened by any practicable means except a the proper places.
Weston, Mass.
Walter L. Smith.

MISCELLANEOUS INVENTIONS

An improved device for thawing out sink spouts has been patented by Mr. Amos Stevens, of Fairfield, Me. A pipe of considerable less diameter than the sink spout is rasse through this spout and is as nearly in the middle of the pout as possible. The upper end of the inner pipe is slightly apered outward, and passes through and is fastened to slotted plate forming a strainer. This plate supports a cup fitting into the upper beveled end of the inner tube. If the water in the sink spout freezes, hot water is poured into the cup, from where it flows through the inner pipe and thaw out the sink spout in a short time.
Mr. George O. Denison, of Waterloo, Ind., bas patented an improved bag holder made low in front and high in rea to expedite the filling of the sack and prevent the grainfrom running out at the rear of the bag holder. It is provided with suitable hooks adapted to be insertcd into the uppe end of the sack to secure it to the bag holder. The holde is partly supported by a coil spring.
An improvement in horseshocs, patented by Mr. Sebas ian K. Minton, of Des Moines, Iowa, consists in the com bination with halves hinged together at the toe and having heir upper faces beveled inward of the toe calk, having a hole and slot, and heel calks having right and lelt screw hreaded holes, by which the heel of the shoe may be ex panded.
Mr. William T. McLean, of Sidney, Ohio, has patented an improvement in that class of earth scrapers the body of which is made of thin sheet steel with wooden backboard, the lower edge of which has always heretofore been secured to the scraper by means of rivets passing through the bot tom of the scraper in such a manner that the rivet head soon wear off by abrasion and let the backboard loose which wholly disables the scraper for further use until repaired. The improvement consists in the construction and arrangement of the devices for more perfectly securing the wooden back to the stcel body without the use of rivets.
An improved drag saw has been patented by Mr. Samuel Clemens, of Rockport, Ill. The invention consists in hav ing the saw blade pivoted at one end of a lazy-tongs con nected with the framework of the apparatus, and in having a hand lever pivoted to the said framework and connected with the lazy-tongs by means of a pitman to operate the lazy-tongs.
An improved sand guard for car axle boxes has been patented by Mr. Henry Roth, of New York city. The object of this invention is to improve the construction of the sand guards for which Letters Patent No. 235,298 wer issued December 7, 1880, to the same inventor, in such manner as to make them more effective
An improved wagon step, patented by Mr. Henry F. W. Koehler, of St. Joseph, Mo., consists in a novel arrangemen of a cam lever, a slotted crossbar, two connecting bars, and step or steps, all arranged in a frame attached to the wagon body. By this means provision is made for lowering he steps for use or turning it up out of the way by moving the lever in one direction or the other.

Modern Bows and Arrows for Sport

The increasing popularity of archery as a summer pastime has brougbt the bow and arrow once more into common use and made their manufacture an industry of considerable importance. In a long review of the development of archery clubs and the modes of shooting practiced in and about this city, the Sun furnishes the following information touching the construction and cost of materials used:

The best bow is one made of yew. Some yew hows that are very costly look crooked to the eye. The skillful archer, however, explains that they are quite straight. It is true that a bow may bend in and out in little irregular curves, but it is called straight all the same, because the artist who made it has aliowed the grain of the yew to take its own course around knots, and has not weakened the bow by attempting to smooth it down. These strips of yew wood, from five to six feet long, and properly tipped with horn, may be worth $\$ 100$ apiece, and they cannot be bought for less than $\$ 20$ apiece. It is so difficult to get a piece of yew of equal quality throughout, that when a good piece of the wood, three fect long, can be obtained it is split, and two of the pieces are spliced. This gives a guarantee that each half of the bow will have equal degrees of elasticity at th corresponding parts.
You may either bave a " self" bow or a " backed" bow. A self bow may be spliced in the middle, but it must be made all of the same kind of wood. A good backed bow is made in this way: A piece of dark snake wood, motlled and lined by nature like the back of a serpent, and very beautiful when polished, is trimmed into shape as if it were to be the sole material for the bow. It is elastic, but it is not strong. One side of it is trimmed into an eval or semicircular shape, but the opposite side is trimmed flat. Upon this flat side is glued, in the most careful manner, a tough slat of hickory. This gives the bow strength, for when the bow is bent the snakewood must contract upon itself, and the hickory, being on the back, must stretch. Such a bow is worth from $\$ 9$ to $\$ 12$.
It is very important that the wood of a bow be properly seasoned. It should not be too dry. If the wood is too dry the first thing an archer knows he will find a chrysal in it. When he finds a chrysal in his bow, he must wind about the bow over the chrysal a fine string saturated with glue A chrysal is a small crack in the bow, which is liable to en large and ultimately to cause fracture. It is a mistake to suppose a bow when at rest should bend a little backward It rather should "follow the siring" a little. Otherwise it jars the arms when the arrow is discharged, and should the string break the bow is apt to break. The wrapping of plush about the bow in the middle, where it is grasped when bent, is called the bandle. The upper edge of this handle is placed about an inch above the middle of the bow. When the "weight," that is to say the power it takes to bend a bow, is to be tested, the handle is placed in the hook of a steelyard and the string loaded until it is drawn down twenty-cight inches for a gentleman's bow, and twenty-five inches for a lady's bow. Gentlemen's bows usually range from forty-five to sixty pounds, and ladies' bows from eight een to thirty five pounds.
Arrows in weight range from two shillings and three pence, lowest weight for ladies, to five shillings and six pence, highest weight for gentlemen. The method of weighing, or rather of recording the weight of arrows, has been handed down from carly times. They were weighed against silver money, and great care was exercised then, as now, in making them of accurate weights to suit different persons and different bows.
An arrow is made up of the "pile," or metal point, the "stele," or shaft, the feathers, and the " nock," or notch, of born. It may bes "barreled" (largest in the center), 'hobtailed"(larger at the point than at the fea ther), "chested" (larger at the featber than at the point), or "straight" (of even thickness throughout). Arrows may be " self," that is, made of one piece of wood, or they may be "footed" with a piece of hard wood at the pile end. The finest arrows are said to be of red deal footed with lancewood. When the arrow is laid in position it should be at right angles with the string, although some archers think they can cause the arrow to take a higher or lower flight according as they nock it lower or higher on the string.
At the recent third grand annual meeting of the National Archery Association in Prospect Park. July 12, 13, and 14, tbe distances for ladies varied from 50 to 60 yards, and for gentlemen from 50 yards to 100 yards. The number of ar rows fired by one contestant in a match varied from twentyfour to seventy-two,
Froward, an English archer, is said to have shot an arrow from a 63 -pound self-yew bow 340 yards.

PROPER POSITION FOR FLOATING.

Paste Diamonds.
The Providence Journal, which comes from the vicinity of immense cheap jewelry factories, has the following on " paste diamonds," which are simply glass of great purity:

When imitation diamonds were introduced, it was found that to cut glass precisely like a diamond did not produce the sparkle characteristic of the diamond; therefore to secure this the flat surface on the top of the diamond was made pyramidal on the imitation, and, of course, ended in a point. By certain laws of light this pyramidal surmounting of the glass provided for the required distribution of ray surface to produce the diamond sparkle, or something akin to it. A real diamond is never cut with the pointed apex, and hence it was possible always to distinguish the real from the spuri ous. Butafter a time the buying public learned this little circumstance about the cutting process, and other means were resorted to. The glass was cut precisely like the dia mond, and the sparkle was given to or provided for it by a coating of white foil applied to the lower side of the glass. The setting of many diamonds is arranged in such a way that the buyer may see the under side of the gem. This was overcome by arranging the setting so as to prevent inspection of this kind, which could not be done unless the stone was dismounted, if we may use tbat term.
"With these facts known to the buyer of diamonds, he need not be deceived except in the latter case, where the setting hides the under surface, and if he has any doubt about that he can let it alone. But the object of imitation diamonds is not to deceive buyers; if it was they would not be offered for two dollars. No one, however deficient in diamond criti cism, need be deceived in buying diamonds. No dealer of any repute ever attempts to sell imitation for real diamonds. No reputable man ever thought of it. His reputation and occupation would soon be gone. Tbere are very few person who buy trinkets who do not test their wares at other than the buying place, particularly if the gem is a costly one, anct it is certain that no one was ever presented with jewclry of presumable worth who did not set out at once to learn its purity and value, and very disappointing it has doubtless been to find in some cases that the gold or diamond was only brass or glass.'

A Large Collection of Tobacco Pipes.
A collection of tobacco pipes, now on view in London, is pronounced by the Times one of the most interesting of minor art exhibitions. The collection includes specimens of all countries, and belonging to many periods, of the graven images and idols of clay which bave been dedicated to the worship of tobacco. From France come pipes of to the worship of tobacco. From France come pipes of
Sèvres made in the national porcelain factory; from Ger many old Dresden pipes and the pipe formerly smoked by the giant in the procession of the guilds at Cologne; from Holland several hundreds of the æsthetic clay called "Early Dutch," collected by Heer Van der Want, Master of the Pipemakers' Guild at Gouda. The Dutch contribution includes also specimens of the bridegrooms' pipes, clay ornamented with ribbons, which the farmer of the polders smokes on the day of h is wedding and then lays by on the shelf, to be taken down once a year when the anniversary comes round of the momentous occasion. This pipe is regarded with great interest by smokers as an example of the various uses which tobacco serves in calming feelings of ecstatic joy and mitigating the pangs of regret. There are 700 early English pipes; Scandinavian pipes, with modern Runes inscribed upon them; Siberian bowls, the consolation of the exile, made of hard wood and mammoth ivory; Basque pipes, and the costly meerschaum and amber toys smoked by pachas in their seraglios. Ninety-six of the Japanese pipes are in ivory, twenty-four in wood, horn, rock crystal, agate, etc. The carvings illustrate the social life of Japan in its most amusing relations. One pipe which formerly belonged to Enomoto, foster brother of the Emperor, bears the imperial symbols, and the central portion is entirely inlaid with gold. The bowls are extremely small. A pipe contains merely a whiff. A piece of tobacco is rolled up to tbe size of a pea, and one long, soothing exhalation exhausts it. The smoke is re-
mouth from being submerged, either by throwing the head back, as shown in the cut, or by paddling with the hands. It is true that a very slight movement of the hands by a he is fatiguing, and is pretty sure to be unskillfully continued, novice.
Unless one is exceptionally lean or deficient in lung capacity the art of floating with the hands under the bead or extcnded above the head can be quickly learned; and in case of sudden emergency the non-swimmer will find it a certain and easy way of sustaining himself on water until help arrives.
tained for some time in the lungs, as usual in the East. It is no matter of surprise that, according to the narralive of the Earl of Elgin's mission, a Japanese will smoke fifty such pipes iv a morning.
From China come the opium pipes, which balance the finances of India-tubes of jade or tortoise-shell, bowls of silver and enamel. Hookahs from India, the calumets of peace and war from North America, the pipes of the Aztecs and the Caribs, the latter called "tabaco," whence the European name of the weed originally consumed in them is said to be derived; pipes smoked at the great "customs" in Central Africa, the sperm whale's teeth carved into bowls, pipes from Caledonia and New Guinea, are also to be seen.

