munication made to the Société d'Encouragement gives us the following details in relation to the subject.
The manufacture embraces several important operations: (1) the manufacture of the nitro-cellulose or pyroxyline; (2) forming the mixture into slabs and then rolling them; (3) pressing and heating the rolled product in order to form blocks; (4) cutting the blocks into sheets of various thicknesses, according to the purpose for which they are to be used; and (5) heating the products.
The pyroxyline is obtained from cigarette paper of very good quality. This paper, in rolls 13 inches in width and 33 to 35 lb . in weight, is unrolled mechanically and immersed in a mixture of 5 parts of sulphuric acid of 66° with 2 parts of nitric acid of $42^{\circ} \mathrm{B}$., kept at a temperature of about 35 degrees. The cellulose of the paper, after twelve or fifteen minutes' immersion, becomes changed into nitro-cellulose, which is soluble in a mixture of alcohol and ether. The solubility is tested by a hasty trial. The product is then removed from the acid bath, the liquid is expressed from it, and it is thrown into water. After a preliminary washing it is placed algng with water in a pulp vat and triturated from two and a half to three hours in order to obtain a homogeneous paste. The pyroxyline then has to undergo bleaching, the operation being effected by the use of a solution of permanganate of potash. When contact with this reagent has been sufficiently prolonged, the excess of permanganate is eliminated by washing. Then the mass is reated with a solution of sulphurous acid in order to dissolve the oxide of manganese, and the operation is finished
by a series of washings in water. The whitened pyroxyline by a series of washings in water. The whitened pyroxyline
is put into boxes lined with filtering cloths and then submitted to mechanical drying. On being taken from the hydro extractor the material still retains about 40 per cent
of water and is found to be in a state fit for the preparation of water and
It is then passed through a mill having metallic runners, first alone, and afterwards mixed with the proper quantity of camphor (which has been first rolled), and with coloring matters if it be proposed to make opaque celluloid. After a dozen successive grindings, the mixture is moulded in a metal frame, by hydraulic pressure, so as to give slabs that are arranged and pressed between 10 to 12 sheets of thick bibulous paper. The water in the mixture is then gradually absorbed by the paper, the latter being renewed 12 to 15 times. The slabs thus dried and reduced to a thickness of about one-tenth of an inch are broken up between bronze cylinders armed with teeth. The pieces are allowed to macerate for about twelve hours with 25 to 35 per cent. of alcohol of 96°, and then the coloring matters soluble in alcohol are added if it be proposed to have transparent, colored celluloid. The mixture is then passed through the rolling mill, the cylinders of which are heated to about 50°
The operations are performed upon from 20 to 28 lb . at once. The rolling takes from 2.5 to 35 minutes and terminates when the material has become homogeneous. Thereis then obtained a sheet of about half an inch in thickness, which is cut into pieces of $231 / 2$ by $311 / 2$ inches. The latter are superposed on the table of an hydraulic press in a metallic box having double sides and being tightly closed, and allowing the heating to be done by a circulation of hot water. The box is heated to 60° during the whole duration of compression, which lasts about four hours. At the end of the operation a current of cold water is passed into the box, the pressure is removed, and there is then obtained a very homogeneous block of celluloid about five inches thick. The blocke are then taken to the planing machine and shaved into sheets varying from 0.008 to 0.12 of an inch in thickness, according to the purpose for which the product is designed. These sheets are next placed in a ventilated stove, heated to 55°, where they remain for from eight days to three months, according o their nature and thickness.
In this description it bus been only a question of celluloid f a uniform color, either transparent or opaque, imitating pale tortoise shell, coral, ebony, turquoise, etc. When it is desired to obtain a product to imitate amber, jade, spot ted tortoise shell, etc., each of the ingredients of uniform color which is to compose the material is prepared separately, and then mixed to be afterwards united by press ure.
As the principal properties of celluloid are well known, we will not recall the numerous applications which may be made of it; but there is one, however, which has been pointed out by Colonel Goulier, that is of interest to engineers.
In passing from dryness to extreme humidity, celluloi elongates very little, and much less than the thin horn which is used in making the protractors that are occasionally em ploved in topography. There is every inducement, then, to make these instruments of celluloid, since they will prove
less fragile than those made of horn, and more confidence can be placed in the scales and the angular divisions.

STEAM BOILER NOTES.

The dilemma with which the Philadelphia steam user is now struggling is becoming serious, whiie the situation occu pied by the boiler inspectors is scarcely less grave and perplexing. The scare began with the Gafney \& Co. explowhich was fully illustrated and explained in No 2 of vol xlv., of the Scientific American. It was discovered very suddenly, when this event took place, that cast iron was a suddenly, when this event took place, that cast iron was a
dangerously treacherous material for boiler construction. This fact should have been in the possession of the designer the maker, and the engineer, and more emphatically and
above all others, the city and insurance inspectors, whose
special business and duty it is to know, should have known are in great part transformed English, and who without whether or not this particular boiler was up to their standard doubt are more advanced in evolution than those of Europe of strength, namely, four or five times the stipulated load. And they not only should, but they do know, or have it on record, whether cast iron boiler heads of this diameter and thickness are in the habit of blowing out at the pressure stipulated in their certificates. If these inspectors now decline to pass all cast iron boiler heads at a desirable pressure they seem to stultify themselves. If they refer the matter to the city attorney, as is reported they have done, or to any other lay authority, their dilemma is complete, as they thereby acknowledge their ignorance of the whole subject. In the mean time the owners of similar boilers are in a state of mind not to be envied. If they decline to insure their boilers they take a risk that they now know less about than ever before. If they insure at the present presstire they seem to have little of the protection to their lives that promised by insurance certificates, and they are, moreover, iable to suits at law if it can be shown that they have broken the contract. If they reduce their working pressure for the sake of insurance and safety, they will at once require
additional boiler capacity, and not only that, but loss in working low steam in the engine will also follow.
The inspectors and the jury searched in vain for a defect in the broken head after rupture, when it should, if it existed, have been so plain that a runner could read it. In casting about for a plausible argument they charged the fireman with wetting the head with cold water from his quenching hose. They treated the gaping crowd at the wreck with tories of anomalous and exceptional cases of fractures that had been seen or heard of in their experience, all of which does not reassure either the owner or the workmen whose ives are daily exposed to such accidents.
Now it naturally occurs to the thoughtful practical engineer to inquire what has so suddenly brought about this state of things in a city justly noted for the number of its celebrated engineers and manufacturers. He remembers to have seen hundreds of such boilers, and he cannot believe that he has all the time been so near destruction as would now seem when in their vicinity. For forty years past cast iron, when not exposed to the direct action of fire or to a similar violence, has shown itself as reliable a structural material for boilers as for any other engineering device, and for that length of time 60 to 65 pounds of steam per square The have been a common load for land boilers of this size. the supposed load existed upon the Gaffney boiler head, or that the inspectors and experts are all deceived as to its oundness and dimensions.
The boiler in J. H. Richardson's mill, near Terrell, Texas, exploded June 20, killing two men outright and crippling four others.
An elevator boiler at Arkausas City, Ark., exploded June 6, killing John McCullough, the engineer, and seriously wounding Pat Boland, the fireman, and Amos Ramsey and To Wallace, carpenters.
To all therefore a careful perusal of the report referred to above is earnestly recommended. It is a simple statement of stubborn facts, and the lesson will be obviously to take care of the safety valve and search for inevitable deterioration so that the supposed margin of safety may actually exist. Whether your boilers have cast iron heads or not

CENTRIPETAL AND CENTRIFUGAL MOTIONS IN
CENTRIF
ANIMALS.
In a memoir published in the Revue Scientifique, last June on "Writing Regarded from a Physiological Point of View," the author, M. Carl Vogt, after a lengthy discussion of centripetal writing (from right to left) and centrifugal (from left to right), drew the conclusion that the direction of the lines does not depend upon a physiological necessity, but only upon external conditions. Dr. G. Delaunay, who has for a long time been making researches on the same subject, has an article in a recent number of the same journal in which he endeavors to prove, on the contrary, tbat writing, as well as all motions and gestures in general, are dependent upon a physiological, and consequently an anatomical necessity.
The motions of quadrupeds can only take place horizon tally or laterally; yet there are a few that performı centri petal movements-the cat, for example, which strikes with its paw by bringing the latter toward the axis of the body. Monkeys make centripetal motions mostly; but these animals hold a place between quadrupeds and man. Man alone is capable of making centrifugal motions. This physiological evolution of motions, which are successively vertical, then lateral and centripetal and then centrifugal in measure as we proceed from quadrupeds to the human species, is only the result of an anatomical evolution. According to Dr. Delaunay's researches, motions are rather centripetal than centrifugal in primitive or inferior races, and rather centrifugal than centripetal, in superior races. A centripetal
motion in a primitive race becomes centrifugal in measure motion in a primitive race becomes centrifugal in measure
as that race evolutes. Sanskrit, Persian, and Greek were written from right to left before being written in the oppo site direction. So our chronometers were wound up from right to left before they began to be wound in the other direction. The English, however, are behind the age in this respect, since in the screws manufactured by them the threads still run from right to left, and most of their watches, like those of our ancestors, are wound from right to left.
On the other hand, the people of the United States, who
use watches ouly which are wound from left to right, and repudiate the old system still in use in England. Writing was centripetal among the ancient inferior races and is still so among those of modern times: Semitic, Phenician, Hebrew, Assyrian, Arabic, Chinese, Japanese, Negro, etc. Among the superior races not only is writing executed from left to right, but plans, sketches, shading, etc., are begun in the same manner. A circle is always drawn centrifugally, that is, in the direction of the hands of a watch. In nur designs and on our monuments the symmetrical ornaments are, starting from the median line, centrifugal. To consider other motions: we turn a door knob, door key, screw, stopcock, corkscrew, as well as tools for drilling, cranks of mills, wheels, etc., from left to right. In all trades and promills, wheels, etc., from left to right. In all trades and pro-
fessions work is performed in a certain direction, which is generally centrifugal. To sum up, centrifugal motions, characterizing the superior races, are a sign of superiority marking the last term of evolution. As for sex, centripetal motions characterize woman, while centrifugal motions are characteristic of man. A woman, for example, strikes with her palm, while a man gives a blow with the back of the hand. Every article of woman's clothing, from the chemise to the cloak, buttons from right to left, while man's garment's button from left to right. When a woman puts on a man's coat she buttons it with the left hand, centripetally, doubtless being unable to button with her right centrifugally.
han centrifugal motions of children are centripetal rather than centrifugal, therein resembling women.
From a psychological point of view centripetal gestures mark primitive, egoistic, retrograde ideas. On the contrary. centrifugal gestures express ideas and passions which are generous, altruistic, and expansive. From a psychological as well as from other points of view then, centripetal gestures characterize inferiority, and centrifugal, superiority. As a result of his studies the auther draws the conclusion that the centrifugal motions of abduction and of supination prevail in organisms most advanced in evolution, as the superior human races, men, adults, intelligent beings, etc.; while, on the contrary, the centripetal motions of adduction and pronation predominate in individuals less advanced in evolution, as the inferior human races, women, children, people of little intelligence, monkeys, quadrupeds, etc. Finally, the physiological evolution of motions, which is consequence of the anatomical evolution of the limbs, proceeds from the centripetal to the centrifugal. Comparative anatomy and physiology, then, explain why not only writing, but also other motions, are at first centripetal dur. ing the first phases of organic development, while the adductor muscles predominate over the abductor, and became centrifugal by very reason of the progresses of evolution which bring about the predominance of the abductors over the adductors.

Objections to Telegraph Wires in Sewers.

The Superintendent of Police and Fire Alarm Telegraph, the Chief Engineer and Surveyor, and the Chief Commissioner of Highways, of Philadelphia, under instruction from Councils, held a conference recently as to the practicability of running electric wires through the sewers of the city. The Record states that the three officials agreed to report adversely to Councils. One objection to the plan was that the sewers were much too small to be put to any such use, as men could not work in them with any degree of safety. It was also argued that the dampness of the sewers is so great that
the wires could not be operated without insulation, which the wires could not be operated without insulation, which
would be expensive and bulky. Another evil which. was pointed out was the breaking into the sewers, which would become necessary to make connections. In their report the committee will call attention to these points, and also to the fact that the telegraph and telephone companies must make other provisions for the future, and not depend upon or expect to use the sewers as conduits for their wires, for the reason that in a few years the ordinary increase of the business of these institutions would result in the occupation of sewers to the material damage of the city'sinterest.

A Patent Pigeon

The recent pigeon shooting "tournament" was varied by a special contest in whi ch artificial pigeons were used. They were earthen projectiles sprung from a trap, and similar in shape to the clay saucers used for flower pots. The molion of this projectile is much more like that of a real pigeon as it rises from the gr ound than that of the gyro pigeon. When it is thrown from the trap it receives a violent rotary motion which compresses the air within its rim, and gives the "pigeon" more stability, while the convex shape causes it to sail or skim along very swiftly and settle lightly, when not hit by the shot, without breaking. The motion of this new substitute is very similar to that of an oyster or clam-shell when thrown by hand in such a manner as to skim through he air. The clay is light and brittle, and the rapid centrifugal motion causes it to fly in pieces easily when struck by the shot. There were few contestants entered in this match, but tbe men who did shoot and others who have practiced at this new projectile say that is the best substitute for live pigeons that they had yet seen. The pigeon and trap from which it is thro wn are the invention of Mr. George Legow isky, Cincinnati.

