Burroughs Price Brunner

Mr. Burroughs Price Brunner, who died in San Francisco, June 4, at the age of 52 , was an engineer and inventor of some note. When but a youth he invented a linseed oil press which is still in use and substantially unimproved. Before the war be was for twelve years superintendent and engineer of the Charleston, S. C., Gas Works. Losing his property in the South be made his home in San Francisco n 1864. He constructed the gas works in King street in that city; planned and constructed the Pacific Rolling Mill -an institution which now gives employment to from 400 t 500 men-and invented a great deal of the machinery used in it, notably that employed in utilizing old steel rails. He also planned and built the Pacific Oil and Lead Works, and the construction of the Virginia City and Truckee Railroad as a steam road was largely due to his influence. At the ime of his death he was superintendent of the Gas Works, Rolling Mills, and Pacific Oil and Lead Works.

IMPROVED HOISTING APPARATUS.

We give an engraving of an improved apparatus for lift ing variable loads which is both safe and portable. Th invention consists in a block provided with differential gear ing of novel construction, provided with a safety stop device and automatic brake acting by the weight of the load.
In the engraving Fig. 1 is a side elevation of the appara tus; Fig. 2 is a central vertical section; Fig. 3 is a vertical ection showing the brake mechanism, and Fig 4 is a detail view of the chain wheel.
A is the main shaft of the mechanism, having at its end chain wheels, $a a^{\prime}$, on which are endless band chains, $b b$. The wheel, a, is loose on the shaft, and has on its hub a pinion, c. The wheel, a^{\prime}, which is fast on the shaft, i formed with a rim flange and internal gear. d is a second ary shaft carrying fast pinions, $e e^{\prime}$, that mesh with pinions, c, and wheel, a^{\prime}, respectively. The shafts, A d, are journaled in cheek plates, $f f$, which at the upper end are con nected by a yoke or bar g that is fitted with a hook, h fo uspension of the apparatus. At the lower end, the chee plates, f, are connected by a bar, p, on which is hung an eye piece or ring, i. On the shaft, A, between the plates, f, a chain wheel, k, is keyed, on opposite sides of which there are two wheels, loose on the shaft, having their hubs extended through the plates, f. On the shaft, d, is loosely bung a bent guide piece, t, that laps over the chain wheel and prevents the chain from rising. The hoisting chain, m, passes around the wheel, k, and its end having the hook, k^{\prime}, may be attached to the load, or when double power is required the chain carries the block, n, and has its end connected to the ring, i. The brake wheels, l, have their faces next to wheel, k, formed with ratchet teeth, and the wheel, k, is provided with four s.ring nawl.s, o, twoon each side, consisting of straight pins set in mortises. with spiral springs behind them, so that they are projected and engage the ratchets. The rims of the wheels, l, are formed with V-grooves
There are two curved toggle bars, q q (Fig 3), hung on the lower crossbar, p, beneath each wheel, l, and extending around them a opposite sides. The upper ends of each pair of bars are connected by a right-and-left-hand screw rod, s, to allow of their adjustment nd the bars carry brake blocks entering the rooves of ths disk, l. The brake blocks ar n two portions-the outer portions, r, that are attached to bars, q, by bolts passin brough slots, as shown in Fig. 2, and the loose V-shaped portions, r^{\prime}, placed between the portions, r, and brake wheels, l. The ad justments of these parts may be made so that the brake blocks shall give exactly the press ure required to hold the load suspended from the sbaft, A.
The load is raised or lowered by operation of either hand cbain, according to the power required. The chain on the wheel, a^{\prime}, gives he greater speed, and with heavy loads may be first used to tighten the hoisting chain an he other hand chain then used. As the chain wheel, k, turns in raising the load, its pawl engage the ratchets of wheels, l. The load on sbaft, A, is sustained by brake wheels, ℓ resting on blocks, r^{\prime}, which, in turn, are sup ported by bur p, so that the brake is continu ously applied and the chain wheels arrested ously applied and the chain wheels arrested by the ratchet devices the moment the hand chains are left free. In lowering the load the e run backward, and th chain wheel, k, will then give revolution to the wheels, l. The load will thus be at al times under the control of the operator
It will be seen that with this apparatus fou rates of speed are attainable. The apparatu is also safe and portable, and can be made of comparatively small size and used for heav oads. The brake wheels have sufficient hold ing power, though made of small size, for the reason that the whole load resting on the axle is taken by the brake blocks at opposite sides of the wheels. The resistance can be aried by shifting the blocks to change th angle of resistance. This invention was re cently patented by Mr. George Speidel, 933 Buttonwood street, Reading, Pa.

LIGHTING GAS BY ELECTRICITY
Undoubtedly the quickest, safest, and cleanest method of lighting gas is by means of electricity; but before the invention of the electric lighter shown in the engraving, attempt to make a lighter whichcould be used to lighteither a single ght or a large number of burners did not prove altogether sat sfactory. Two electro-magnets are connected with a cock and ith ratchet wheels and circuit springs, arranged in such a

RHODES' ELECTRIC APPARATUS FOR LIGHTING AND EXTINGUISHING GAS.
way that one circuit and magnet turn the cock around unt is open, and the spark is produced at the same time to ight the gas. The ratchet wheel has blank spaces, so tha fter the gas is fully on the cock cannot be turned any farthe y that electric circuit, no matter bow many times the sparkproducing lever is operated. The second line-wire and mars net are employed for turning off the gas, and in so doing he othe. ratchet wheel is brought to the position where the first pawl can act uponit, when the same is moved by the firs magnet in turning on the gas and lighting it. When the ga
has been turned off, the circuit to the second marnet is broken, so that the further rotation of the cock is arrested
The upper magnet operates an armature lever carrying a pawl, which acts upon a mutilated ratchet wheel on the plug of the cock, and rotates the plug until a blank space in the wheel is reached, when the plug will not be turned furthe by the vibration of the armature; but each movement of the latter breaks the circuit at a point opposite the slit in the burner, and the spark of the extra current which passes a this point ignites the gas.
The vibration of the armature of the lower magnet closes the cock by a similar operation, and puts the ratchet whee by which the cock is opened into position to be engaged by he pawl carried by the armature lever of the upper magnet With this construction all that is necessary to be done is to gently press the button belonging to the particular burner to be lit, when the gas will be turned on and ignited instantly by pressing another button the gas is extinguished.
The action of the device can be made entirely automatic so that the opening of a door or window will turn on the light. Used in this way it forms an effective safeguard against the attacks of burglars.
In the sickroom or nursery, or wherever it is desirable t have a light occasionally through the night, this invention is very desirable; and it must be admitted that the device does away with great risks from fre, since no matches, tapers or lighters are required.
For particulars, address the inventor, Mr. T. H. Rhodes, 638 Monroe street, Brooklyn, N. Y.

Behavior of Metals in Solidifying

For some years it has been well known that water is notas was formerly supposed-the only substance that expands in solidifying. The recent investigations of Nies and Winkelmann go to show that itis rather the rule than the exception for metals to expand in solidifying.
The fundamental experiment was putting the solid metal into the fused metal. In some cases the difference of den sity could be measured. They found then that tin in solidi fying is increased in volume 0.7 per cent; zinc is increased 02 per cent; while solid bismuth is as much as 3 per cent less dense than the fused metal. The fact of expansion in solidifying was also demonstrated for antimony, iron, and copper. With lead and cadmium the results were indec sive; the former presented difficulties in the probably very mall difference of density as a solid and as a liguid, its mall heat conductivity and heat of fusion; the latter in the act that in fusion it passes first into a viscous state. Thus, of the eight metals examined, six showed distinct expansion in solidifying, and the same may occur in the two others.

Cuiting a Railroad along a Clif

The passengers on the Hudson River steamers have lately been entertained by the sight of gangs of workmen swarming along the face of a bold cliff jutting into the river near Cornwall, many of them suspended by ropes. A Sun reporter says
The cliff was crowded with men, who, clinging like lizards to the face of the rock, were working seventy-five feet above the sur face of the water; and here and theie wer laborers banging (for the foothold they had obtained was hardly worthy of the name) by ropes fastened many feet above their heads, and circling their waists. All the passengers gazed with amazement at the singular specta cle; and when one of the men, turning to war the steamboat, waved his hand, cheered, and falling off, swung for a moment, and the getting his feet to their former place on the rock, renewed his work at cutting into its face, the spectators from the river sent back an answering chcer, as the boat swept around the point that hid the workmen from their sight, and left them discussing what they had just seen.
Greatly interested by the sight the reporter left the boat at Newburg and returned to Cornwall to inquire about the mid-air work ers. He found that they were employed by the Ontario and Western Railroad Company constructing the new North River Railroad It is under contract to be completed by June 1, 1882, and is to run from Jersey City to Cornwall, and thence west to Middletown. The country tbrough which it passes is so rocky and mountainous that much of the work has to be done by blasting, and this is especially the case between West Point and Cornwall. At West Point a tunnel 150 feet deep and 500 feet long has been cut through Target Hill, and many other bores, nearly as extensive, have been made. But the point already mentioned, near Cornwall, presented, perhaps, the greatest difficulties to the engi neers and contractors. About eighty men are employed there, and they were selected on account of their activity and freedom from nervousness.
' They are not active enough, however, one of the surveyors said to the reporter, "to retain their foothold in every place. and at
certain spots it is necessary for them to work bound, as it other birds introduced in these two panels, which have been structure is made of adobe stone and the debri of a form were, to the rock, for a drop of seventy-five feet into the cleverly selected, make a strong contrast, and strengthen the river below, or possibly upon some of the straggling stones effect. Nothing more appropriate could well be conceived that rise above the surface of the water at the base of the than the funny puffy little penguin looking up at the giant cliff, would undoubtedly serve to reduce our staff of work- flamingo; or the modest robin, a bird of home affections, men. Had they been sailors they might, perhaps, have looking at these strange looking foreigners.
managed better so far as clinging to the rock is concerned, managed better so far as clinging to the could not have done the work."
The workmen are, for the most part, Italians, although a few of other nationalities are employed. Italians, however, are best adapted to the peculiar work, not only because they are lithe, light, and active, but on account of their ability to stand the fierce heat that beats down on the exposed face of the rock.

Population and Temperature.

A census bulletin shows the distribution of population in the United States in accordance with temperature. Arrang ing it in groups by 5 degrees of mean annual temperature it is found that no less than 98 per cent of the total popu lation live between lines marked by 40 and 70 degrees Fah. The cotton region is above 55 degrees, sugar and rice above 70 degrees, and tobacco between 50 degrees and 60 degrees. The prairie region of the Mississippi valley lies almost entirely below 55 degrees, while the great wheat region of Minnesota and Dakota is mainly below 40 degrees of mean annual temperature. The highest maximum temperature is in southwestern Arizona and southeastern California. Of the entire population, 89 per cent are found in the classes which have a maximum temperature between 95 degrees and 105 degrees. In considering minimum temperature, it is seen that 95 per cent of the inhabitants of the United States live between the lines of 35 degrees below zero and 10 degrees above, for extreme cold.
From this it is evident how population tends to increase in regions rather north of medium temperature; or, more correctly speaking, between isotherms of low degree.

PANEL DECORATIONS FOR EATON HALL.

The Duke of Westminster has recently made extensive additions to what was already an immense mansion, known as Eaton Hall. In the decorations for these new apartments great expense has been incurred to produce novel cffects, and the designs for some of the csigns for some of the ooms possess rare nov. elty. A small drawing oom has been ornamented with twelve painted panels by Mr. H. S. Marks, R.A., who took for his models rare and curious birds rom the Zoological Gardens of London. Ourengraving represents a specimen of the panels produced by the artist. The Art Magazine, from which e take our illustration, says of the artist and his subjects

The birds which Mr. Marks loves to give us are those which serve best to illustrate his peculiar humor. They are all funny birds with strange charac eristics, fond of quain attitudes, and given to odd ways.
"There are no more comic birds than the crowned crane, the bird of all others Mr. Marks delights in painting. It is obvious from their manner that they possess in themselves the keenest hense of humor Now ense of he ucked up close and out of sight, they rest quietly. and solemuly brooding over affairs of state; next, they com mence an absurd and ridiculous dance, threading the giddy maze in and out, and round and round, as keen and excited as any bipeds indulging in intricate quadrilles. To the dance will succeed a stately and majestic walk; after which, apparently without any rhyme or reason, they will range them selves against the fence and start off on a wild foot race.

Compared with this extraordmary bird, the scarlet ibis, although a curious bird, has nothing very remarkable about it except its shape and color, the latter being of a glowing scarlet, which commends it to the artist for purposes of decoration. For the same reason he has selected the fla mingoes which figure in the upper wood-cut. These splen did creatures, which measure from five to six feet in height, are magnificent in color, ranging from a deep scarlet to rarious tones of a bluish pink and faint red.
"The skill of the artist has been further proved by the

PANEL DECORATIONS FOR EATON HALL.

The World's intelligent correspondent at the City of Mex co says, in a recent letter, that the American explorer, Cap tain Eavans, had just returned from San Juan Teotihuacan, and had brought some Toltec relics and other antique objects, which he believes belong to an earlier civilization. from These antiquities are according to an agreement made with |Central America well as by the Aztecs and by tribes from he Mexican Gov crnment, to be placed in the Na tional Museum, in this city. After a thorough examina tion of the pyramids of "The Sun" and "The Moon," Captain Eavans commenced excavating on the site of the ancient city of Teo tihuacan. The ruins of that place consist of heaps of stones and debrris placed on some 20,000 little mounds, which formed the bases of the dwelling houses. That this city was destroyed by fire is clearly demonstrat ed by the heaps of
charcoal and ashes , charcoal and ash ts, which he believes belong to an earlier civilization. region. Captain Eavans mentioned that the pottery, especially the circular dishes, in these Mexican ruins were almost dentical with those found in Arkansas, and he entertains rom the communication had existed between these races. Among other things he said: "This can be proved by implements of obsidian being discovered in the mounds of the United States, and as that substance does not exist in those northern regions the probabilities are that it robabilies are "

A Census of the Rocks.
The Census Bureau has undertaken an interesting and valuable work in collecting information relating to quarries of building stone and the like in all parts of the country. The inquiries cover not only tbe location and extent of building, roofing, flagging, ornamental, and other stones and rocks, but the
"Bird lovers, no less than lovers of art, must be grateful to Mr. Marks for these his last and most charming efforts in to Mr. Mark

Antiquarian Research in Mexico.

 ancient race. mounds. The walls cal examination. This part of the work is being done of one building ex jointly by the Census Office and the National Museum,
civilization." In conversation to-day, as on former occasions, Captain Eavans expressed a decided opinion that the Aztec civilization has been greatly over-estimated. He believes that many monuments attributed to them, for instance the "Calendar Stone," belong to the Toltecs, or even a more

At Teotihuacan some skulls were taken from the sepulchers, and it was found that they corresponded with those discovered in the Indian mounds of the United States, not only in size, but in the peculiar flattening of the occipital amount of capital employed, the annual output, methods of quarry. ing and dressing the stone, the number of hands employed and wages paid, methods of transportation and their cost, the number of structures of all sorts made of each sort of stone, and so on.
The aim has also been to secure duplicate samples of four inch cubes of of one building ex- jointly by the Census Office and the National Museum,
cavated and traced
and isin charge of Dr. Gco. W. Hawes. "One of the objects; cavated and traced
out were 140 by 120 $\begin{aligned} & \text { and is in charge of Dr. Gco. W. Hawes. "One of the objects } \\ & \text { of this investigation," said Dr. Hawes to a reporter, "is to }\end{aligned}$

 | feet. The stucco on | find out what minerals each one of the building and orna- |
| :--- | :--- | :--- |
| the inside wall was | mental stones contains, to ascertain how each will act under | veryfine, of a bright different conditions as to temperature, etc., to discover the red (which fades by strength of each-in a word, to know all about our rock reexposure) and elabo- sources. Here are a half dozen different kinds and colors of rate design. A piece granite, all unlike in structure and yet all called granite. shown your corre- Quarrymen and stonecutters can tell nothing about them spondent was of a except what you can see for yourself. Now here," said beautiful crimson the Doctor, turning to a large block of coquina from Floriand white color, in- da, "is a stone which answers admirably for a building terspersed with mi- stone in Florida, but if you were to build a house of it in ca or powdered New York it would soon tumble down. On the other liand, quartz, which must those granite blocks which are apparently indestructible and have made an apart- which are so valuable a building stone in New York, would ment "light up" soon deteriorate-rot, so to speak-in the Floridit climate.. beautifully.

You may recollect that when Mr. Charnay made excavations in Teo-
tihuacan about a year ago he reported the finding of stra. ta of pavement or stone work which he decided indıcated three different
epochs of occupation or civilization. Captan Eavans dif fers materially from the French explorer. He said to me 'Actual excavations and careful examination have fully convinced me that these threc strata, or the pavements, a Mr. Charnay called the lavers, which in one place are but two feet apart, and in others only separated by six inches of earth and pebbles, are simply the foundations on which the city was built. I found beneath these layers of stone seve ral sepulchers. Some of these tombs contained human remains interred in a manner similar to those discovered in and water. Under the action of heat the water is converter Indian mond vases in which the
dead. There wood had doubtless been deposited for the In polishing the different faces of the sample cubes many Last week Captain Eavans examined the Pyramid of Cho. limestones, which have never been thought worthy of any lula. He differs from others who have described it, and better place than in the foundation or wall of cone rourg says: "There is no natural hillock or elevation; the entire \mid structure, have been smoothed and polished, and it is found

