represented in the engraving. The color is applied evenly cent of water carried mechanically out of the boiler by the represented the surface by a series of brushes, and then the paper
ond is caught up in loops and carried by an endless chain over steam pipes, thus becoming dry as it slowly makes its journey of about four hundred feet. It is then reeled up and is ready for the printing. These grounding machines can carry two widths of paper simultaueously, so that the process is a rapid one. The "mica papers," to which reference has been made, are grounded in the same way as those in plain colors.
The next step is the printing. Our former article described the manner forme which this is done by machinery in which this is done by machinery. The annexed engravings show the ope-
ration of printing by hand. This is done in working off specimens, that effects may be determined and patterns fixed upon. It is done also in the production of special patterns, made to order, or in cases where the quantity to be printed would not warrant th expense of preparing the rollers for the machine. It is done also in thosecases were the pattern is, as it were built p by layer after layer of " flock" sulting in very rich effects. The process is clearly represented in the engaving. The pattern is cut upon a block of the width of the paper. This bangs upon a sort of crane, as shown in the illustration. The block is applied to a color sheet, and then is swung verand gently pressed upon the paper, the exact position being indicated by certain marks on the margin. The paper is moved along, there is a new application of color to the block and of the block to the paper, and so the work goes on. Of course but one color is printed at an impression. The same process must be repeated for each color, and therefore the work is slow compared with the machine printing. But the results are very elegant. The finest papers, the richest borders, and the ike, are hand printed
Some of the "leather" papers which we noticed in the wareroom have raised figures upon them. These papers, which are very thick and heavy, are stamped in a machine similar to other machines for the same general purpose. Some of the most gracefully elegant papers are embossed.
After the printing and gilding they are run through a simple machine, the essential parts of which are two rollers, an upper one of steel, engraved with the pattern desired-ribs, wavy lines, or reticulations of any kind-and a lower one of hard manila paper. With many patterns this embossing adds very materially to the effect. In some of the papers the gold or bronze, or other metal, is applied by hand. The portion to be bronzed is printed in varnish, as shown in the illustration, then it is liberally dusted over with the metal powder When the superfluous powder is rashed off, the masses of gold, or silver, or bronze shine out, with the result of enhancing the beauty and effectiveaess of the whole.

Phosphor-Brone
A private trial trip of a steam launch called the Phosphor-Bronze, the proberty of the Phosphor-Bronze Company. Limited, London, lately took place in the Thames, off Westminster. This thell is buit entirely of moll ver phor-bronze, an being a 35 feet, her beam being about 6 feet, and she attained a speed of $121 / 2$ miles per hour, which, considering her size, is a remarkable performance.
The chief object of the company in having so small a craft built was to test the rigidity of the phosphor-bronze sheet aod angle pieces used in her construstion, prior to having boats built on a large scale. The results have been beyond the company's expectation as regar's rigidity and absence of vibration. As we understand, says Engineering, that the cost of phosphorbronze boats will not much exceed hose made of steel, and as the metal is not subject to corrosion like iron or steel, and also retains its value, we expect to hear soon of a fuither use for steam launches, torpedo boats, etc.

Water in Steam.

steam, found that from 2.3 to 4 per cent was actually thus

 present in the steam.The deep green color of the water in the boile was retained in it for weeks, and yet no trace of coloring could be detected in the water condensed in coloring could be detected in the water condensed in the

RECENT INVENTION

Violinists will be interested in an improved chin rest for violins patented by Mr. Solomon G. Carpenter, of Chester, N. Y This chin rest is made in the form of a cleat with a broad bese and appoly projecting horn. is entirlinder, a proof that the water which gathers there has a slot in it, through which the loop that is connected is entirely due to condensation caused by the expansion of $|$| has a slot in it, through which the loop that is connected |
| :--- | :--- |
| withe passes down to the end pin on which it | is secured, and whereby the cumula tive tension of all the strings serves to bind the cleat to the violin. The slot in the cleat is made deeper at its ends than it is in the middle, so that the sides of the loop are held always at their extreme limit of distance away from each other, and thereby more effectually hold the cleat against tilt: ing strain caused by the chin of the player resting nearer one end of the cleat than the other.

An improvement in apparatus for treating minerals or chemicals with acids, and whereby large quantities of materials may be treated without repeated handling of them, has been pa ented by Mr Amedee M G Sébillot of Denver, Col. The invention conists in a basin for receiving the material to be treated with acid, which basin is surrounded and covered by a metal hood within a large stone or brickwork furnace baving a fireplace on one side, so that the heat passes over the hood and heats the same and the materials in the basin below it. These materials are stirred during the operation by a rotating agitator, which is mounted on the lower end of a vertical shaft that can be raised or lowered at will, and is driven ly suitable machinery. The materials are filled ato the basin through a funnel or chute passing through the bood and the furnace, and the product of the peration is removed from the basin hrough a valve in the center of the same, which valve is operated from below, and permits the material to drop into a car which runs on tracks in a tunnel beneath the furnace
An improvement in harness loop and steam, and that very little water is actually mechanically trace carriers, by which the trace carrier is free from all procarried away by the steam from boilers. jecting parts for the reins to catch upon, and whereby also it can be readily attached and detached by detaching the back strap from the loop or frame, has been patented by Mr. Robert D. Whittenore, of Chippewa Falls, Wis. The object Rober D. Wion is to facilitate and cheapen the manufacture of harness and provide a convenient means for carrying the of harness and provide a convenient means for carrying the
traces. The invention consists in constructing a combined harness loop and trace carrier with a loop or frame having outer and inner bars upon the front, rear, and side parts to receive the harness straps, projecting pins upon its inner bars to hold the harness straps in place, and a rod having hooks formed upon its ends and a projection upon its middle part. whereby the cockeyes of the traces can be received and held, and are not liable to become accidentally detached, the cockeyes as they pass over the hooks causing the pressure of the back strap against the projection on the rod to force the ends of the hooks down against the loop or frame and to hold them there.
Mr. Michael Angelo McGuire, of Cincinnati, Obio, has patented an im proved trunk and valise frame. The object of this invention is to provide a frame for trunks, valises, satchels, etc., which is light and durable, and insures a good fit of the body and lid of the trunk or valise on each other. The frame of the body, and also the frame of the lid of the trunk or valise, is mar onf metal, shutting one down upon the other when the lid is closed, and each provided with a projecting rib on its inner surface. The leather, the edges of which rest against the ribs, is riveted o the inner sides of the frames and to inner metallic binding strips. The con struction is a very serviceable one.
Mr. Benjamin O. Branch, of Friar's Point, Miss., has patented an improved broiler, which is simple, cheap, and efficient. The object of this invention is to provide an improved device for broiling meats, etc., in front of a fire, so that the articles broiled shall not be flavored by the smoke from the fire. The invenshall not be flavored by the smoke from the fire. The inven-
tion consists of a disk having straight pins projecting from tion consists of a disk having straight pins projecting from
its face for holding the meat to be cooked, said disk being pivoted so as to revolve vertically on an upright stabdard whose lower ead is secused, in a pan which is designed to
catch the gravy; and it consists, further, in having a funnel supported above the disk for the purpose of delivering the butter, etc., for basting the meat during the process of cooking.
Mr. James M. Brooks, of Columbus, Tex., has patented an improvement in seed planters in which the reciprocating seed-dropping slide in the bottom of the hopper has arranged over it a brush which serves to prevent said slide from carrying out of the hopper any more seed than is necessary or proper, and which brush is held in place by two catches secured to the hopper and arranged to grasp the head of the brush. One of these catches is stationary, but the other is made yielding or elastic, so that it can be sprung back
allow the brush to be put in and taken out when required.
An improvement in running gear for wagons, which ope rates very effectually to distribute shock to the gear and to reduce jerking of the shaft or pole connections, when traveling over ruts or rough roads, has been patented by Messrs. John M. Wadlington and Daniel Grace, of St. Joseph, Mo. This improvement refers more particularly to that class of wagons in which both forward and hind axles are pivoted at their centers and connected by cross rods or chains, and it consists in providing a wagon having said pivoted axles and connecting cross rods, with hind hounds extending forward for some distance from the rear axle to which they are attached, said hounds carrying a cross stop rod, which acts, in combination with the reach, to limit the movement of the axles and to prevent any rising of the rear hounds from the reach.
An improved wash boiler has been patented by Mr. Augustus E. Carson, of Livingston, Iowa. This boiler is diided horizontally by a partition arranged at a short disber, and an upper water and clothes-holding space. A pipe situated outside of the boiler connects the lower compartment with the upper part of the clothes-holding space above, and at its entry within said space is bent downward to deliver the steam aud water from the compartment below down on the clothes. The water is kept circulating in this direction by a knee pipe connecting the bottom portion of the upper chamber with the interior of the lower one, at the opposite end of the boiler to that on which the before-named pipe is arranged. This knee pipe is situated within the ooiler, and is fitted with a valve to prevent back circulation; also with a perforated guard to exclude the clothes from entering it. The clothes are held down in the boiler by a weighted perforated plate. A wash boiler thus constructed becomes an automatic steam washer, that rapidly and thoroughly cleanses the clothes.
Mr. Constantine L. Brady, of St. Louis, Mo., has patented an impreved smoke flue, which is intended to take the place of the brick chimneys in frame houses and to be built in the walls of brick houses, or it may be inserted in the chimneys or smoke flues of houses already built. Said flue is made of sheet or cast iron, and is preferably square in cross section Its lower portion is bent and presents an open end, which is inside the house a short distance above the floor, and may be closed by a sliding door. This lower portion forms soot chamber, and said flue is provided at different points in its height with suitable stove pipe connections. Such im proved flue is practically self-cleaning, and the soot as ollects in the chamber below may readily be removed.
An improved attachment for raising and lowering ca riage or luggy tops, which may be operated with facility by the occupant of the vehicle from the seat thereof, ha been patented by Messrs. Emanuel Fleck and John Boyd, of La Grange, Ind. The attachment comprises a hand lever pivoted to the end of the seat or railing, and provided with a pivoted locking lever having at its lower end an eccentric, which rests again the tedge of a semicircular plate attached to the end of the seat or railing. To this hand lever a jointed lever is pivoted, which lias its one end attached to a rod connecting the jointed braces of the buggy top. When the hand lever is turned toward the back of the seat the jointed braces will be folded and the carriage top lowered.
An improved car coupler, which is self-coupling, has been patented by Mr. Joel Ren, of Parrottsville, Tenn. The invention consists of a horizontal pincher-like pair of clamps pivoted above the draw-head of a car on a suitable support, with the long legs of the clamp extending forward and carying a sliding ring, and the jaws or sbort legs directly above the coupling pin aperture in the draw-head in position for grasping the coupling pin; and, further, of a horn or a rod bent at right angles, fixed in and projecting from the end of an opposite car, whereby, when the cars approach each
other, the clamp may be opened to release the coupling pin other, the clamp may be opened to release the coupling pin,
that the latter may drop into the draw head and hold the that the latter
coupling link.
In adjustable dental chairs in ordinary use the crank arm or web requires to be frequently turned, and if left on the crank shaft it is constantly interfering with the movements of the operator in passing around the chair, and consequently the crank must be removed, to be replaced again for making any change in the adjustment of the chair. This frequent removal and replacement occasions much loss of time and inconvenience. This objection is overcome by an niproved dental chair crank recently patented by Mr. C. UImund Kells, Jr., of New Orleans, La., in which the crank artn or web is adapted to be rotated upon or around a pin
which projects from the boss of the crank, and is capable of being set and held in any desired position in relation to the crank shaft without removing the crank, and whereby it may be turned entirely out of the way of the operator.

The Ventilation of Long Tunnels.

Herr Wilhelm Pressel has circulated a lithographed pape

 on this subject among his friends and colleagues; and as it a question of daily increasing importance, we reproduce his most important suggestions. He begins by pointing out that the direction and intensity of the current of air in a tunnel are the product of numerous factors, that is, the length and dimensions of the tunnel, difference in level of the two mouths, average temperature in the tunnel, temperature of the external air at the mouths, pressure and moisture of he same, direction and strength of the prevailing wind. The effect of the latter group of factors may be either to intensify or to neurralize the natural action of ventilation set up by a difference between the level of the two mouths. The interior of a tunnel situated in a high mountain dis. rict, and passing under a vast mass of rock, will alway be warmer than the outside air, especially at night, when in the Alps the temperature always falls. The warm internal air will, therefore, ascend the slope, and issue at whichever mouth is highest, and the cool air be drawn in from without to supply its place. Evidently this natural ventilation will be stronger in proportion t_{0} the difference of level of the two mouths. But the increase of this difference means ess in tunnel, and consequen lly increase cured. Moreover, as was before said, an unfavorable come bination of external circumstances may destroy all the bene fit to be derived from a steep gradient, and leave only the in effects. This is the case at the Mont Cenis, where the differ. ence is so great as 140 meters (nearly 46 () feet), but where the natural current is from these causes extremely weak, and often fails to produce any through draught at all, the smoke merely shifting backward and forward, than which nothing can be worse. Nor has the mechanical ventilation succeeded in supplying the deficiencies of the natural. Herr Pressel states that the loss of power in the air-compressing machines is so great that, instead of sweeping out the tunnel, they barely succeed in sending their current sufticiently far into the interior to keep the refuge chambers for the employes clear of smoke; and the apparatus more lately erected for pumping out the vitiated air is very incffectual. He there ore concludes that natural means are insufficient for the ventilation of long tumnels, and that mechanical mearshavefailed, and proposes instead a system not hitherto tried. It is obvious that a current is cansed by varying specific densities of air at various places, the heavier air being drawn along. (popularly speaking) to take the place out of which the lighter has arisen. If then a distinct difference can be established and maintained between the specific gravities of the air at the two ends of the tunnel, a steady current can be relied upon. This may be done by condensing the air at one end or rarefying it at the other, or doing both together. The second plan has often been adopted. Shafts have been sunk into the tunnel at each end, and the air in one has been kept heated by fires, so that there was a con-
tinual indraught of outside air through the other. The objections to this method for long Alpine tumels are, first, the expense of the apparatus and fuel when used on such a arge scale; and, secondly, the radiation of heat from the walls of the tunnel itself, when this is piercel through an mmense mass of rock, which makes it necessary that the air brought in should be not only pure but cold. The author roposes therefore to adopt the reverse process, and cool the ir in one of the shafts by means of falling watei. Rail ways always approach Alpine tunnels along high valleys, which invariably contain mountain streams of very low temperature. The means of refrigeration are therefore at hundred call cool the air sufficiently and estabiish the current, for which he believes that a difference of temperature of ten degrees Cent. between the two shafts would be all that would be necessary. The upper openings of the shaft should be proected by revolving iron shields from the disturbing effect of wind on the ventilation. The mouths of the tunne should be closed to allow this system to work properly, but need not be absolutely shut. Arrangements should be made for closing the shafts, and either wholly or partially shutting off the water supply, and there should be a special system of telegraphic signals for the purpose, so as to keep the whole system under control and enable it to be worked according to the varying eonditions of the atmosphere. In very cold weather the supply shaft should be closed altogether, and the corresponding moutls of the tunnel opened, when thecold air will flow in of its own accord.-Engineering

cutomatic Freight Car Brakes

After each war of passenger and freight rates between we notice that there is always a shrinkage in price from the previous rates which ruled before the war commenced. The question is natura!ly sprung: How are roads enabled to stand a continued reduction in rates? They pay no less for labor of any class nor for supplies of any kind. They have same dividends or perhaps increased fixed charges to meet, and the make both ends meet, and submit to these successive cuts in prices? We answer that one very important reason is be cause of increased facilities every year arising from improvements in rolling stock, motive power, and roadway. Im proved platforms and couplers, air and vacuum brakes,
 increased speed with greater safety to their passenger trains,
while heavier steel rails, better ballasted roaç beds, lessened gradients, and more powerful locomotives reduce the cost per ton per mile of moving freight trains. This latter cost
will be still further very materially lcsened as soon as a thoroughly further very materially lessened as soon as a freight train brake shall have come into general use. Not only will the cost of moving of freight be lessened, but the immense losses by wrecks be greatly reduced by such an appliance. But it must be one that shall meet the require. ments of railway freight management, namely, simplicity, durability, and cheapness, not only of first cost, but of cost of maintenance and repair.
What railway men want to-day is an automatic device in the form of a brake for freight trains, which shall produce the greatest results with the fewest number of pieces, which by reason of its simplicity shall require the min!mum amount of care and attention, which shall be in all respects automatic and requiring no other connection between cars than the ordinary link and pin to make it effective, and at all times operative.
The more complicated and intricate the appliance, of course the greater the first cost and cost of maintenance. An automatic freight car brake which gives the engineer the control of his train when moving forward only, if simple, cheap, and durable, will always take precedence over a more extended and comprehensive device that would enable him to control it in moving backward also, for no train will ever be run backward at a speed whichthe engineer cannot control with his engine. It is the cnormous less of property, which is to-day the result of collisions, both head and rear, and the numerous, now unavoidable accidents incident to suddenly coming into danger while moving forward, with no means to check the heavy train going at even a moderate rate of speed except the unreliable appliances now in use, that railway managers are most anxious to save and avoid. They do not fear the accidents which may result from moving backward. This is the problem to be solved. How near are we to its solution? Every morning paper which we take up, with its record of loss of properly and life, tells how badly such an improvement is needed. Every railway manager is anxious to make his present freight equipment earn a greater income by shortening up the schedule of his freight trains, provided he could do it wilh any show for safety. Who has made any substantial, well authenticated developments in this direction? We have heard a great deal about trial trains, experimental stops, etc., with this or that device, but who can show results hich bave been obtained by constant service, even of a cars? Don't all speak at once!- Railooay Register.

No Organic Matter in Meteors.

A Louisville (Ky.) paper reports an interview with Prof. S. Lawrence Smith, of that city, in the course of which Mr. Smith gave reasons for discrediting the discovery of organic substances in meteors, as claimed by Prof. Hahn, of Berlin. Mr. Smith said

Although I have probably examined more microscopic plates of fragments of meleorites than any other person, still I have never discovered anything like organic remains in any of them. Besides, the well known chemical composition of these bodies is averse to the existence of any such remains as spoken of by Prof. Hahn. Were these remains present we should discern carbonate of lime on their interior. The two or three that have any carbonate of lime were discovered and analyzed by myself, and in these cases the carbonate of lime was an accidental constituent of incrustation deposited on the surface after their fall. In the microscopic examination of these polished plates of meteorites the two predominating minerals, enstatite and bronzite, will, by their fissures and forms, sometimes remind one of vegetable and other organic forms, but the merest tyro of an observer will trace here nothing but a rare rescmblance. And, furthermore, the very ingenious nature of these mintrals precludes the possibility of organic remains even in terrestrial minerals of similar kind. Not knowing of any emi nent German geologist named Prof. Hahn, I thought it but reasonable and logical that I hould inquire something about him from my friend Prof. Hawes, now in the employ of the Smithsonian Institution, and the best lithological microscopist in this country, and who recently returned to this country after ten ycars' study with Prof. Rosenbaum and others into the microscopic character of rock. In answer to my inquiries Prof. Hawes wrote me this letter:
'I read that paper of Prof. Halın's. He is a kind of half-insane man, whose imagination has rum wild with him. These forms which he so accurately describes and figures have long been known to exist in meteorites, and have been frequently described by mineralogists and microscopists. They are mainly composed of enstatite or bronzite in radial forms, and fractured in such a peculiar manner as to give them the appearance of structure. Some of the Ameri can meteorites which I havcexamined how these forms in great beauty, but Prof. Hahn is the only man who has seen anything organic in them, and his paper has excited nothing but ridicule. It reminds one of the long and laborions research of a German professor who found a whole flora and fauna which he named with double Latin names. and which he found in his microscopic examination of basalt.'
'It is very clear to my mind," continued the Professor, that these cranky observations, vicwed with the spectacles of the imagination of Prof. Hahn, have obtained more publicity than they merit."

