How Voltaire Cured the Decay of his Stomach. In the "Memoirs of Count Segur," there is the following anecdote: "My mother, the Countess de Segur, being asked by Voltaire respecting her health, told him that the most painful feeling she bad arose from the decay in her stomach and the difficulty of finding any kind of aliment that it could bear. Voltaire, by way of consolation, assured her that be was once for nearly a year in the same state, and believed to be incurable, but that, nevertheless, a very sim-
ple remedy had restored him. It consisted in taking no ple remedy had restored him. It consisted in taking no other nourishment than yolks of eggs beaten up with the concerned so extraordinary a person as Voltaire, it is aston ishing bow little it is known and how rarely the remedy has been practiced. Its efficacy, however, in cases of de. bility, cannot be questioned, and the following is the mode of preparing this valuable article of food as recommended by Sir John Sinclair: Beat up an egg in a bowl, and then dd six tablespoonfuls of cold water, mixing the whole wel ogether; then add two tablespoonfuls of farina of potatoes; let it be mixed thoroughly with the liquid in the bowl; the pour in as much boiling water as will convert the whole thing into a jelly, and mix it well. It may be taken alone with the addition of a little milk in case of stomachic debilitv or consumptive disorders.

PIG IRON BREAKER.

Among the exhibits at the American Institute Fair this fall, no machine attracted more attention than "Blake's pig iron breaker," exhibited by the Blake Crusher Company, of New Haven, Conn., the original patentees and manufac turers of the "Blake challenge rock breaker" of world wide reputation. The pig iron breaker was designed and built in response to repeated solicitation from foundrymen and others for a machine to break pig iron into pieces, seven o eight inches in length, for foundry purposes
Heretofore this bas been done by hand, either by lifting the pig bodily and throwing it down on a V-shaped mass of ron or by striking with a sledge bammer. The work, especially in the case of the tougher varieties of iron, was
necessarily severe, slow, and expensive. Repeated blows ecessarily severe, slow, and expensive. Repeated bow would often fail to break a pig of iron. The pig iron breiker is strong and effective, and so simple that the illustrations of it which we present leave little to be desiredin the way of explanation. The pig is fed in on an inclined or yielding trough, furnished with rolls, passed over a V-shaped knife to n adjustable stop on the end of the sliding head, A. This sliding bead is provided with two knives, equidisant from the center nife on which the pi is supported, and has a motion of two inches.
The sliding bead de scends, and a piece of he pig extending from he center bearing nife to the "sto"" nife to tbe "stop" roken; it. ascend pig is struck forward and another piece i broken from the pig by its subsequent descent. In this way successiv pieces are broken from the same pig with grea rapidity and ease, with an expenditure of bu from two to three horse power. In fact he product of the ma chine is limited only by the rapidity with which it is fed. Iron can be broken as rapid y as it can be dis charged from the car or car which brings it to the foundry yard
The machine may be stationary and run by belt or by small engin bolted to the side of it timber frame, to which team is conveyed by pipe from the boiler at the works where it s used, or it can be mounted on a car with engine and boiler and now on a track along the piles of iron to be broken.
The Blake Crusb r Company is now mounting one in thi roy, N. Y.. where 500 tons are broken daily for making Bessemer steel. At present the pigs are broken by hand into but two pieces.
It is thought that the breaking of pigs into a greater num er of pieces by machine will secure a more intimate admixture with the fuel and fluxes in the cupolas, greater economy

BLAKE'S PIG IRON BREAKER

not only in heating but in melting, and a greatly increased
The machine is the invention of Theodore A. Blake, Min Engineer and Secretury of the Blake Crusher Compan ing Engineer and Secretary of the Blake Crusher Compan New Haven; was patented May 3,1881 , in the United States lence" at the recent fair of the American Institute, wher the Blake Crusher Company was awarded the semi-centen nial gold medal for their challenge rock breaker.

IMPROVED SHAFT COUPLING.
Wc give an engraving of an improved shaft couplin lately patented by Messrs. J. B. Dyson \& S. K. Paramore of New Britain, Conn. It is very simple, easily constructed and easily applied, and when it becomes necessary to dis-

direction the keys are pushed out ward, releasing the shafts. It will be noticed that the sleeve is slctted transversely ing handle collar of the screw to allow the the screw. It is unnecessary to mention the advantages possessed by this coupling, as it can readily be seen that it is in every particular a practical thing

The American Public Health Association
The American Public Health Association, in session at Savannah, Georgia, December 1, elected the following officers: President, Professor R. C. Kedzie, of Michigan; First Vice-President, Dr. Ezra M. Hunt, of New Jersey; Second Vice-President, Dr. Albert L. Gehon, U.S.N.; Treasurer Dr. J. Berrier Lindsley, of Tennessee; Executive Committee -Dr. James E. Reeves, West Virginia; Dr. Stephen Smith, New York; Dr. Thomas L. Neal, Obio; Dr. J. G. Thomas, Georgia; Edward Fenner, Louisiana; and Dr. John H. Rauch, Illinois. The papers read at this meeting bave cov cred, as usual, a wide range of topics relating to public sani tation. The meeting next year will be at Indianapolis.

The King of Siam to the United States.

General Haldermin, our Consul General in Siam, ha received from His Majesty the King of that far off country a promise to furnish a memorial stone for the Washington National Monument.

Another Great Ocean Steamer.-The Servia

The new Cunard steamship Servia arrived at this port Dec. 7, after a stormy passage of thirteen days. For the first seven days she had to buffet severe head winds, at times approaching a hurricane. Her best day's run was on the 6th, when she made 406 miles. Her gross tonnage is 8,500 ons; engine power, 10,000 borse power.
The length of the Servia is 533 feet; breadth, 52 feet depth, 44 feet 9 inches. Her cargo capacity is 6,500 tons, with 1,800 tons of coal, and 1,000 tons water ballast. She has a double bottom on the longitudinal bracket system. The anchor davits are 8 inches and the chain cable pipe 23 inches in diameter. The propeller shaft weighs $261 / 2$ tons, and the propeller, boss, and blades are 38 tons in weight. The machinery consists of three cylinder compound surface condensing engines, one cylinder being 72 inches and two 1 C0 inches in diameter, with a stroke of piston of 6 feet 6 inches. Her boilers are seven in number, 6 of them double and 1 single ended, all made of steel. She has 39 corrugated furnaces. There are 168 state rooms, with accommodation for 4.50 first class and 600 steerage passengers, besides a crew of 200 ufficers and men. The ship is dividedinto nine watertight bulk heads, and carries lwelve life-boats. In the engine and boiler spaces are water-tight doors which can be shut from the upper deck in case of accident in about two se. conds. The keel of the ship has five thicknesses, making a total thickness of $63 / 4$ inches. The riveting was done by Tweedell's bydraulic riveter, and all the frames and beams of the vessel were riveted by this process. The lower deck is of steel, with a covering of teak above the engine and boiler spaces, and the upper and main decks are both of steel with wood coverings. All the deck houses and deck fittings, the positions of which render them liable to be car ried away during heavy weather, are riveted to the steel decks under neath.
The Serviais equip ped with Muir \& Cald well's steam steering gear, steam winches, a steering gear indepen dent of that managed by steam apparatus, by Sir Willi Thomson's compas es. Every separate tors. The cabins and upon it in which are formed a number of radial holes to saloons are heated by steam. The construction of the Ser receive the end of a pin to serve as a lever or handle for turning the screw.
When the screw is turned in service, and Mr. William Muir, the company's engineer at Glasgow. In every part of the ship the most advanced drawn inward toward each other, and clamp the ends of the scientific improvements bave been adopted. The very best shafts securely, and when the screw is turned in the other \mid material has been used.

