bas been melted out of the barrels by steam, is run and is mised with lime and water. The mixture is kept at a heat of 600° Fal. by steam which is let into the outer cylinder at a pressure of two hundred and fifty pounds to the square inch. The water, being the heavier, sinks to the bottom of the copper cylinder, whence it is pumped and thrown on a perforated plate above the fatt, that it may fall through it in many litle streams. This agitation is kept up for eight or nine hours, after which it is found that the lime has united with the fat acids and formed a soap, while the water has consorled with the dissociated glycerine. The conteuts of the cylinder, after being permitted to remain at rest for a time, separate into two strata, the lime soap on top, he crude glycerine alud water below. These are blown off to separate vats by the power of steam. It is from the candle factories that the enormous supply of glycerine comes, which is now a very important article of tride. A few years ago it was wasted; now it is sent to the manufacturing chemist, who purifies it by distillation and filtration through bone charcoal, and puts it upon the market. It is put to a great variety of uses, many of which depend upon its peculiar properties of non-volatility and absorption of atmospheric muisture. Harness makers and leather workers use it in making leather pliatle; it is put into gas meters because it does not freeze except at a very low temperature; modelers keep their clay studies moist with it; tobacconists sweeten chewing tobacco wilh it, and ladies apply it to their hands and faces to soften the skin. Much of it goes into the manufacture of the terrible explosive nitro-glycerine,
which is made by treating it with a mixture of sulphuric and nitric acid, or concentrated nitric acid. Not less than three million two hundred thousand pounds of glycerine are produced by the candle factories and utilized every year in this country, and yet so late as the year 1854 it
When the Frencl
When the French chandlers first began the manufacture of the new-process candles, and for a long while after, they permitted the lime soap to become hard, and then ground it up in order to dissociate the lime from the fat acicis. Now this is done without delay, the liquid soap being run into ead-lined vats with a proportion of sulphuric acid added The chemical principle involved is the same as in the more laborious process of saponification; the glycerine base has been supplanted by the lime base, and this must now be got rid of. The sulphuric acid takes hold of the lime, forming sulphate of lime, and the acids fioat off free. In these vats, between which the paths are narrow and the walks greasy, the liquid settles in three strata-the first, the fat acids, now free of their base, but still mingled; the second, an acid water; the third, sulphate of lime, a waste. They are easily drawn off without mixing, and the fat acids, by washing in boiling water, are cleaned of all traces of the sulphuric acid, and we are now done with the chemical processes, and our product is a fat which contains the solid and the liquid acids. If cooled rapidly or kept agitated while cooling, the acids become so intermingled that they cannot be separated by mechanical means, which at this stage of manufacture must replace the chemical, on the score of cheapness. If the fat is cooled very slowly, however, it hats been found that the solid acids will crystallize, while the liquid acid, the oleic which it is desired to banish, will lie snugly ensconced between the crystals, to be afterward forced out by heavy pressure.
The cooling of the fat is a slow process. It is run into shallow pans, lined with enamel to prevent the acids from eating the metal, and permitted to remain in a warm room two or three days. These pans are arranged in sections, like alcoves in a library, one row of pans underneath the other, and each extending a slight distance alternately to front or reur beyond the one above it. The hot fat is conducted over the top of the alcove in a wooden chute, and the filling of all the pans down to the floor is accomplished by taking a plug from the chute immediately over the top pan. When this is full it overflows at the front end by means of the slight depression made at that end, and the overflow is caught by the pan below, and so on down to the bottom. When the fat is become hard i_{i} is a cake of a brown, greasy mass, not unlike unrefined maple sugar. The discoloration comes from the oleic acid, which permeates the whole cake and can from the oleic acid, which permeates the whole cake and can
be forced from between the crystals of the hard acids by be forced from between the crystals of the
pressure with the thumb. The cakes are pressure with the thumb. The cakes are wrapped in heavy woolen cloths, piled into hydraulic presses between iron plates, and the pressure applied. A dark oil gushes from the woolen, pours over the edges of the plates, and is caught up benealh the press to be used in soap-making. Th cakes have now been squeczed down to less than two-thirds of their original thickness, and the mass presents a yellowish-white appearance. By breaking it, its crystaline texture can still be seen despite the fact that the shape of the crystals has been ruined by the pressure it has undergone. They are still somewhat greasy to the touch, for in this first pressure only fifty per cent of the

STAMPING.
oleic acid has been removed. They now succeed to a second pressure, this time in a horizontal press, and between hollow ron plates that are kept hot by steam. Still wrapped in he woolen cloths, they are suspended between the plates in bags of horseharr cloth, and a very heavy pressure is applied from the end. When the cakes issue from this proces they are as white almost as snow very hard and dry, and when broken into small particles have a flaky appearance. The mass is now almost pure stearic acid, and is ready to be moulded into star or adamantine candles. Withou an exception, this single hot pressing is deemed by other manufacturers to be sufficient for their higher grades of can dles, such as are used for mining dining room, or library, but Messis. Procter \& Gamble hav learned that by again breaking up the cakes, melting, panning, and pressing in the hot press, much better candle is produced better because there is no smoke the light is whiter, and conse quently much stronger, and the candles last longer. These are strong points, especially wher he candles are to be used for mining or in a close room, or where a pure, soft, white light is desirable, such as at a dinne piuty or reception.
These are the scientific phases through which the stearic acid andle goes; what follows it is simply the fruit of the inventive faculty of our day. The visitor emerges from dark basement rooms, where he has been moving between tubs and under pipes and chutes all dripping with liquid grease, into a room on the ground floor. Here there is light
in plenty, and opening off one side is a vista of a room vas extent, with a glass roof like a hothouse, with long rows
 and thousands of shapely candles undergoing a hrief firmly by the anchors, and can be attached to the building feaching process by sunlight. One end of the first room is very rapidly and conveniently. Tlee plates can be attached filled with vats in which the prepared candle fat is melted, to the sides of a house in the same manner.

A very efficıent carpet stretcher has been patented by Mr. David G. Rulon, of Mon mouth, Ill. In this device a clutch bar, which lies flat upon the carpet, and has inclined steel points that catch into the latter, is connected by cords or chains with a rear bar, which is provided with steel oints that pass through the carpet and into the floor. The clutch bar is moved forward to stretch the carpet by a lever having a steel point that sticks into the floor, said lever passing through a loop in a draw cord, that rests by its loop in any one of a series of hooks on the lever, while the ends of the cord are connected with the clutch bar by draw rods, which keep
said bar from turning. After the carpet has been fully stretched, the clutch bar is carried over and behind the rear bar, out of the way, to provide for tacking the carpet down near the wall.
An improved spring lock earring has been patented by Mr. Fred R. Bassett, of Paw Paw, Mich. The invention consists in hinging the hook to the pendant, and providing a spring for holding the hook open or closed, the hook being formed with square faces at the pivot for the impingement of one end of the spring upon either one of said faces, ccordingly as the hook is thrown open or closed. This mprovement not only gives greater convenience in attach ing, fastening, and removing the ring from the ear, but less old wire is required for the hook, no eye is needed for fast ening the end of the hook, and the hook is not liable to be broken, as it does not have to be bent every time the ring is inserted and removed from the ear, as is the case with the ordinary style of hooks.
An improved sofa bed, which is free from complicated devices to adapt it for use as a sofa or a bed, aud which may be so adapted without unduly stretching or crowding its upholstering, has been patented by Mr. Herman A. W. Maercklein, of Hartford, Conn. In this improvement the hinged back and main frame of the sofa have combined with them hinged plates, which, when raised or closed, hold he back in a vertical positicn, aud, when lowered, permit the back to occupy a horizontal one. The stationary sof arms and the lowering back have also combined with them bolsters hinged to said arms at their rear ends and avoiding the appearance of a hinge joint at the sof a front. Further more, the back and seat are connected by hinges having pin joints on a line with the tops of the springs in the seat, whereby all undue crowding and stretching of the springs are avoided.
Mr. King G. Streeter, of Littleton, N. H., has patented very neat and durable glove fastening. In this device tubular shank, having an eye on its outer end, is secured to the glove on one side of the wrist opening. Through this eye is loosely fitted a wire bent in reverse directions at its opposite ends, which latter have knobs that prevent the wire from dropping out of the eye. In using the fastener, one end of the wire is passed through the button hole in the glove wrist, and said rod or wire then used as a lever to draw the parts of the glove wrist together. The other end of the rod is next passed through the button hole, and the rod afterwards adjusted to bring its central portion within the eye. The button hole is fitted with an oblong eyelet to prevent the glove wrist from being worn or torn around the button hole.
A simule and inexpensive fastening for bats and bonnets, which may be secured in position without the use of needle and thread, has been patenteri hy Mry. Josephine A. McK. Bouvier, of Denver, Col. The invention consists in a but ton having a portion of its buek cut a way to form an opening, and the remaining portion of said back provided with a Keyhole slot, which communicates with said opening, and is adapted to receive a knotted cord. This cord, which may be elastic, being thus secured at its onc end, without sewing to the button, may be attached at ite other end to the hat by a clasp, and said mitim, when securing the hat to the head, be passed through a looped cord secured to the other side of the hat by clasp or otherwise.
An improved ore concentrator, which is designed to be connected with crushing rolls or other crushing machines, or to receive the ore directly from them, has been patented
by Min. William Thurmond, of Rosita, Col. In this conby Mis. William Thurmond, of Rosita, Col. In this con-
centrator a V-shaped box set slightly inclining from a horizontal position, and formed with an enlarged cylindrical chamber at its narrowest end. is connected at said end with an exhaust fan and provided at its opposite end with a cur rent regulating slide. Within the \mathbf{V}-shaped chamber of the box is a rocking or vibrating frame, having screens of varibus degrees of fineness for separating the different grades of crushed ore, while the dust and lighter particles are drawn out by the fan. Chutes in the bottom of the box conduct the graded ore to suitable receptacles, and a separate chute
carrics off the gangue. Ore concentrators thus constructed are said to perform their work perfectly.
An improved tire-tightener, which operates by expanding the felly of a wheel to completely till the tire and thus firmly unites the felly and the tire, has been patented by Mr. Benjamin F. Carlon, of Red Oak, Iowa. The device consists of two arms having juws and binding screws at their outer end to receive and hold the felly, which arms are pivoted to a head on a screw which fits into a threaded aperture of a head on a screw which fits into a threaded aperture of a
pedestal or base that rests aganst the hub of the wheel between the spokes. By turning in a given direction the capstan head of the screw the felly will be expanded as required, and washers can be passed into the joint to fill up the space between the ends of the fellies. This useful con trivance may also be used as a jack to lift wagons and other loads.

An improvement in photographic apparatus, which possesses both novelty and merit, has been patented by Mr David H. Houston, of Cambria, Wis. The object of this invention is to facilitate taking a number of photographic views successfully and in a short time. The invention consists in a camera with a receptacle or box at its inner end containing a roll of sensitized paper or other suitable tissue and an empty reel, upon which the sensitized band is wound as rapidly as it has been acted upon by the light, thus obtain ng a number of views successively upon the same band
which is afterward divided as required. Said band is arranged to pass from the supply roll to the take-up reel, ver rollers at a suitable distance apart and through slots in front of the box. On the shaft of one of these rollers is a pointer for indicating the amount of tissue drawn to form one negative, and a perforator on said roller for indicating he dividing points in the band for a series of negatives. The end pieces of the front end frame of the bellows of the camera also is arranged to swing ou the siiding side pieces of the bellows box.

Curious Freak of a Dog.

To the Editor of the Scientific American:
Being a constant and close reader of your valuable paper, and having gleane many curious and instructive facts of natural history from its pages, it has occurred to me that the following freak of a dog which we own would not be uninteresting to some of your readers.
"Simmons" (that is the dog's name) is very remarkable for her sagacity, and often excites remark by the "reason ableness" of her actions. She is a constant companion of the boys, and seems to consider herself one of them. She has been a mother three times; the third time some ten days or so ago. At her two former accouchements she did herself light by this or three days before the birth of this pup there was a litter of kittens born on the place. Simmons, disgusted at the smallness of her family, and evidently thinking that the cat had more than her share, captured one of the kittens in the absence of the old cat, and carried it in her mouth to where she kept her pup, and deposited it in her basket. In a short time she was suckling both the pup and kitten, who were hari at work side by side. The next day the kitten was taken away in the absence of Simmons, but on her return she hunted up her adopted child and brought it back to her basket, where it has remained until now. Simmons has now been nursing the kitten for more than a week, the kitten eeming to be perfectly salisfie with her foster-mother
This may not be an isolated case of the kind, yet it is evertheless remarkable.
H. U. Onderdonk, M.d.

College of St. James, Washington Co., Md, Nov., 1881

Rain of Spider Webs.

To the Editor of the Scientific American:
I notice in the Scien'fific American of November 26, 1881, an article headed a "Rain of Spider Webs." This rain occurred in Wisconsin in the latter part of October. It might be interesting to refer to another locality and another date, where and when a similar shower was seen. In this place (Bloomington, Indiana), on October 9, about two clock, my attention was called to the number of spider lines streaming from a telegraph wire running from the ouse at a height of about eighteen feet from the ground At this time I did not notice any in the air, but going along the road I observed some webs on the fences, but not in great numbers. Returning to the house a little before five o'clock, we found the telegraph wire almost fringed wilh them; every two or three inches, as far as we could see there were streamers of cobwebs of from four or five inches ongth to about tifteen feet, all directed nearly horizon ally toward the south. We now saw in the air many lines etached, drifting southward in constantly varying curves These lines were plaiuly visible at a distance of over two hundred yards, glancing in sunlight reflected from or im flected by them. We observed, also, several tufts or "para chutes" Hoating with the spider lines.
I find recorded in my notebook another instance of the same kind. It occurred September 20, 1874. Noticed the appearance about five o'clock. The air at this time was filled with dust, the season being very dry. The long waving lines of light, whose general direction was nearly verti cal, were seen drifting from north to soutl, nearly parallel oo the ground. They could be seen at the wime dintance a those already described. We watched them til! sunset; for a few minutes but few could be seen, then the number
would increase, but upon the whole there seemed to be no diminution as long as the sun shone upon them. The tuft of gathered cobroebs were more numerous than in the showe of October 9.
Bloomington, Ind., Nov. 22, 1881.
Cast Iron Flat Heads for Boilers.
To the Editor of the Scieutitic American:
As the question of the safety of cast iron " flat" boiler heads for cylind rical boilers appears again to have come to the surface, I give you beiow what has been the practice in past years by builders of high standing in proportioning such heads, and which have been used without accident.
The proportions of one builder are as follows: For boiler 4 inches diameter, heads $11 / 2$ inches thick; for boiler 28 inches diameter, heads $11 / 2$ inches thick; for boiler 30 inches iameter, heads $13 / 4$ inches thick :f or boiler 36 inches diameter, heads $21 / 8$ inches tbick; and of another extensive builder: For boiler 30 inches diameter, heads $11 / 2$ inches thick; for boiler 36 inches lameter, heads $13 / 4$ inches thick; for boiler inches diameter, heids 2 inches thick. I have also examined the heads of old boilers which had
been in use for years carrying 80 lb . steam, heads 36 inches diameter and $13 / 8$ inches thick; and of others in use for sears carrying 110 lb . steam, heads 36 inches diameter and $15 / 8$ inches thick.

Observer.
[The above data is furnished to us by an experienced steam engineer, and is brought out, we presume, by the recent publication, in the Scientific American Supplement, No. : 08 , of Mr. W. Barnet Le Van's letter relative to the Gaffney boiler explosion, Philadelphia. In that letter Mr. Le Van states, among other things, that no competent engineer would approve of flat cast iron heads, especially 36 inches diameter and 2 inches thick. We think that Mr. Le inches diameter and 2 inches thick. We think that Mr. Le
Van is greatly mistaken. If the information we have reVan is greatly mistaken. If the information we have re-
ceived is correct a very large proportion of all the ordinary ceived is correct a very large proportion of all the ordinary
cylinder boilers now running have flat heads, have been run for many years in safety, and were originally, and are still, approved by competent engineers.-Eds.]

An Ameriean Triumph in Eleetrie Lighting.

To the Editor of the Scientific American:
SIr: I have been somewhat surprised to find that no mention was made, except in the foreign papers, of an extraordinary test of electric lights made during the Electric Exhibition at Paris. It was a test made for the Credit Lyonnais, the great French financial institution, who were negotiating for the Brush patente for France, and consisted in running two 40 -light machines in series burning 38 lights each, 76 lights in all, on a twenty mile circuit, 16 hours a day for 30 days. The lights, during the whole period, burned with great steadiness, and the test was so satisfactory that, at its conclusion, the patents for France were purchased for between $\$ 400.000$ and $\$ 500,000$. This is the argest sum that has been paid, I understand, for any electric light patents of any American inventor. The French company, I was told in Paris, had already begun an immense manufactory for the manufacture of apparatus.
C. C. Ruthrauff

Cleveland, Ohio, Nov. 25, 1881.

Fall of a Meteorite in England

A stonefail took place at $3: 35$ P. M., on March 14, 1881, a mile and three-quarters from Middlesborough, in Yorkslire, along the branch line of the Northeastern Railway from Middlesborough to Guisborough, at a place known as Pennyman's Siding, on the railway. The fall was accompanied by the usual thunder-like report, not heard at the place where the meteorite struck the earth, but as far off as Northallerton and Welbury, in Yorkshire.
Some workmen's attention on the railway was drawn for about four seconds to a whirring noise overhead, followed mmediately by a heavy thud in the ground near them; and on searching in the direction indicated by the sound, they ound the stone, about three minutes afterwards, at the bottom of a hole eleven or twelve inches deep, which had ormed almost vertically through an inch of coke ballast and through thin growing turf and stony clay below at the foot of the slight embankment of the railway, four yards from the nearest line of rails, nineteen yards from the signal box of the siding, and fortyeight yards from the place where they stiod when they heard the sound. The forem:n barrated the occurrence, and placed the stone in the hands of the engineer of the Darlington district of the railway Mr. Cudworth, in whose possession it now remains as pro perty of the railway company; but it was suhmitted 10 me on March 25 for examination, and on Saturday, March $\because 6$, I visited the place of fall with Messrs. Cudworth and Elinor, and the workmen under them, and with some scientific friends. A photograph of the site, and of the group of men finding the stone, has since been made, and steps are being taken for preserving the hole in the ground in a box fitted and screwed together round the earth about it, which will be thus bodily removed.
The stone weighs 3 lb .8 oz .83 grains, and is of a low pyramidal shape like an upper oyster shell, 3 in. thick and rather less than $6 \mathrm{in} . x 5 \mathrm{in}$. in lenglh and breadth. The nterior is visible at points of the frayed edge and is gray, with very little interspersed grains of iron pyrites, and apparently no iron; and a magnet is not sensibly affected by the mass. Its specific gravity roughly determined is a little reater than 3.0 . The flat back surface of the meteorite is covered with a rough brown crust, while the blunt conical front surface is deeply scored and furrowed radially from the center, and polished like fresh molten slag and of a letd gray color.

The singular form and contour of the stone make it very desirable that, whatever provision is finally made for its preservation and mineralogical examination and descrip tion, it should not undergo more defacement from its original integrity than is absolutely necessary. - Monthly Notices R. A. S.

Lead in Bromide of Potassium.
Maschke has found bromide of potassium in the market whech is contaminated with lead. It is soluble to a clear iquid only afler addition of an acid; the larger crystals are remarkable by their transparency and their form. being compound of octahedra and cubes. In testing for lead, sul phuric acid cannot be used, since the resulting sulphate of ead is soluble in bromide of potassium. But if hydrosulphuric acid or sulphide of ammonium is used, no doubt can arise.-Pharm. Zeit.

