sity there would otherwise be of withd rawing, readjusting, and reinserting the instrument in order to observe different portions of the stomach, for the slightest turn of the wheel, $R l$, causes a corresponding movement of the terminal of the gullet-tube with its window, and thus makes different parts of the interior circumference of the stomach successively visible to the eye of the diagnoser. Wherever a small supply of electricity is to be bad, there the instrument may be used. A small portable apparatus for preserving a sufficient quantity of electricity has been designed by the maker, and now that the storage of electricity bas become a recognized possibility, the ingenious instrument we have very briefly described may probably prove a welcome aid to the medical man in throwing a new light upon the stomach, that mysterious source of so many of "the thousand natural shocks that flesh is heir to."

Woolen Thread.

have said that our worsted friends could spin our forty skeins wool into an eighty skeins worsted-a pure worsted thread is the smallest or highest state of tenuity into which thread is the converse of this, it is wool in its thickest form or lowest state of ten uity as a textile thread. In worsted all he wool is available to go into the body of the thread, as he tibers are just laid end to end and parallel to each other. In the woolen thread, owing to its peculiar construction, part of the fiber is required to form that outside fringe, and the body or core of the woolen thread has not the fibers parallel. Thus the one stands at the North Pole and the other at the South Pole of the wool industry.
I wish it distinctly to be understood that I quarrel not with people as to the kind of yarn they prefer; that is their lookout, not mine. I aim only to place before the reader a scientific definition, and if be is not content with the forty skeins got out of the wool we bave been considering, send part of the wool into Belgium, and he will get it spun to 55 skeins. You have a perfect right to bave your own way, and to be pleased with seeing and having a nice yarn, small spun, as well as anybody else-some people have quite a passion for a deal of yard stick, give them plenty of length for their money, and they are satisfied. Got your yarn back from Belgium, have you? Yes, and spun to fifty-six skeins. Like it? Yes, it's beautiful, beats the English yarn hollow -it's smart, clear, and glossy, it's quite a coat on its backthe English yarn looks rough and hairy when laid alongside that I am quite ashamed of it; the Belgian yarn is immensely superior; it's a most beautiful yarn, and besides and better than all, 1 have sixteen skeins more length (there goes the yard stick again). Beautitul yarn, is it? Yes, very beautiful indeed! Allow me to remind you again that beauty is in the eye of the beholder, and it depends upon what the beholder understands by what be sees, and that again depends upon the correctness of the beholder's knowledge and perception of what is beautiful.
You have reckoned up the "haves" in respect to this Belgian yarn-you have more skeins-you have more smartness -you have moreclearness-you have more beauty. Have you teen skeins more length, but on one side of the "have nots" you have sixteen parts lost of the wooleny character of the yarn. W-e-ll, but I don't see it in that way. I don't suppose you do; but whatever you want more than about balf the worsted length, can only be had by sacrificing a corresponding proportion of the wooleny character of the yarn. You must not expect that you can be allowed to run off with all the sixteen skeins extra length and retain the same wooleny character in the yarn. You can have either one orthe other, but you must not think to run off with both. You bave got sixteen parts more length, then you have only twenty-four parts left of the wooleny character-fifty-six skeins of the length added to the twenty four of the wooleny character make up the eighty skeins of the worsted spinner, at which point every vestige of wooleny character is gone. Try the carpet worsted spinner if you like, aud get sixty-six skeins out of your wool, and then you will have only fourteen parts of wooleny character left to make up the eighty, where the
game ends.

By carding as the Belgians do you la!y the fiber of the wool more tocoard the voorsted form, and that is the reason why you can spin it further, but it is at the expense of the wooleny character, and the yarn is all the less worth when it is spun The Belgian system of carding is simply combing on a card ing machine, as far as that is practicable; it is lashing ou the fiber and laying it as much toward the parallel as possible. The Belgian carder does not use his stripper, nor does he use his fancy as we do-the strippers don't touch the workers, nor does the fancy work into the cylinder card So that with cards set in this manner nothing but clean all wool work could find its way through the machine, and tha only in a lashing, combing manner. You can give what name you like to such a mode of working, but it certainly is not carding for woolen in its truest and best sense.
Ob! but the Belgian card is a " specialty," chimes in some one, and calculated only to work pure wool. •To all such specialty talk I beg to reply that the Belgian card will du
almost any kind of work, and that is the best finishing card almost any kind of work, and that is the best finishing card
in the world; but that as a breaker card it is neither fit to work in Belgium nor anywhere else. Its true position is that of a finishing card, in which position, when properly worked with a proper fancy, it will turn off work in mixtures, mungo and wool, as well as pure wool, in such a style as no other
card can. But I must not go into the subject of carding, as it is a subject
for discussion.
There is one part of my subject, and that is the use, or uses, to which woolen yarn can be applied; and as a preliminary to that we must fix in our own minds which way to twine it, whether "crossband" or "openband," and that for, whether for plain goods or for fancy goods. In the production of fancy cloths, whether in self color or in vari ous colors, design or pattern bas to be aimed at, and this involves sharpness of outline; and in order to obtain and retain this sharpness of outline, not only must the warp and weft thread cross each other at right angles, but the folds of the twine of the warp and weft thread must cross each other at right angles also, to enable the threads to retain their distinctness of individuality in the fulling or milling and the finishing. In using warp and weft spun the same way of twine, the folds of twine do cross each other at right angles in the clotli, thereby removing, as far as possible to remove, the liability of the fibers, and even of the threads themselves, o mingle budily in the milling.
If our object in using our woolen yarn is to make a plain cloth, such as a doeskin or a superfine black broad, where it is requisite to bide the make of the cloth, then in order to obtain this result the weft requires to be twined the opposite way to the twine of the warp, in order to afford the greatest facility for the fibers mingling quickly, and felting and forming one homogeneous mass, biding every vestige of the "make" or framework of the fabric. In the fancy clothy ou require to preserve as much as possible the individuality of the threads for the sake of the pattern; in the plain cloth you require to lose it as quickly as possible in order to obtain the closeness of face and coverforthe finisher to operate upon, and to do this the folds of the twine in the weft require to meet with, or fall in with the folds of the twine in the warp, and not cross them at right angles as in the fancy
cloth. By using opposite twine for warp and weft in fancy cloth you get closeness and evenness of face as in the plain cloth, but you sacrifice distinctness of patterniu doing

I need not attempt to name the variety of cloths for the make of which woolen yarn is useful-from the flannels we wear, and the blankets we rest upon after our day's toil, down through every kind of cloths, their name is legion-but will ask attention to one of the leading features of its use. The very pecular structure of the woolen thread eminently
fits it for the make of all kinds of cloth that require to be elted or " milled." The worsted thread we have been con sidering is from identically the same wool, but its formation precludes it weing made into goods where much felting is required. If you attempt to mill a fabric made from worsted o any considerable extent the material wili gather up into beady lumps which we call "nigger heads;" the structure of the worsted thread is not fitted for felting or milling, whereas the woolen thread from its very structure is, in the highest degree, fitted and adapted for all kinds of fabrics where felt
ing is requisite. As an extremeinstance of its power of use fulness in this direction I may mention that the Greenland whale fishermen's stockings are knitted wide enough and long enough to admit of being drawn over and to cover the entire men's bodies, and are then taken and felted or milled down to the proper size in order to give them the thickness and warmth necessary to withstand the rigor of that northern region. The Scotch Highlander's cap, or bonnet as he calls it, is of ten knitted the size of a cartman's hay net, and then feited down to the size of the buman head, hence their extraordinary wear. Another instance of the power of combination and strength through felting is the mysterious Gordian knot, of which we read in history, which promised the empire of the world to him who could untie it, and Alexander the Great is said to have cut it into two with his sword because he failed to untie it. This celebrated legend, if not altogether fabulous, is supposed to have had its foundation pound knot before hanging it in the temple.
Those tiny fibers, so insignificant and weak in themselves when tested separately, yet in combination and felted they are capable of being formed into a fabric that will resist tearing to an enormous degree, and are capable of resisting untold tons of pressure-in fact, no amount of pressure bitherto known, sot even the hydraulic, can compel a wetted woolen fabric to yield up its water, yet the same fabric when relieved of its pressure and taken and hung up by one end, will quietly and of its own accord, drop by drop, yield up the water which it refused to yield to all the force that ould be brought against it.
The cause or means by which, till lately, this very extra rdinary and very mysterious process of felting is accom plished is the presence of these minute and curiously laminated scales that I have spoken of as being in immense numbers upon the stem of each hair or fiber of wool; and as in carding and spinning we had to use oil to prevent these scales locking into each other, so in the fulling or milling we have to pursue an opposite course, and apply soap to overcome any remains of grease that may have been left in the fabric, as no felting can be commenced until all the grease has been
vercome. By the application of liquid soap we can vercome. By the application of liquid soap we can clean out and open the mouths of these tiny scales; they open their mouths to soap like the flowers open to the sun, and book into each whenever the fibers touch. Till recent years the greatest philosopher could not explain to us the principle on
practical fact for thousands of years unexplained. To the presence of these scaly excrescences upon the hair or fiber of
wool, and to the peculiar structure of the woclen thread, wool, and to the peculiar structure of the woolen thread,
we owe those very remarkable transformations of textile we owe those very remarkable transformations of textile
fabrics from the loose, open, unserviceable, friable textures into those compact, unfriable, wear-resisting fabrics, which when fully milled and of fine quality result in those mag. nificent cloths made in the west of England.

The Magnesia Iudustry

If we cause a solution of magnesium chloride to be absorbed by dry slaked lime, the magnesia set at liberty plays the part of a cement, and the matter may be moulded into small porous fragments. If one of these fragments is suspended in a solution of magnesium chloride, after some days the lime is entirely substituted by bydrate of magnesia. The fragment has been the seat of a double diffusion; the magnesium chloride has diffused itself from without to within, and is changed in the fragment into calcium chloride, which in turn becomes diffused from within to without. These two diffusions are simultaneous, and come to an end when all the lime has been substituted by magnesia. Here, then, is a means of reducing into a small volume a precipitate which would have occupied the entire bulk of the solution, if the fragment of lime had been stirred up in it at first. The same phenomena are produced if a great number of such fragments are beaped up in a suitable vessel, where a solution of magnesia is made to circulate slowly from the top to the bottom. In five or six days the conversion is complete; the solution may be replaced by pure water, and the magnesia washed completely. On stirring up it becomes a white pulp, which, if dried in the air, gives a very friable mass. It is hydrated magnesia which may remain for a long time purity depends on the without becoming notably carbonated. Its purity depends on that of the lime employed. In working on the large scale the author uses a paste of lime, which be forces through a plate of metal pierced with small holes, so as to eliminate stonesand unburnt pieces. If these " worms" fell upon the ground, or into water, they would at once return to their pasty state. He therefore receives them in a solution of magnesium chloride, where they become at once covered with a slender coating of magnesia, which consolidates them so well that they may be heaped up to the height of 1.50 meters, still leaving between them the interstices needful for the circulation of the liquid. The paste of lime should contain from 34 to 36 per cent of anhydrous lime. The sulution of magnesian salt should contain from 25 grammes to 40 grammes of anhydrous magnesia per liter. The laws of diffusion laid down by Graham are here at fault. The acceleration of the phenomena, due to an increase of strength, is balanced by the resistance opposed by a more consistent deposit of magnesia. The presence of sodium chloride, always abundant in the water of salt marshes, is indifferent. Soluble sulphate must be removed by adding the water from former operation, rich in calcium chloride, and allowing the calcium sulphate to settle, after which the clear liquor is run off for treatment.

AGRICULTURAL INVENTIONS.

Mr. George H. Fowler, of Taughannock Falls, N. Y., has patented a horse hay-fork constructed with grappling bars hinged to each other by a cross head clevis. Trip levers are provided to receive the trip rope, whereby the loaded tines will be locked in place automatically, and unlocked by opeating the trip levers.
Mr. Abner D. Dailey, of Riley, Ind., has patented a selfacting rest or support for the tongue of a barvester or similar machine, whereby the necks of the animals drawing the machine shall be relieved of the increased weight which is thrown upon the tongue when the machine comes to a stand.
An improved fertilizer distributer has been patented by Mr. John C. McCaskill, of Shoe Heel, N. C. This inven tion relates to improvements in that class of fertilizer distributers in which the feed hopper carrying the fertilizer and provided with a cut-off is secured to a plow beam, and it consists of a reciprocating cut-off having both its edges sharpened, whereby less power is required to operate the cut-off, and the lumps are divided by the cut-off.

The Destroyer of the spruce Trees.

Maine's lumbermen-and, therefore, a large part of the rest of her citizens-are much disturbed by the destructive insects which are killing the spruce trees not only in that State, butin the adjacent British Provinces. The pine has lost its pre-eminence, and the spruce was getting in a posiion to be the representative tree, but the U f the thing has been correctly identified, the Augusta Jour al says, is killing off the spruce faster than the lumbermen could have done it, and greatly to their detriment. The white borned Urocerus, for that is what his name means, is about an inch long and with wings which spread to two inches. They are as likely to destroy the pines into which they bore as the spruces, so far as the entomologists know. 'These insects are very prolific, and not at all uncommon. In Engand it has been often noticed and recorded, but there it was injurious only to ornamental trees, not to those on which so much depends in a business way and in whose preservation o many people are interested as the spruce forests of the Northeast. The prospect seems to be that things will go rom bad to worse. Unless some smaller insect comes to the front and destroys the eggs of the Urocerus, it is bard to see what is going to save our spruce trees.

