willed to and was willing to pay the price of personal and social advancement in hard and patient effort, integrity of purpose, and a readiness to do his best in everything that might fall to him to do. He made opportunities to work where he found none open, and when responsibilities were laid upon him by his townsmen or countrymen he met them bravely and studied hard to fit himself for the duties to be performed. Above all, he ssought to prove himself in all things worthy of his own self-respect. There was one man, he said, whose good opinion he desired before all others, for that man he had to eat with, and work with, and sleep with; his name was James Garfield
There is not a young mechanic who reads these lines, however humble his position, however scanty his opportunities, who cannst rise in position, knowledge, and personal worth by the same means. He may not gain great learning, great wealth, or fame by the effort, buthe cannot fail to gain what is worth more than all these in and more enjoyable manhood.
The failures of some men are grander than the successes of others. And while Mr. Garfield's life, tried even by conventional standards, was a splendid success in the end, it should not be forgotten that during most of his life sudden death would have found him in the ranks of the worthily inconspicuous, with those " who failed on earth great men to be, thrugh better than the men who wore the crown."
It was a sincere, purposeful, kindly, and laborious life that made it possihle for the close of his life to be signally conspicuous and his memory revered. Any youth who will can accomplish the life, though kind Fortune may spare him the pain and the glory of so tragic a termination of it.

THE HOLY WELL AT MECCA.

When Mohammed captured Mecca, which had been regarded for ages by his countrymen as a place of peculiar sanctity, he interfered with the worship of the Black Stone probably a meteorite) which the angels had brought from heaven, and of the Zemzem, or Holy Well of Hagar, only so far as to suppress the ancient polytheistic rites. This well is close beside the Caaba or Square House, the chief sanctuary of the Mohammedan world
The princes of Islam maintain at Mecca keepers of the Holy Well, who annually supply them with water to be used on great occasions and in great emergencies, as when stricken with disease. Every pilgrim to Mecca-and thousands come thither from all countries-visits the well and is purified by drinking the water or pouring it over his person, or both. The water is described as unpleasant in taste and cathartic in effect-qualities which are now to be accounted for without recourse to miracle.
With Occidental irreverence the British Consul-General at Jeddah has sent a bottle of the water to the Royal College of Chemistry at South Kencington to be analyzed. Dr. E Frankland, in his report of the analysis, says that the water is of the most abominable character. "In fact, it is sewage more than seven times as concentrated as London sewage, and it contains no less than 579 grains of solid matters per gallon. Knowing the composition of this water, and the mode of propagation of Asiatic cholera by excrementitious matters, it is not to be wondered at that outbreaks of this disease should often occur among pilgrims to Mecca, while it would scarcely be possible to provide a more effective means for the distribution of cholera poison throughout Mohammedan countries."
It would be interesting to know the composition of the waters of other holy wells of which Islam has by no means the monopoly.

STEAM BOILER NOTES

A foreign correspondent wishes to know why locomotive boilers work satisfactorily with so much less steam room per horse power than is usually found in marine boilers. He cites good English practice to show that fully three-fourths of a cubic foot of steam room is allowed per indicated horse power in marine boilers, while only one-eighth to onetwelfth of a cubic foot is allowed in locomotive boilers, and asks, To what shall the steam room be proportioned, if not : to the indicated horse power? The answer to the first part of the inquiry is, the greater pressure relatively to the power developed in the locomotive. But the subject does not seem to admit of such categorical treatment as our correspondent seems to indicate by the tone of the query. Perhaps an empirical rule might be made from a sufficient number of experiments, embracing most of the conditions of modern practice, but the factors of the problem include everything that affects the rate of evaporation and the free escape of the steam from the surface of the boiler water and the steam pressure.
The efficiency of the he.ating surfaces, the ratio of grate to heating surface, the rate of combustion, the circulation of the water, the quantity of water and its depth upon a unit of heating surface, the surface area from which the steam escapes into the steam space, the pressure upon that surface relatively to the power developed by the engine; and ina;much as the number and volume of the cylinder charges for cut-off engines are determined, in some degree, by the grade of expansion for a given power, the point of cutting ofl enters with the other numerous factors into the problem.
An illustration in point is of a small winding engine the boiler for which was, for special reasons, made small and upright, and intended to work at about one hundred and
fifty pounds of steam, but it was thought best to test the machineryat a lower pressure than the design contemplated; so, in order to get full speed, it was adjusted to work steam nearly full stroke of the piston. The foaming and priming of the water was, however, so bad as to prevent the use of
the engines under these conditions; but at the higher press. ure, and with a correspondingly high grade of expansion there was no further trouble from foaming. It will probably occur to the inquirer that locomotives are worked at all grades of expansion and at considerable variations of pressure, but a little thought will lead to a correct appreciation of the difference in causes that produce priming in different types of boilers.
\therefore a general proposition, it may be said that, other things being equal, high-pressure boilers require less steam room per unit of power than low-pressure ones
The explosion of the boiler in Card \& Co.'s sawmill, near Monroe, Jasper County, Iowa, resulted in the instant death of E. N. Garnant and the fatal injury of M. L. Card, on the 17th of September.

The locomotive of a freight train between Chetopa, Kan sas, and Parsons, on the Missouri Pacific road, exploded September 21, wrecking the engine and a dozen cars, killing Geo. Adams, engineer; Simon Bailey, fireman; John Denny, and a man named O'Neil. One of the victims was blown two hundred yards and terribly mangled. Bailey's head was blown off and could not be found.

A boiler explosion occurred at the mines of the Dunbar Furnace Company, Dunbar, Fayette county, Pa., on the 16th of September. James McDonald, fireman, was fatally, and Gconse McAnally dangerously injured, and several others were slightly hurt.
The boiler of a thrashing machine exploded at Thurlow, Ont., Friday night, September 23, killing Andrew Lloyd, Messrs. Malcolm and Anson, and Miss Caldwell, and seriously injuring three others.
The method of feeding water to steam boilers has fully kept pace with other improvements in steam engineering. The plan of serving cold water to locomotive boilers, which prevailed only a few years ago, is now a thing of the past, greatly to the advantage of the boilers. The injector in its early days was not understood, was not reliable, and it was therefore shunned by careful engineers as a boiler feeder. The difficulty has now been fully met and overcome by the Korting Double Tube Injectors, which are shown in full lines at the American Institute Exhibition. They are made to work at all pressures, and to lift hot or cold water and deliver it at the rate of from 80 to 4,000 gallons per hour. They are compact, self contained, and easily set up by any steam fitter, and they will start readily, operated by a single handle, without any adjustment for variations in steam pressure The boilers of the Institute are being fed with one of them, which any one, no matter how inexperienced, can learn to put in motion and regulate while "you wait."
These fine goods, with a line of Straightway check valves are shown by A. Aller, of 109 Liberty street, New York.

Exhibition of Smoke-preventing Apparatus.

The Department of State at Washington is in receipt of a communication from the British Legation, relative to the exhibition to be held in London of apparatus of all kinds devised to prevent smoke and to consume smokeless as well as other kinds of fuel. The exhibition will be open from October 24 to 26 inclusive, and the Department has been further informed by the British Charge d'Affairs at Washington that the committee has decided to consider favorably all applications from foreign exhibitors throughout the whole of September, and they will, as far as possible, reserve space for late exhibits, so that none may be excluded.

venice.

The following awards were made to the American Section f the Geographical Congress:
Group First.-A letter of distinction to the engineering department for topographic and hydrographic surveys of the Northern lakes, the St. Lawrence and Mississippi river internal improvements, maps of battle fields, and other geographical works; also a letter of distinction for the geographical surveys in charge of Captain Wheeler for accuracy in topographical surveys west of the one hundredth meridian.
Group Second.-A letter of distinction for the best model of the Gulf of Mexico and for the sea soundings of Commander Sigsby and other officers of the navy; also a letter of distinction for the report of Commander Green on inter national longitudes, hydrographical charts, American ephemerides, a publication on the solar eclipse of 1878 , and other papers by naval observers; a diploma of honor of the first class for a list of lighthouses, bound sets of charts, and other publications; a letter of distinction to the engineers of the Department of Geologica! Natural History and for the examination for Clarence King's exploration along the fortieth parallel; also a letter of distinction for Captain Wheeler's geographical surveys and works on natural hisory west of the Mississippi; a similar letter to the Signal Service Department and Weather Bureau for an extended eries of tidal weather maps.
Group Sixth.-A letter of distinction to the Post Office Department for a series of announcements and other publicultural a diploma of honor of the second class to the Agr
fessor Hough; honorable mention is made of the statistics of the Treasury Department for their quarterly and other reports.

Group Eighth.-A letter of distinction to the Engineer Department for Captain Wesscher's exploration and survey west of the Mississippi.

electro-metallurgy.

ELECTROTYPY.
In taking impressions or moulds of under-cut or highlywrought work it is necessary to use a flexible substance to admit of separating the mould and model without injury to either. For these purposes gelatine-or gelatine and glue or sirup-and gutta percha are employed. Glue (of the finest quality) or gelatin is softened by soaking over night in cold water, then removed from the water and dissolved by aid of heat in a quantity of pure glycerine equal to the dry glue taken. This mixture is kept over the water batn for several hours, and is then ready to pour over the warm, well-oiled model. After standing for several hours, or until thoroughly cooled, it may be removed from the model by careful manipulation. When removed it is dipped repeatedly in a solution of one ounce chromic acid in a quart of water each time being exposed to strong sunlight (every part), which renders the surface waterproof and non-absorbent. When dry the surface may be metallized, and a strong current with a large anode used at first in the bath. With such work much care is necessary to exclude air bubbles from the deep-wrought portions.
In using gutta percha the moulding operation is conducted either by press, by hand, or in a stove.
By hand.-After purification in boiling water, plates of arious thicknesses or lumps are formed.
A quantity sufficient for the intended mould is cut and put into cold water, which is gradually heated until the gutta percha is soft enough to be kneaded like dough. After having pulled the gutta percha in every direction the edges are turned in so as to form a kind of half ball, the smooth convex side is applied to the middle of the model then it is spread over and forced to penetrate the details of the object. The kneading is continued as long as the material remains sufficiently soft, when it is allowed to cool somewhat. While at a temperature of about $80^{\circ} \mathrm{Fah}$. it is separated from the model and dipped into cold water to harden, and may then be handled without danger of impairing its accuracy.

With some models it is preferable to heat the gutta percha in a copper dish with constant stirring until it becomes a semi-fluid paste. This is poured over the pattern previously placed in an iron ring. After a few minutes it may be kneaded in with wet or oiled fingersuntil it scarcely yields to pressure. In removing the mould from the pattern all useless parts, especially those which have passed uader the pattern and bind it, must be first removed. Then the proper position and shape of the covered pattern must be ascertained so as not to break the model or tear the gutta percha. For moulding by sinking or kneading the following composition is preferable to pure gutta percha: Guta percha, 2 parts; linseed vil, 1 part. Heat the oil in a copper vessel to about 212° Fah., then gradually stir in the gutta percha cut fine. When the whole is in a pasty form and begins to swell up with the production of thick fumes, throw the contents of the kettle into a large volume of cold water, where without loss of time, the paste must be kneaded, and, while still hot, rolled upon a slab of marble and passed between mediumly warm rollers.
Gutta percha may be used an indefinite length of time.
In moulding by press.-After the object has been coated with plumbago or tallow it is put square and firm upon the table of a screw press, and surrounded with a frame or ring of iron a little higher than the most raised portions of the model. A piece of gutta percha at least the thickness of the pattern is cut so as to fit the ring or frame of iron, and then heated on one of its faces only before a bright fire. When about two-thirds of its thickness has been softened it is placed, soft portion downward, in the iron ring or frame, and the whole covered with a block of metal exactly titting. It is put under light pressure at first. the force being increased as the gutta percha becomes harder or more resisting.
Stone moulding is resorted to with models the brittleness of which renders them liable to injury when pressure is applied -plaster of Paris, alabaster, marble, etc. The object is placed upon a plate of iron or earthenware, a ball of gutta percha is placed on the middle of the object, and the whole is set in an oven where the temperature is just sufficient to melt the gutta percha, which, as it softens, penetrates all the details; when it has sunk completely it is removed from the oven and allowed to cool off until it retains just enough elasticity to be separated from the pattern.
Gutta percha is entirely insoluble in water, weak acids, or acid salts. When moulded it is prepared for the deposition of metal by being coated with a film of graphite or bronze powder.

Grass Fired by a Meteorite.

A fire ball was seen to fall at Springfield, Ill, about 10 oclock of the night of September 21. It resembled in appearance an electric light, and it fell with a rushing sound like that of a sky rocket. The dry grass was set on fire where it struck, and the grass burned to a wooden sidewalk connecting with fences and wooden buildings, before the fire could be extinguished with water.

Vegetable Blacking.
The " Shoeblack Plant" is said to be the name popularly given to a species of Hibiscus growing in New South Wales, and remarkable for the showy appearance of its scarlet flow ers. Growing freely in almost any kind of soil, the plant is frequently cultivated for the flowers, which, when dry, are used as a sulstitute for blacking. The flowers contain a large proportion of mucilaginous juice, which, when evenly applied, gives a glossy, varnish-like appearance, which is said perfectly to replace ordinary blacking, with the advantage that it is cleanly in use and can be applied in a few moments. Four or five flowers, with the anthers and pollen removed, are required for each boot, and a polishing brush may be applied afterward, if desired. A few plants of the Hibiscus rosa sinensis growing in the garden would remove one of the minor disadvantages of a day in the country, where the roads are dusty and Lee and Bixby are almost unknown. Chinese ladies use the juice of the flowers for dyeing their hair and eyebrows. In Java the flowers are really used for blacking shoes. The plant is a native of India, China, and other parts of Asia. It would be interesting to ascertain to what extent, if any, the Althea, or Hibiscu*Syriaca, and the Swamp Rose Mallow, another member of the Hibiscus family, possess the same property.

NEW CLOTH-CUTTING MACHINE

The enormous quantities of ready-made clothing annually produced in this country has created a demand for some more expeditious plan of cutting out garments than the uspual way of cutting them by hand. Several kinds of cutting machines have been manufactured to meet this expressed want. None of these machines, however, have met satisfactorily all of the requirements of the trade, and their introduction has been effected to a limited extent only
The machine shown in our illustration is claimed to be practically perfect in its operation, upward of two years having been spent in perfecting every detail of the marhine and bringing it to the high standard which it has attained.
The machine is based on a principle radically different from any cutting machine that has heretofore been devised, and, as claimed by the inventor, the great success of the machine is due to this novel principle of action.
Instead of being laid on a solid wooden table, as usual, the layers of cloth, piled up to a height of from two to four inches, are placed upon a bed or support consisting of rows of upright wires fastened to a backing of wood, the wires being cut to a uniform length, so that their upper ends present a perfectly level surface.
The working parts of the machine are mounted on a firm base, alongside of and independent of the supporting bed, and are constructed to travel over a surface fifty or more feet in length, if desired.
The cutting instrument cuts upward instead of downward, and can be freely moved in any direction so as to fol low the lines of a pattern marked on the top layer of cloth, the peculiar character of the supporting table permitting this movement without difficulty,
The machine has been in use in Philadelphia for some months past, and has been examined by numerous manufacturers from dif ferent parts of the country, who have been unanimous in heir indorsement both of the machine and its work.
The machine now in use, driven by a two-horse poweren give, works with wonderful rapidity and accuracy, the knife easily following the most intricate designsand cut ting througb thirtyfour thicknesses of heavy cloth without heavy cloth withou pparnt efort. A he cloth is not lift drom the table while being cut the arrangement of the layers is not dis turbed and the cuts are perfectly uniform in each layer, and as the movable parts of the appara tus are above the
cloth the maripulation of the machine is effected without that friction or drag which attends the operation of an ordi nary cutting machine
The machine has an estimated capacity of 2,500 coats per day, or a product equal to that of 25 skilled cutters.
With this machine is an attachment for accurately cutting, without previous marking, from one to two hundred strips of materials of any width at a single cut, and cuts them either on the bias or at any angle across the pile of goods. They are very convenient for seam binding and
table, and is connected when in use to the pressure the machine, which it causes to pass in a straight line.
The machine is the invention of Mr. W. R. Fowler, the ventor of the well-known Fowler fly fan, and is manufac the owner of the patents, who may be addressed for furthe information.

THE NEW ASTRONOMER ROYAL

Mr. William Henry Mahony Christie, who has succeeded Sir George Airy in the office of Astronomer Royal at the

PROFESSOR W. H. M. CHRISTIE, F.R.S., The New Astronomer Royal

Royal Observatory, Greenwich Park, was born on October 1, 1845, at Woolwich. He is a younger son of the late Professor S. H. Christie, of the Royal Military Academy, Wool. wich, and formerly Secretary to the Royal Society. Mr. W. H. M. Christie was educated at King's College School, London, and at Trinity College, Cambridge, which he entered in 1864, having won a minor scholarship of that college; he subsequently gained a foundation sctolarship, and was afterward elected a fellow of Trinity College. He took his degree of B.A. in 1868, as fourth wrangler in the Mathematical Tripos, and in 1871 proceeded to the M.A. degree. In 1870, Mr. Christie was appointed chief assistant at the Royal Observatory; and he bas, during the past ten years, done special good service by contriving and introparatus there in uable improvements ins an ment for determining the colors and brightness of the stars
tributed to the proceedings of the Royal Society, in March, 1877, a paper " on the magnifying power of the half prism, as a means of obtaining great dispersion, and on the general theory of the half prism spectroscope." To the monthly notices of the Royal Astronomical Society he has furnished these: in June, 1873, a paper on the recording micrometer; in January, 1874, on the color and brightness of stars, as measured with a new photometer; in May, 1875, on the determination of the scale in photographs of the Transit of Venus; in 1876 (January) on a new form of solar eyepiect; (May) on the displacement of lines in the spectra of stars; (November) on the effect of wear in the micrometer screws of the Greenwich Transit Circle; same year (December) on the gradation of light on the disk of Venus; in 1873 (January) on specular reflection from Venus; (June) on the existence of bright lines in the solar spectrum; in 1879 (January) on a phenomenon seen in the occultation of a star by the moon's bright limb; in 1880 (November) on the spectrum of Hartwig's comet of that year; in 1881 (January) on Mr. Stone's wig's comet of that year; in 1881 (January) on Mr. Stone's
alterations of Bessel's refractions; (May) on the flexure of alterations of Bessel's refractions; (May) on the flexure of
the Greenwich Transit Circle, and some further remarks on the Greenwich Transit Circle, and some further remarks on
Mr. Stone's alterations of Bessel's refractions; besides various papers on the Greenwich spectroscopic and photographic observations, communicated by the late Astronomer Royal; and a paper which will be found in the Memoirs of the Royal Astronomical Society, published in January, 1880, on the systematic errors of the Greenwich North Polar distances. Mr. Christie is also the founder and editor of a journal entitled The Observatory, a Monthly Review of Astronomy, which has been published during the past four years; and he is author of the "Manual of Elementary Astronomy," published in 1875 by the Society for Promoting Christian Knowledge. These particulars we gather from the Illustrated London Neros, and our portrait from the London Graphic.

MISCELLANEOUS INVENTIONS.

An improved fastening or locking device, especially designed to endure without injury the excessive strains that trunk locks are subject to, has been patented by Mr. David W. Eggleston, of Terryville, Conn. The invention consists of a laterally swinging unjointed hasp, designed to be pivoted on the body of the trunk, having a large opening in its free end that sets over and coincides with a socketed and perforated nose or lock plate which is desigued to be fixed on the trunk cover.
An improved electric lock has been patented by Messrs. William R. Manierre and Henry B. Porter, of Chicag(), Ill. The object of this invention is to provide an electrical ttachment for locks, which will indicate at once the surrepitious opening of the lock by other means than the key
An improved folding leaf extension table has been patented by Mr. John Bismann, of Fairview, W. Va. It consists in the peculiar construction and arrangement of the parts, the extra leaves being folded within the table and always ready for use.
Mr. William Weiss, of New Orleans, La., has patented an improved and simple device for opening tin cans, which device can be used as a cover for the opened cans. The invention consists in a circular plate of metalprovided with a flange, and with a pointed or sharp edged tooth or stud a short distance back of the edge, and projecting in the same direction as the flange, and with a handle on the opposite surface, which plate is pressed upon the head of the can, so that the stud will pass through the head, when the plate is turned by means of its handle, causing the sharp stud to make a circular cut in the head of the can.
An improved cigar maker's working board or table which is bandy and compact and can be transported very conveniently, has been patented by Mr. Bernhard Becker, of New York city.
Mr. Heinrich A. W Braune, of Memphis, Mo., has patented a cheap and efficient solar camera, which is light and portable, and may be readily taken apart or set up, as required. Any ordinary tube may be used in the instrument, and no extra tubes are required. The print being detached from the camera hox the printing may be watched and the light regulated according to the shades desired. The instrument may be readily handled and managed by one person.

