ELECTRIC INDUCTION BY STRESS

Joule has shown that when a bar of iron is magnetized by dueans of a helix and electric current the bar is elongated aproreciably. These

Wbile undertaking some experiments in December, 18^{78} it occurred to me that the inverse of this ought to be true, it occurred to me that the inverse of this ought to be true,
namely, the forced elongation of a bar of iron, surrounded by a helix, would give cause for an electric current through the helix and connections. A series of experiments followed which completely verified the supposition, a recital of which may be of interest. The publication of them was deferred from time to time in the hope of more varied ments by others.

By placing one branch of a sounding tuning fork near By placing one branch of a soun
the pole of an electro-magnet, the the pole of an electro-magnet, the
coil of the latter having a Bell telecoil of the latter having a Bell tele-
phone in circuit, the tone of the phone in circuit, the tone of the
fork is found to be reproduced in the telephone. But this is like using a Bell teleptone for a transmitter, the branch of the fork in the present case serving for an armature, as does the diaphragm in that instrument. Again, when an iron bar is fastened at its center and made to fastened at its center and made to
vibrate longitudinally near an elecvibrate longitudinally near an elec-
tro-magnet. a telephone in circuit tro-magnet. a telephone in circuit
will speak, and for the same reawill speak, and for the same rea-
sons as before. Remove the core of sons as before. Removethe core of
the magnet and the sound is still heard at the telephone, and it is not necessary that the bar be a magnet. Bars of iron were selected that possessed a minimum amount of mag. netism, in fact an almost inappreciable magnetism, and still a loud ciable magnetism, and still a loud
sound was emitted by the telephone.
The helix used had no iron about it when the core was removed, and the opening for the core was large enough to encompass the bar without touching it. The bars used were several times the length of the belix.
At first it was supposed that the motion of the iron longitudinally was chiefly concerned in the production of sound. On this supposition the sound would diminish as the helix was moved toward the middle of the bar where it was firmly secured in a clamp for longitudinal vibration. But instead of this, the intensity was increased; and to such an extent that the auditor at the tele hone in a distant room could positively say whether the coil was at the end or at the middle of the longitudinally vibrating bar. This made it clear that the sounds observed were not to be explained altogether on the ground of vibratory motion of the particles of the bar, becaluse the motion of the bar at its middle is nil when clamped at this point and vibrating longitudinally at its fundamental: while at the ends we have a maximum degree of vibratory maximum degree of vibratory
motion. But at the middle motion. But at the middle
of a bar thus conditioned we have a node, and the strains are here known to be those of extension and compression and at a maximum for the bar, while at the ends the alternating strains are nil; that is, where the motion is greatest the strains are least and nice versa It are least, and vice versa, It seems, therefore, certain that at the mid
dle the sound ischiefly due to dle the sound ischiefly due to
the vibratory stresses, while at the vibratory stresses, while at
the ends it is almost entirely the ends it is a
due to motion.

The engraving shows the apparatus. Rods were used which were from one-quarter to one-half inch in diameter and three feet long The and three feet long The coil was about three inches long, and so connected with the free circuit wires that it
could readily be moved along could readily be moved along
the rod. As the clamp prevented placing the coil exactly at the middle of the bar, the latter, to test this point, was taken out and suspended by two filaments so light as not to interfere with the vibration, and the bar made to vibrate longitudinally by strikbrate longitucinally by strik ing on the end with a mallet. The coil was placed directly \mid iron by magnetization with electric currents, is operative at the middle and alsoshifted to right and left, but the sound in the inverse order, namely, distortion of bars by mechan was still loudest at the middle. Sounds produced by the trans- cal force induces electric currents in surrounding coils. verse vibrations, now accidentally occurring and mixing with those due to the longitudinal vibrations, were heard, but were readily distinguished by the pitch of tone. These were separated front the above consideration of longitudinal vibrations. To further test the matter of electric induction by stress,
a rod was passed through the coil, and the rod put under tension in a testing machine. A galvanometer now placed in the circuit became very active as the strain was put on. The bar was an ordinary three eighths rod of commercial bar iron. It was at once found to be permanently stretching, and the galvanometer needle was all the while flying boutas the extension continued. When the bar was removed t was found to be strongly magnetic, much more so than it could have been when put in. It was also heated. It therefore seemed difficult to determine whether the observed currents of electric iuduction were due to strain, stretch, mag netisin, motion, or heat, in part or together.
A piece of white chilled cast iron was then tested to $42,000 \mathrm{lb}$. compression, and found to resist the full power of the machine without crushing or set. The coil was then placed around the rod, and the test for stress electric induc-

MANNER OF PRODUCING ELECTRIC INDUCTION BY VARYING STRESS.

RECENT INVENTIONS.

An improved tip for lamp-wick tubes has been patented by Mr. Hamilton B. Follett, of Brooklyn, N. Y. The object of this invention is to produce a very brilliant and regular flame in a kerosene lamp or stove, and to prevent any irregular or undue carbonizing of the wick. It consists in small plate of metal, which passes edgewi-e and longitudjnally over the middle of the upper edge of the wick tube, a hort distance above
Mr. Alfred 1. E. Knight, of New York city, has patented a convenient inkstand or cabinet constructed with means for holding pen holders, sponges, rules, etc., and also a centra removable panel, ornamentation, or calendar, and formed with surfaces adapted for emblematical or lettered advertising.
An improved apparatus for stowing cotton bales in ves sels has been patented by Mr. John F. Taylor, of Sharon Springs, N. Y. The object of this invention is to facilitate the stowingof cotton bales in vessels, and enable the stevedores to stow a much greater quantity in a vessel than is possible when the stowing is done in the ordirary man ner.
Mr. George Hill, of White Hall, Ill., has patented an improved stew pan which can stand very intens heat without breaking, has a support that admits of a circulation of air under the vessel, and has ears for fastening the bail, which are so protected that they cannot be broken off by slight jars or shocks, as i the case with the ears of the ordinary earthenware pan.
Pocket scales designed especially for physicians practicing in the country and in small towns, where it is necessary for them to carry and weigh out their medicines, for fami ly use in weighing medicine, and for prescriptions and other delicate tion applied. Under compressive strains the needle gave weighing, have been patented by Mr. Isaac S. Hopkins, of unmistakable evidence of electric currents, though they Oxford, Ga. were much feebler than in the previous case of soft iron.
Experiments on steel bars, not magnetized, gave appreciably the same effects as iron bars. Magnetized steel was not tried, but it is presumed that at the end of the bar mag het vibrating longitudinally the sounds would be intensified while at the middle of the bar, normally magnetized, the sounds probably would not materially differ from those btained from non-magnetic bars.
A few other metals were tried, copper and brass particu larly, but no sounds were heard from them. These experi ments, though far from being complete and exhaustive of the subject, warrant us in the following conclusions, namely: 1st. That the fact of Joule, of the distortion of bars of

An improved device for testing milk by comparing it color with a scale of sliades of colors, has been patented by Mr. Friedrich Heeren, of Hanover, Germany
An improved last, for the manufacture of boots and shoes, has been patented by Messrs. John Martin and Josiah Merrill, of Great Falls, N. H. It can be changed to suit the style at a small cost.

NEW ROAD SCRAPER

We give herewith an engraving of an improved road scraper for moving dirt from one locality to another and for leveling and grading. It is mounted on wheels and is pro vided with levers, by means of which every movement of the machine may be readily controlled by the driver, who sits on the seat at the rear of the main frame.
For the sake of showing the working parts of the machine one of the supporting wheels is removed, and parts of the framing are broken away.
A forked frame, A, is guided in roller bearings in the main frame and in the braces extending upward from the frame, and has pivoted hetween its lower ends the scraper, B, which is made either wbolly or in part of iron or steel. A lever, C , is fulcrumed on a standard attached to the axle, and is connected with the upper part of the forked frame, A, by means of a connecting rod, so that the support may be moved up or forced downward as occasion may require. The lever, \mathbf{C}, is provided with a pawl which drops into a toothed sector attached to the lever support, and holds the frame, A, at any desired beight.
A toothed sector, c, is secured to the side of the scraper, and is engaged by another tonthed sector, b, pivoted to the frame, A, and extended upward and backward, forming the lever, D, and the latter carries a toothed sector, a_{1} which is engaged by a pawl pivoted to the side of the frame, A, and extended upward and rearward, terminating in the handle. This pawl locks the scraper securely at any desired angle that is in position to scrape up the earth, or with the edge elevated in position to retain the earth. It will be seen that with mechanism thus arranged the driver

