Machinery and Civilization.

Mr. Charles C. Coffin has been giving a series of lectures in the Lowell (Mass.) Institute on our manufacturing indus tries and the relation of invention to civilization. From the Boston Advertiser we make the following extracts from one of these lectures
The first need of men in this world is for something to eat; the second is for something to wear. The earliesthistorical allusion to the manufacture of textile fabrics is the simile in the oldest poem extant-the Book of Job-the comparison of the swiftness of time to the weaver's shuttle. The weaver's shuttle of the East and the loom of the Orient through all the centuries have not changed. Throughout Asia, and even in some sections of Italy and Spain, the spindle of to-day is like that which Penelope deftly twirled when preparing garments for her absent lord. The use of machinery in the manufacture of clothing has been a powerful agency in modern civilization. Out of the multitudinous machines of the present century I select those for spinning and weaving to represent the progress of mechinic art. It is noteworthy that the first movementin free intellectual thought in antago-
nism to the dogmatism of the Middle Ages and the first nisun to the dogmatism of the Middle Ages and the first
mechanism to relieve woman from unceasing toil were coinmechanism to relicve woman from unceasing toil were coin-
cident. During those years in which Martin Luther, Melancbthon, and their compeers were awaking the world to a new intellectual ind religious life, a German carpenter constructed the spinning wheel, which made its appearance about 1530. The knitting machine was the second invention-the device of a young curate of Nottingbam, the
Rev. William Lee; and during those montbs when the May Rev. William Lee; and during those montbs when the May
flower was crossing the Atlantic, the first stockings knit by flower was crossing the Atlantic, the first
the machine were placed on the market.
the machine were placed on the market.
The lecturer commented upon the fact that the century following Lee's invention rolled away without any invention Men were giving their attention to other tbings. The spiri of the age was against invention. The learned were lost in abstractions, were regardless of buman needs, utterly igno rant of the resources of nature to alleviate human woe or to lift men to a higher plane of life. Another reason why inventions did not cone earlier was that all christendom tbrough the Middle Ages and down to the beginning of the present century, was engaged in war. The conditions wer all adverse to scientific research. In 1781, just one bundred years ago, came Watt's first working engine, with a con-
denser and the stcam applied to propel the piston in both denser and
directions.
Aside from the very few wind and water mills, the human race at the beginning of the present century was living by its own muscular energy, digging and delving. spinning and weaving, with rude instruments and mechanisms.
The world is more enligbtened now. but there are still many people who cannot see how the introduction of a machine which will do the work of many men can be promotive of the well being of the community. Imagine yourselves as standing on the bank of the Merrimac in 1821, with
Nathan Appleton, William Appleton, Patrick T. Jackson, Nathan Appleton, William Appleton, Patrick T. Jackson,
Kirk Boott, John W. Boott, Paul Moody, and Natbanicl Bowditcb. No sound breaks the stillness, save the rushing of the water over the rock. It is the energy of nature running to waste, and these gentlemen determined to set it to work for their individual welfare. They purchased tbe surround ing farms and the old canal which other men bad constructed for the passage of rafts, set themselves to enlarging it, and in building a dam, not working with their own hards, but summoning the farmers, who came with their oxen to haul rocks. Stonemasons are wanted, and the blacksmith to sharpen their tools. Young men come down from Vermont and New Hampshire to dig the cenal. The gentlemen wbo are pushing the enterprise need bricks. Another class of laborers is called for. Lumber is needed, and sawmills are set to humming. Masons, hodcarricrs, mixers of mortar, lime burners, are set to work, with still more oxen, more teamsters and cartmen, besides coopers to make the casks for the lime. An architect plans the manufactory; the carpenters frame it, and a corps of joiners finish it. A mill wight calculates the power, sets another corps of men a work constructing the great wheel. Tbe manufacturers of
the spinning and carding and weaving machines have regiments hammering and filing brass, steel, and iron. They in turn have set the founde's, puddlers, and smelters to work Furnaces send up their lurid flames; vessels are sailing on tbe ocean to fetch and carry the materials. The miners far down in the earth, the sailor climbing the shrouds in mid ocean, the millwright lost in thought, as he calculates the power of nature's energy, the brickmaker moulding the plastic clay, the joiner plying his plane, the teamster urging bis cattle; all have been called from former vocations to aid in building the mills. Why have they come? Because these gentlemen offer them more remunerative wages than they have heen receiving.
Let us follow on. The mills are erected, the machines are in place, but human bands are still needed. The gentlemen summon the farmers' sons and daughters by the inducement of better wages. Have the gentlemen thrown any one out of employment? They bave changed labor; they bave made the spinning wheel and loom of the bousehold useless lum ber, not tbrowing the olld-time spinners and weavers out of employment, but transferring them to one in which they can do more for themselves and their fellowmen. You ask, perhaps, what the masons joincrs, and carpenters who built the mill are to do when the mill is completed? Are they not out of employment? The mill is only the beginning

Dwelling honses are needed, stores, shops for the grocer, butcher, baker, joiner, mason, blacksmith-the whole fraternity of trades and occupations. The first mill erected at Lowell was the becinning of a city to day numbering be-
tween 50,000 and 60,000 inhabitants. It will be instructive tween 50,000 and 60,000 inhabitants. It will be instructive in this connection to see what labor and capital together will accomplish through the use
ng value to raw materials.
The Southern farmer plows his lands, casts in the cotton eed. He sells his crop at 12 cents per pound, obtaining livelihood by agricultural labor. The operative in Lowell, by manufacturing it into muslin, may make it worth 80 cents, by more delicate manipulation into lace -worth $\$ 1$. But before the process could be undertaken by the machinist, the iron manufacturers were called upon to construct the machinery. The ore which the miner dug from the ground, and which he sold for 75 cents, the iron smelter sold for $\$ 5$. The machinist makes it worth $\$ 100$. If instead of putting t into spindles and wheels, it had been sold to the manufacurer of fine ncedles, he would have made it worth $\$ 1 ; 800$ The manufacturer of watcb springs would have made it worth $\$ 200000$; or if he were to use it for pallet arbors it would be worth $\$ 2,577.595$. Past earnings and present labor
together give this increased value to the 75 cents' worth of toget
ore.
Invention renders old things obsolete aud so is destruc tive; but there is a force more destructive tban invention, a force that not only drives men from occupation, but upon the instant consigns their costly machines to destructiona force wielded almost wholly by the female sex-the force f fasbion, a power stronger than the combined strength of inventors, manufacturers, and operatives. Not long ago every woman in this audience quite likely regarded a bnop skirt as necessary to make her wardrobe complete. Probably not less than $2 \pi, 000,030$ were manufactured per annum,
requiring an outlay of many millions of dollars for complirequiring an outlay of many millions of dollars for compli cated machinery, furnaces, and rolling mills for the found ion of steel, manufactures for the weaving of tape, employ gained possession of the temale mind tbat dress would b mare graceful and pleasing to the eye without them, and they were upon the instant discarded, bringing about quick destruction to the manufactures and loss of occupation to the operatives.
Invention is an educator. It begins with thougbt. Tb more thought put into his machine by the inventor the highar he intelligence to operate it. Mechanics has become a dis inct profession, requiring high mathematics, physics, and the power of abstract thouglit. Trade and commerce recog nize the new profession by offering it their bighest pecuniary ewards. It is the master mechanic, receiving his salary of $\$ 15,000$ per annum, who is the cheapest employe of some orporations in this country. Fifty years ago, in 1830, th pindles of the world were as follows: United States, 1,000 000 ; Europe, 2,C00,000; Great Britain, 8,(00n,000. To-day
the United States bas 11,000,000; Europe, 20,000,000; Great Britain, 40,007,000. In cottoil manufacture it is estimate that one man to day is able to do the work of 1,000 band laborers, and that the cotton, silk, and woolen industries of o day would require the labor of every buman being if pre pared by hand labor.
One bundred years-ago, when thread numbered 150 by the standard set up by spinners was considered the utmost de gree of fineness possible by English spinners, a pound of cot ton spun to sucb fineness would give a thread 74 miles in ength, sufficient to reach from Boston to Concord, N. H The macbinery of to-day spins for useful purposes thread numbered 600 -from one pound a thread 196 miles in length. And machinery has been constructed so delicate that a pound of cotton has given a thread reaching 1,061 miles-farther han from Boston to Chicago! The weaver of my boyhood could throw the sbuttle perhaps twenty five times a minute but not at that rate through the day. Human muscle would break down under such rapid action. In 1850 Compton's loom threw the sbuttle fifty times a minute, whereas so
great has been the advance of invention, that the loom of o day is considered a slow moving mechanism if the shuttle does not fly 240 times a minutel "No man can afford to take as a gift to day a cotton manufactory equipped with the macbinery of 1860 ," was the remark of the late superinten machinery of those days for old iron."
In some departments of cotton manufacture a man with the present machines will do eight times the amount of work which he could accomplish in 1860. In the manufacture of coarse cloth an operative with ten machines does twice the work which be could accomplish with thirteen machines before the war. There never was a period so fruitful in discovery, so fertile in invention as the present, and the reason is manifest. The first discoverers and inventors groped in tbe dark. They were ignorant of nature's laws. They did not know what force was. They had a limited compreben was of what the simple mecbanical powe
In little accumulated wealth of research.
In contrast, the mechanic of to-day has all the discoveries, cbinery, the laws of force at bis command. He inberits the scientific wealth of all the past and makes it his capital. Instead of gazing, as it were, upon old mines worked ut, he beholds mountain ranges filled with golden ore, and engages in his work with the stimulus of the needs of the buman race, and the ever increasing wants of an advancing civilization.

Hepairing steamers ont of Dry Dock.

Some weeks ago the steamship Queen, of the National Line, had her bow stove in by collision on the bay. Tosave the heavy cost of occupying the dry dock while the flates were being made for repairing the breach, the Queen was owed to the Erie Basin, where the manager of the line, Mr. Hurst, had the work done by means of a cofferdam, which was built on the dock. The dain was aliout 25 feet square, and was simply a luge box without a cover. In one side of and was simply a huge box without a cover. In one side of
this box an aperture was cut into which the bow of the vessel exactly fitted. Then the box was sunk beneath the steamship and raised under her bow so that it fitted snugly to her hull and the edges were calked. After the water had been pumped out the workmen descended into the box or cofferdam and rebuilt her bow. This method of repairing, which is an old but much neglected one, saved the company, Mr. Hurst is reported to say, just $\$ 26,000$.
More recently the method has been applied to the iron steamship Holland, of the same line. Mr. Hurst says: "In the November gales she was all torn to pieces about the stern. She is 450 l feet long and is registered at 4,000 tons burlen. No dry do:k in Λ merica could lift ber. She is at our dock at Houston street, North River. I had a coffer dam built in Jersey City and towed to the Holland. The dam is 36 feet long, 26 feet wide, and 22 feet deep. I sent a carpenter into the hold of the Holland, and be took measurements every 2 feet from keel to deck. He then went on the dock and luilt a flat pattern the exact shape of the vessel about 10 feet from her stern. The shape of the patiern was cut from ore side of the coffer dam. Then the coffer dam was towed to the vessel, heavy chains were thrown into ber until sle sank, the chains were then withdrawn. and the dam rose to the hull of the steamstip. The stern fitted perfectly into the aperture, and all was made snug." The repairs will take till February 15. By that time the charge for dockage would have amounted to over $\$ 30,000$, which is saved by the use of the coifer dam.

A Large Iron Steamboat.

The Fall River Steambort Company announce that a contract has been signed witb John Roach \& Son for the construction for them of an iron steamboat, to be the laryest ever built for the Long Island Sound trade, between New York and Fall River. Her length over all, on deck, will be 335 fet; length of bull, 380 feet; extreme breadth of beam across he guards, 87 feet; breadth of beam of hull. 50 feet, and 17 feet depth of hold. She will be built upon the cellular system, that is, with two bulls-tbe most recent type of shipbuilding insuring safety-the cellular spaces at the sides being two feet deep, and along the bottom three feet deep, bet ween the hulls. The spaces between the two bulls will be divided into ninety-six watertigbt compartments, and, in addition, there will be six water-tiglit bulkheads from the inner bull to the main deck. The new boat will be provided with a steam steering apparatus, and an inde. pendent or safety-steering quadrant aft, in case of accident to the steam gear. The means for extinguisbing fire, for closing one compartment from another, and other provisions for safety, will be on the latest improved methods. The engine will be on the "walking beam" principle, with 110 incbes diameter of cyliuder and fourteen feet stroke. There will be four main boilers, their construction being ucb as to warrant carrying a pressure of steam fifty pounds o the square inch, although the working pressure will be about twenty-five pounds to the square incb. The paddle shaft will be twenty-six incbes in diameter, and with the piston rod, connecting rods, and rock shafts, will be made piston rod, connecting rods, and rock shafts, will be made
of the best wrought iron. The machinery will be inclosed of the best wrought iron. The machinery will be inclosed
in a compartment of longitudinal and atbwartship bulkin a compartment of longitudinal and atbwartship bulk-
beads, carried up to the burricane deck. The passengen accommodations are intended to be superior to those of any steamboat now afloat. The boat is to be completed by May, 1882.

Messis. Anthony W. Bers inventions.

Messrs. Anthony W. BJers and James C. Dorser, of Sherman, Texas, bave patented a cotton planter so constructed that it can be adjusted to plant less or more seed, as re quired. There is an ingenious arrangement of spikes or prongs attached to the rim of the feed wheel, whicb take hold of the conton seeds and raw them out between curved steel springs fixed in the slot in the bottom of the feed board or bottom of hopper, and at the sides and forward end of this slot are attacbed springs which are curved downward and outward in such a manner that their bends may meet, or searly meet, within the slot, so as to prevent the seeds from passing out except when pushed out ly the prongs of the eed wheel and thus prevent the seeds from being dropped in bunches. The outward curve of the ends of the springs allows the seeds to drop from them freely, and allows the prongs of the feed wheel to pass up between the springs should the said feed wheel be turned backward.
Mr. Julius Holekamp, of Comfort, Texas, Las patented a seed planter whereby corn, sorghum, beans, rice, cotton, etc. may be planted in hills or drills, and so constructed that the seed may be planted in any desired quantity, and at any desired distance apart, and with the rows at any distance apart
Mr. Cbristian E. Gardner, of Orangeburg, S C., bas patented a seed planter and fertilizer-distributer, whet bas t wo hoppers and dropping devices whereby different mate rials maybecarried and distributed by the same machine and at the same time. Adjustments are provided whereby the macbune may be used either as a single or double planter.

