These results have been verifled at temperatures as low as 14° Fah., at which, however, there was little cloudiness pro duced, owing to the small amount of vapor in sir so cold The sources of this dust are many and various; for instance, finely ground stone from the surface of the earth, the ash of exploded meteorites, and living germs. Mr. Aitken showed experimentally that, by simply heating any substance, such as a piece of glass, iron, or wood, a fume of solid particles was given off, which, when carried alongwith pure air into a receiver, gave rise to a dense fog mixed with steam. So delicate is this test, that the hundredth of a grain of iron wire will, when heated, produce a distinct haziness in the receiver. By far the most active source of these fogproducing particles is, however, the smoke and sulphur given off hy our coal fires; and as even gas grates will not prevent the emissiun of these particles, Mr. Aitken thinks it is hopeless to expect that London, and other large cities wherein such fuel is used, can ever be free from fogs. However, inasmuch as more perfect combustion will prevent the discharge of soot flakes, these fogs may be rendered whiter, purer, and therefore more wholesome, by the use of gas
grates, such as that recommended by Dr. Siemens. Mr. grates, such as that recommended by Dr. Siemens. Mr.
Aitken also drew atteution to the deodorizing and antisep. Aitken also drew attention to the deodorizing and antisep tic powers of smoke and sulphur, which, he thinks, prova infecting the foul smells which cling about, the stagnant air of fogs, and suggests caution lest, by suppressing smoke, of fogs, and suggests caution lest, hy supp
we subsitute a greater evil for a lesser onc.

he navies of edrope- Ten years' progress in

 SHIPS OF WAR.In recent issue, of this paper considerable space has been given to the consideration of our constwise and maritime defenselessncss, and to the pressing need of attention to our na a al weaknes3.
The past decade has been a perind of remarkable activity and creative progress in all the navy vards of the world save ours. During this time the great powers of Europe have substaitially reconstracted their navies on a scale previously undreamed of; and even the third and fourth rate powers of the world have so increased their war fleets as to place usin a decidedly precarious position navally should a controversy with either or any of them suddenty arise. There is happily no present indication of foreign war, but a war is always possible; and it ill-hecomes the richest nation in the world to he doing nothing for the protection of the exposed wealth of its seaports, or for putting itself in position to command respect-the surest guarantee of peace.
According to the recent report of the Navy Department the strength (more correctly, weakness) of the United State Nave is summed up as follows:
In Commission-Steamers, 29, sailing ships, 4; monitors, 8; torpedo boats, 2; total, 43. In Ordinary-Steamers, 18; sailing vessels. 8; monitors, 7; steamers, 3; saiiing ships, 3; monitors, 1; steamer, 1; sailing ships, 3. On Stocks Steamers, 5 , sailing ship, 1 ; monitors, 4; ironclad. 3. Re-pairing-Steamers, 9. At Naval Academy-Sailing ships, 3 ; monitors, 1. Public Marine School-Sailing ship, 1. Tugs of all kinds at yards and stations, 25. Total number of vessels, 139 .
Of these vessels, constituting the general service fleet, six are double-turreted armor helted monitors, only one of which is finished or near completion-the rest are rotting on the stocks; fifteen are single turreted monitors built from fifteen to eighteen years ago, and now practically worthless; five are unarmored screw steamers (frigates), the youngest, the flay ship Tennessee, being fifteen years old; twelve secondrate and twenty third rate corvettes, all hut one second-rate (the Trenton) and half a dozen third-rates being ancient and of small value; four paddle steamers, all ancient; two torpedo vessels, and a dozen small gunboats, only two of which are yet armed. Some of these vessels carry small rifted guns (altercd from smoothbores), and all arc slow, very few ex ceeding ten knots.
The navy of Great Britain presents a remarkable contrast. It now comprises, according to the circful sumurary of Mr. King (" War Slips and Navies of the World." by Chicf En gineer J. W. King, U. S. N. ‘Boston: A. Williams \& Co. 1880), nearly four hundred vessels of all kinds, excluding those laid up or employed in permanent larbor service. These vessels are divided into three classes: ships for great naval battles, ships for corist defense, and unarmored cruis. ing vessels. Of the first class of heavily armored sea going fighting ships, armed with powerful guns, there are now twenty-eight, carrying 254 guns, weighing in all 4,493 tons. Eleven of the ironcladsare sea-going turret ships-ninc mastless and two rigged-and seventecn are hroadside ships, of which three are armor-belled cruisers. The coast defenders number fifteen, and the iron broadsile ships of the original type number ten. In addition, two iron-plated wooden ships remain serviceable. These are all large ships; nearly all are of recent construction, the average expenditure on new armored ships, according to Mr. King, being about fifteen million dollars a year, while nearly four millions are spent on other new vessels. The first-class turret ships range between 270 and 330 feet in fength; 6,23) to 11,406 tons dis. placement; carry guns of from 2 j to 80 tons; and can steam from $121 / 2$ to 15 knots an hour. The first-class broadside ception. exceed 6,000 tons displacement, risin,r as high as 9.500 tons. They carry guns of from 12 to 25 tons, and all make belter time than the fastest American corvettes, or be-
tween 12 and 15 knots. The armor belted ships are but
slightly smaller and less powerful. The coast defenders are improvements on our monitors in size, speed, and armament. Most of the old-type iron broadside ships are larger than our Tennessee; are armored, carry guns from $61 / 2$ to 12 tons, and can steam from 12 to 15 knots.
The lately built unarmored ships of the British Navy include three iron frigates, six iron corvettes, two steel dispatch vessels, nine steel and iron curvettes, six composite corvettes, fourteen first-class composite sloops, and six second-class, with a hundred composite gun vessels and gun boats. The frigates steam from 15 to 16 knots; the first class corvettes
from 13 to 15 knots; the second class 11 knots; the dispatch boats, both as large or larger than the Trenton, have exceeded 18 knots.
The old type steam cruisers of wood and iron in the genetal service fleet are by no means of small importance, though they do not properly fall within the scope of this article. This fleet comprises fifteen ships of the line, twelve frigates, twenty corvettes, ten sloops, thirteen troop ships, supply ships, dispatch steamers, yachts, surveying vessels, etc.
The new figiting flect of France practically dates from 1872, when a programme was drawn up for the construction of 217 vessels of various types, costing in all upward of $\$ 121.000,000$. The finished armored vessels comprise eight sea going ships of the first class, iron or iron and steel rams, from 31 l to 322 feet in length, from 8,133 to 10,332 tons displacement, and of speeds ranging from 13 to $14 \frac{1}{2}$ knots seven or cight sea going ships of the second class, about 250 feet in length, from 4,010) to 6,000 tons displacement, and
speeds of from 13 to 14 knots; fifteen coast defenders, speeds of from 13 to 14 knots; fifteen coast defenders,
from 216 to 241 feet in length; sixteen first-class wood and ron ships of old types, and eight of second-class, the former from $2 ; 2$ to 284 feet in length, the latter 230 feet. All of these ships are armed with breech-loading rifled guns. When were building, each to carry three 100 ton guns. All the French sea-going armored ships are rigged; the mastless ves sels for coast defense include six turreted vessels; all the rest are on the broadside principle, or have the broadside and turret principles combined. The heaviest guns are mounted en barbette. Both the armored and unarmored modern ships ave the ram bow.
Of the latter type of vessels the programme of 1872 contemplated eight first-class, eight second-class, and eightecn un boats and thirty five tranpats a large portion of these are already afloat. By 1885 it is expected that the entire flect will consist of new vessels of the most approved modern types armed with the best modern guns, all in per fect condition for service
The list of the old-type steam cruisers, mostly of wood, given by Licutenant Very (" Navies of the World," by Lieut. Edward W. Very, U. S. N. New York: John Wiley \& Sons. 1888), includes nine ships of the line, six frigates,
ten corvettes, twenty one sloops, eleven dispatch vessels, and ten corvettes, twenty
The fleets. of Germany and Italy are almost entirely the work of the past decade or so. It is only singe 1860 that Germany has had any navy at all, to speak of, and since 1873 that any attempt has been made to acquire a navy commensurate with the importance of the empire on land. The armored ships afloat or buildaing comprise six casemate ships, 213 to 280 feet in length, 7,135 to 7,560 tons displacement speed of 14 knots, and armed with Krupp guns of from 18 to 36 tons; two armor-lelted turret ships, with casemate around turret, 298 and 308 feet in length, about 6,500 tons displacement, 14 knots speed, and armed with Krupp guns, the corvette placement and slow speed. The latter carry each a 36 -ton Krupp gun, in a movable turret protected by an armor para pet. None of these will be able to match the larger ironclads of England, or the Italian Duilio or Dandolo; but will have
a strength sufficient, perbaps, to meet the French under any a strength sufficient,
conditions proffered.
The modern unarmored ships of Germany include seven ast iron corvettes, 2,463 to $3,8: 3$ tons displacement, carrying from 12 to 10 guns cach, having covered gun decks; and ix open deck corvettes of 2,169 tons displacemen
dispatch v'ssels (16 knots), and five 4 un boats.
The modern war flect of Italy dates from 1877, and comprises the mist powerful and heavily armed vessels ever built. The Italian ships are specially remarkable for the heavy guns they carry and their great speed. The broadside ships Italia and Lepanto, now building, are $4031 / 2$ fcet long. 13,48) tons displacement, are expected to steam 10 knots, and will each carry four 100 -ton Armstrong guns, mounted in pairs en barbette, and 18 smaller guns. The mastless turret ship Duilio lacks an inch of 341 feet; its displacement is 10,40 t tons; it carries four 100 .ton guns, and makes 15 knots. The unfinished Dandolo is in every respect its counterpart. The four line of battle cruisers alreidy afloat are from 250 to 26:5 fect long, and though lighlily armored are lieavily armed, two of the n carrying one $\xlongequal{2}$ 3ton and six 8 -ton guns, the other two carrying six 18 ton guns and two 12 ton guns. There are besides one monitor ram, four floating batterics, and six broardide frigates, for coast defense and station service. The unarmored fleet numbers ten fast cruisers, of which threc are second-class corvettes, four gun boits, and three torpedo vessels. By the decree of 18 ir it ${ }^{\prime}$ was determined to have completed by 1888 sixteen ships of ' war of the tirst clas3; ten of second class for local defense, for cruisings, and for foreign stations; and t wenty
vessels of third class; twelve transports, and twelve small ships for local service, a programme which is rapidly being carried out, as already shown.
Two years ago the Russian Navy included thirty-one armored ships and a couple of hundred other vessels. The armored ships were: frigates, 6; battery ships, 3; turret ships, 5 ; Yopoffkas, 2; double turret monitors, 3; single turret monitors, 12. The more powerful of the Russian war ships have been launched since 1874. The double turret ship, Peter the Great, is 330 feet long, is of 9,510 tons displacement, carries four 40 -ton guns, and has made 13 knots. The Knatz Minin is another powerful slip, 389 feet long. 5,800 tons displacement, and carries four 28 ton guns, mounted in pairs en barbette. The two Popofficas are floating citadels of circular form, designed for service in shallow water. The latest novelty is the turbot-shaped Livadia, os. tensibly a yacht for the Czar, but doubtless intended, in case of need, to be beavily armored and armed for naval uses. During the past five or six years Russia has also been expending large sums on unarmored fast cruising ships, this arm of the navy having already becume formidable.
The armored fleet of Austria contains but three or four vessels older than 187). It comprises three redoubt frigates, 276 to 302 feet in length, 5,940 to 7,393 tons displacement, armed with 10 and 11 inch Krupp guns (18 to 28 tons), and able to make from 13 to 14 knots; five casemate frieat 's, 223 to 275 feet in length; three broadside frigates, of 197 and $2 \grave{3} 3$ feet length; two monitors, aull cne citadel ship. and 235 feet length; two monitors, aud cne citadel ship.
The smaller frigates are armed with 7 and 8 inch guns, and make from 11 to 13 knots. The list mentioned vessel carries two 17 inch Armstrong guns. The unarmored flect contains a considerable number of recent cruisers of fair speed and efficiency.
The navy of Holland is chicfly stronf, for defensive purposes, and comirrises but two sea going armored ships. The armored ships of Spain are few and of small importance compared with those of other European powers. The list includes 139 vessels of all kinds, but therc are no modern seagoing armor-clads and no cruisers of the rapid type. Denmark has launched two iron-clads since 1873. the frigate Odin, carrying four 18.ton guns; and the broidside, case mated, central battery ship Helgolanit, launched in 187 The halt dozen other armored vessels are old. The Swedish navy is designed cliefly for coast defense. This arm comprises four armored monitors, ten armored gunboats, and about a hundred other vessels of all sorts. The navy proper comprises 38 unarmored vessels. Portugal lias one armored ship, ten serew corvettes, nine gunboats, and half a dozen sailing vessels, transports, etc. Norway has four monitore, one frigate, four corvettes, and about a hundred gunboats and other small vessels. Greece bas fifteen vessels, including two irouclads. Turkey has vessels cnough to rank among the naval powers, but lacks moncy and officers to make them effective. Fifteen of her ships are large and fairly armed.
The chief lesson taught by the costly naval experiments of European powers during the past decade-a lesson which he United States can profit hy-seems to be the incxpedincy of building hure floating fortresses at enormous cost. The power of guns can be increased more rapidly than the ability of ships to withstand them; and the greater the target the greater the chance of being hit, and the greater the loss of life and property when a crushing how has been struck.
For defense against the largest class of ironclads we need properly placed stationary coast defenders, the armor of which can be increased as the power of the guns to be resisted is increased. The superior accuracy of fire possible in a land battery will make one heavy gnn, so placed and guarded, more formidahle than many $上$ unsof equal weight on shipboard. For naval purposes a large numter of small vessels of great speed, each carrying one heavy run, will he more efficient than a few large armor clads of equal aggre gate cost.

The Scientifle American.

While the newspajer press of the day is, for the most part inculcating more of error than of truth in the public mind in regard to medical topics, cultivating the vulgar super sitions by circulating every sensational story about madstones and blood stones and the like, and gloating over every epert of the desecration of graves for anatomical purposes, it is refreshing to turn to the pages of the periodical above aumed, and to olserve that whenever medical topics are in roduced, it is with the design of imparting the truth and inculcating correct ideae. Many years of growth bave raised he Scientific American to the front rank, so that there is oi in any country a pullication superior to it in its sphere. -Pacific Medicul and Surgical Journal.

Photographic Emalsions.
 by h. w. vogel, berlin.

The essence of the iavention consists in combining gela ine and bromide of silver with pyroxiline by the use of a new solvent, which insures the homogeneous mixture of the wo. The solveat may be one of the inferior members of the fatty acids, such as formic, acetic, propionic acidl, cte., or mixtures of the same alone or with alcohol, etc. Four various methods of producing the combination are deseribed, of which the first is as follows: Ordinary gelatine dried and dissolved warm in one of the abore-menionerd cids, and one per cent of pyroxiline dissolved in a similar acid is added.

Machinery and Civilization.

Mr. Charles C. Coffin has been giving a series of lectures in the Lowell (Mass.) Institute on our manufacturing indus tries and the relation of invention to civilization. From the Boston Advertiser we make the following extracts from one of these lectures
The first need of men in this world is for something to eat; the second is for something to wear. The earliest historical allusion to the manufacture of textile fabrics is the simile in the oldest poem extant-t the Book of Job-the comparison of the swiftness of time to the weaver's shuttle. The weaver's shuttle of the East and the loom of the Orient through all the centuries have not changed. Throughout Asia, and even in some sections of Italy and Spain, the spindle of to-day is like that which Penelope deftly twirled when preparing garments for her absent lord. The use of machinery in the manufacture of clothing has been a powerful agency in modern civilization. Out of the multitudinous machines of the present century I select those for spinning and weaving to represent the progress of mechinic art. It is noteworthy that the first movement in free intellectual thought in antago nisin to the dogmatism of the Middle Ages and the firs mechanism to relieve woman from unceasing toil were coincident. During those years in which Martin Luther, Melancbthon, and their compeers were awaking the world to a new intellectual and religious life, a German carpenter constructed the spinning wheel, which made its ap invention-the device of a young, curate of Nottingbam, the Rev. William Lee; and during those montbs when the MayRev. William Lee; and during those montbs when the May-
flower was crossing the Atlantic, the first stockings knit by flower was crossing the Atlantic, the first
the machine were placed on the market.
The lecturer commented upon the fact that the century following Lee's invention rolled away without any invention Men were giving their altention to other tbings. The spiri of the age was against invention. The learned were lost in abstractions, were regardless of buman needs, utterly igno rint of the resources of nature to alleviate human woe or to lift men to a bigher plane of life. Another reason why inventions did not come earlier was that all christendom, tbrough the Middle Ages and down to the beginning of the present century, was engaged in war. The conditions wer all adverse to scientific research. In 1781, just one bundred years ago, came Watt's first working engine, with a con-
denser and the steam applied to propel the piston in both denser and
directions.
Aside from the very few wind and water mills, the human race at the beginning of the present century was living by its own muscular energy, digging and delving. spinning and weaving, with rude instruments and mechanisms.
The world is more enligbtened now. but there are still many people who cannot see how the introduction of a ma chine which will do the work of manymen can be promotive
of the well being of the community. Imagine yourselves as standing on the bank of the Merrimac in 1821, with Nathan Appleton, William Appleton, Patrick T. Jackson, Kirk Boott, John W. Boott, Paul Moody, and Natbaniel Bowditcb. No sound breaks the stillness, save the rushing of the water over the rock. It is the energy of nature running to waste, and these gentlemen determined to set it to work for their individual welfare. They purchased the surround ing farms and the old canal which other men bad constructed for the passage of rafts, set themselves to enlarging it, and in building a dam, not working with their own hands, but summoning the farmers, who came with their oxen to hau rocks. Stonemasons are wanted, and the blacksmith to
sharpen their tools. Young men come down from Vermont sharpen their tools. Young men come down from Vermont
and New Hampshire to dig the cenal. The gentlemen wbo and New Hampshire to dig the cenal. The gentlemen wbo are pushing the enterprise teed
laborers is called for. Lumber is nceded, and sawmills are set to humming. Masons, hodcarricrs, mixers of mortar, lime burners, are set to work, with still more oxen, more teamsters and cartmen, besides coopers to make the casks for the lime. An architect plans the manufactory; the carpenters frame it, and a corps of joiners finish it. A millwright calculates the power, sets another corps of men a work constructing the great wheel. The manufacturers of
the spinning and carding and weaving machines have regi. ments hammering and filing brass, steel, and iron. They in turn have set the founde's, puddlers, and smelters to work Furnaces send up their lurid flames; vessels are sailing on tbe ocean to fetch and carry the materials. The miners far down in the earth, the sailor climbing the shrouds in midocean, the millwright lost in thought, as he calculates the pıwer of nature's energy, the brickmaker moulding the plastic clay, the joiner plying his plane, the teamster urging bis cattle; all have been called from former vocations to aid in building the mills. Why have they come? Because these gentlemen offer them more remunerative wages than they have heen receiving.
Let us follow on. The mills are erected, the machines are in place, but human bands are still needed. Tbe gentlemen summon the farmers' sons and daughters by the inducement employment? They bave changed labor; they bave made the spinning wheel and loom of the bousehold useless lumber, not throwing the old-fime spinners and weavers out of employment, but transferring them to one in which they can do more for themselves and their fellowmen. You ask, per haps, what the masons joiners, and carpenters who built the mill are to do when the mill is completed? Are they not out of employment? The mill is only the beginning.

Dwelling honses are needed, stores, shops for the grocer, butcher, baker, joiner, mason, blacksmith-the whole fraternity of trades and occupations. The first mill erected at
Lowell was the beginning of a city to day numbering be. Lowell was the beginning of a city to-day numbering be-
tween 50,000 and 60,000 inhabitants. It will be instructive in this connection to see what labor and wital together will accomplish through the use of the energy of nature, in giving value to raw materials.
The Southern farmer plows his lands, casts in the cotton eed. He sells his crop at 12 cents per pound, obtaining livelihood by agricultural labor. The operative in Lowell, by manufacturing it into muslin, may make it worth 80 cents, by more delicate manipulation into lace -worth $\$ 1$. But before the process could be undertaken by the machinist, the iron manufacturers were called upon to construct the machinery. The ore which the miner dug from the ground, and which he sold for 75 cents, the iron smelter sold for $\$ 5$. The machinist makes it worth $\$ 100$. If instead of putting it into spindles and wheels, it had been sold to the manufacurer of fine needles, he would have made it worth $\$ 1 ; 800$ The manufacturer of watcb springs would have made it worth $\$ 200,0 c 0$; or if he were to use it for pallet arbors it would be worth $\$ 2,577,595$. Past earnings and present labo together give this increased value to the 75 cents' worth ore.
Invention renders old things obsolete and so is destruc tive; but there is a force more destructive than invention, a force that not only drives men from occupation, but upon the instant consigns their costly machines to destructiona force wielded almost wholly by the female sex-the force f fasbion, a power stronger than the combined strength of nventors, manufacturers, and operatives. Not long ag every woman in this audience quite likely regarded a bnop
skirt as necessary to make her wardrobe complete. Probably not less than $25,000,030$ were manufactured per annum requiring an outlay of many millions of dollars for compli cated machinery, furnaces, and rolling mills for the founda tion of steel, manufactures for the weaving of tape, employ ing many thousand operatives; but suddenly the idea gained possession of the temale mind tbat dress would be more graceful and pleasing to the eje without them, and hey were upon the instant discarded, bringing about quick destruction to the manufactures and loss of occupation to the operatives
Invention is an educator. It begins with thougbt. Tbe more thought put into his machine by the inventor the highi? he intelligence to operate it. Mechanics has become a dis inct profession, requiring high mathomatics, physics, and the power of abstract thought. Trade and commerce recognize the new profession by offering it their bighest pecuniary ewards. It is the master mechanic, receiving his salary of $\$ 15,000$ per annum, who is the cheapest employe of some orporations in this country. Fifty years ago, in 1830, th pindles of the world were as follows: United States, 1,000 000; Europe, 2,C00,000; Great Britain, 8,(i0n,000. To-day the United States bas 11,000,000; Europe, 20,000,000; Great Britain, 40,007,000. In cottoin manufacture it is estimated that one man to day is able to do the work of 1,000 band laborers, and that the cotton, silk, and woolen industries of oday would require the labor of every buman being if pre pared by hand labor.
One bundred years-ago, when thread numbered 150 by the standard set up by spinners was considered the utmost de gree of fineness possible by English spinners, a pound of cot ton spun to sucb fineness would give a thread 74 miles in ength, sufficient to reach from Boston to Concord, N. H The macbinery of to-day spins for useful purposes thread numbered 600 -from one pound a thread 196 miles in length. And machinery has been constructed so delicate that a pound of cotton has given a thread reaching 1,061 miles-farther than from Boston to Chicagol The weaver of my boyhood could throw the sbuttle perhaps twenty-five times a minute, but not at that rate through the day. Human muscle would break down under such rapid action. In 1850 Compton' loom threw the sbuttle fifty times a minute, whereas so great has been the advance of invention, that the loom of o day is considered a slow moving mechanism if the shuttle does not fly 240 times a minute! "No man can afford to lake as a gift to-day a cotton manufactory equipped with the macbinery of 1860 ," was the remark of the late superinten dent of the Amoskeag Mills. "We are breaking up the machinery of those days for old iron."
In some departments of cotton manufacture a man with the present machines will do cight times the amount of work which he could accomplish in 1860. In the manufacture of coarse cloth an operative with ten machines does twice the work which be could accomplish with thirteen machines
before the war. There never was a period so fruitful in discovery, so fertile in invention as the present, and the reason is manifest. The first discoverers and inventors groped in tbe dark. Tbey were ignorant of nature's laws. They did know what force was. They had a limited comprcben was little accumulated wealth of research.
In contrast, the mechanic of to-day has all the discoveries, be experiments, the ascertained facts, mathematics of macbinery, the laws of force at bis command. He inberits Ins scientific wealth of all the past and makes it his capital. Instead of gazing, as it were, upon old mines worked
out, he beholds mountain rauges filled with golden ore, and engages in his work with the stimulus of the needs of the buman race, and the ever increasing wants of an advancing civilization.

Repairing steamers Ont of Dry Duck.

Some weeks ago the steamship Queen, of the National Line, had her bow stove in by collision on the bay. Tosave the heavy cost of occupying the dry dock while the flates were being made for repairing the breach, the Queen was towed to the Erie Basin, where the manager of the line, Mr. Hurst, had the work done by means of a cofferdam, which was built on the dock. The dam was about 25 feet square, and was simply a huge box without a cover. In one side of this box an aperture was cut into which the bow of the vessel exactly fitted. Then the box was sunk beneath the steamship and raised under her bow so that it fitted snugly to her bull and the edges were calked. After the water had been pumped out the workmen descended into the box or cofferdam and rebuilt her bow. This method of repairing, which is an old but much neglected one, saved the company, Mr. Hurst is reported to say, just $\$ 26,000$.
More recently the method has been applied to the iron steamehip Holland, of the same line. Mr. Hurst says: "In the November gales she was all torn to pieces about the stern. She is 45 ij feet long and is registered at 4,000 tons burden. No dry dore in Λ merica could lift ber. She is at our dock at Houston street, North River. I had a coffer dam built in Jersey City and towed to the Holland. The dam is 36 feet long, 26 fect wide, and 22 feet deep. I sent a carpenter into the hold of the Holland, and be took measurements every 2 feet from keel to deck. He then went on the dock and built a flat pattern the exact shape of the vessel about 10 feet from her stern. The shape of the pattern was cut from ore side of the coffer dam. Then the coffer dam was towed to the vessel, heavy chains were thrown into ber until she sank, the chains were then withdrawn. and the dam rose to the hull of the steamship. The stern fitted perfertly into the aperture, and all was made snug." The repairs will take till February 15. By that time the charge for dockage would have amounted to over $\$ 30,000$, which is saved by the use of the coifer dam.

A Large Iron Steamboat.

The Fall River Steamboat Company announce that a conract has been signed with John Roach \& Son for the construction for them of an iron steamboat, to be the laryest ever built for the Long Island Sound trade, between New York and Fall River. Her length over all, on deck, will be 335 eet; length of bull, 380 feet; extreme breadth of beam across he guards, 87 feet; breadth of beam of hull, 50 feet, and 17 feet depth of hold. She will be built upon the cellular ystem, that is, with two bulls-tbe most recent type of shipbuilding insuring safety-the cellular spaces at the ides being two feet deep, and along the bottom three feet deep, between the hulls. The spaces between the two bulls will be divided into ninety-six watertigbt compartments, and, in addition, there will be six water-tight bulkheads from the inner bull to the main deck. The new boat will be provided with a steam steering apparatus, and an independent or safety-steering quadrant aft, in case of accident o the steam gear. The means for extinguisbing fire, for closing one compartment from another, and other provisions for safety, will be on the latest improved methods. The engine will be on the "walking beam" principle, with 110 incbes diameter of cylinder and fourteen feet stroke There will be four main boilers, their construction being ucb as to warrant carrying a pressure of steam fifty pounds o the square inch, altbough the working pressure will bc about twenty-five pounds to the square incb. The paddle shaft will be twenty-six incbes in diameter, and with the piston rod, connecting rods, and rock shafts, will be made of the best wrought iron. The machinery will be inclosed in a compartment of longitudinal and atbwartship bulkbeads, carried up to the burricane deck. The passengen accommodations are intended to be superior to those of any teamboat now afloat. The boat is to be completed by May, 1882.

Messrs, AGRICULTURAL INVENTIONS.

man, Texas, hat it bave patented a cotton planter so constructed uir can be adjusted to plant less or more seed, as re quired. There is an ingenious arrangement of spikes or prongsattached to the rim of the feed wheel, which take hold f the cotton seeds and draw them out between curved steel springs fixed in the slot in the bottom of the feed board or bottom of hopper, and at the sides and forward end of this slot are attacbed springs which are curved downward and outward in such a manner that their bends may meet, or nearly meet, within the slot, so as to prevent the seeds from passing out except when pushed out hy the prongs of the eed wheel and thus prevent the seeds from being dropped in bunches. The outward curve of the ends of the springs allows the seeds to drop from them freely, and allows the prongs of the feed wheel to pass up between tbe springs should the said feed wheel be turned backward.
Mr. Julius Holekamp, of Comfort, Texas, Las patented a seed planter whereby corn, sorghum, beans, rice, cotton, etc. may be planted in hills or drills, and so constructed that the seed may be planted in any desired quantity, and at any esired distance apart, and with the rows at any distance apart.
Mr. Cbristian E. Gardner, of Orangeburg, S C., bas pa tented a seed planter and fertilizer-distributer, whicb bas two hoppers and dropping devices whereby different mate rials maybe carried and distributed by the same machine and at the same time. Adjustments are provided whereby the macbine may be used either as a single or double planter.

