ments so that they may be easily caught in the field, eeen patented by Mr. Charles J. Gustaveson, of Salt City, Utal Territory. The improvement consists in k bands connecter to the ends of a chain by simple lurable connection.

CURIOUS FACT IN NATURAL HISTORY.

by O. F. Holder.
rillustration represents the American iguana crossing er, the Chagres, as wide as the Harlem at High Bridge, the surface of the water, without sinking below it. wonderful performance was witnessed by Mi, John G. the well known naturald former companion of ibon. Mr. Bell states as he was approaching iver he came suddealy the reptile, and alarmed that it sprang into the but instead of sinking. is surprise, it rushed over the water, making aws go like lightning, so he could not see them, thus keeping the whole above the water. It quite a foam bchind, a about two minutes was the river, up the bank, out of sight. When it membered that this aniweighs from five to ten us, and bas slender claws I for tree-climbing, the lerful character of the srmance will be appred. It is from four to feet long, and its general
is green shaded with brown. It has a strong and distinct \mid tion of a colored organ will reach its minimum under the ruaning along the whole length of the back and tail, and influence of a light of the same coior es the organ, and its ge dewlap or pouch under the throat, the edge of which tached to a cartilaginous appendage of the bone of the at. The tail is very long, slender, compressed; and red with small, imbricated, keeled scales. It has a very tidable look at first sight, and when irritated it puts on ry menacing appearance, swelling out its throat pouch, ting the crest on its back, and lashing its tail about with t violence. It is, nevertheless, a harmless creature, unlaid hold of, when it bites with considerable force. Al. ther the occurrence is a most remarkable one and entire Jtagonistic to the supposed habits of the animal.

FRESH-WATER MEDUSE

ar engraving represents the Limnocodium soverbii, the 1-water medusa, recently discovered in the Victoria a tank at Regent's Park, by Mr. Sowerby the Secretary he Botanical Society. Our scienreaders will observe in the struc of this unique jellyfish the excep al characteristics which distinguis om other meduse, as pointed out Jr. E. Ray Lankester in his report ce Royal Society, at a recent mee of the Society; where also Mr . erby showed a number of living imens which he had kept in con ment, and mentioned some of their liar habits. If the water is not up to a temperature of about 85° the animal falls to the bottom of water and remains torpid until th perature is raised, when it agai mes active. He bas also observed medusæ feeding on the daphnia ch abounds in the same water he diameter of the disk of the me dees not exceed one-third of a Dr. Ray Lankester, to whom we indebted for the sketch from which illustration is engraved, states tha s the only medusa which inbabit h water and must have been intro ed with tropical weeds from the T_{1} Idies. -Graphic.

erice of ligith.

piration of Piar.
e Comptes Rendus' of the Bre (emy gives the following reshime paper, by M. H. Comes, on the spiration of plants, being the re; reached after numerous experital researches:
.) The emission of aqueous vapor rh takes place in plants is submitnot o $^{-1 v}$ to the action of the physigents whic. ', influence the ordinary ,aration free surface of or, but from bo light. Conme, but also to that on ${ }^{2}$ itions, a sently, undes.-equal concur ation it transplate mere under the ight than it dote $\xrightarrow[\rightarrow]{ } \rightarrow$ by light on .) The action exerte
the transpir,
intensity. Co plants augments in proportion to its tion reaches its n aximum shortly after midday.
(3.) Light favors wanspiration only in the portion which absorbs it through t_{\perp} ecqloring matter of the organ. Consequently, conditions, the organ which has the deepest deepest color transpires antum in which the light is mos active in that part of the spe

(4.) The luminous rays which
are-ahsorbed by the color-
aror the transpiration of ing matter of an organ alone such organ. Then, conditions beı
" (equad, the transpira
perties. The glands in the pitchers of Nepenthes he states to be quite analogous to the peptic follicles of the buman stom ach; and when the process of digestion is conducted with albumen, the products are exactly the same as when pepsine is engaged. The results give the saine reactions with reagents, especialiy the characteristic violet with oxide of epper and potash, and there can be no doubt that they are How Flying-fish Fly. - Apropos of an article on this sub ject in the American Naturalist, Prof. D. S. Jordan, the well known ichthyologist, gives the following statement in large flying-fish Exocutus californicus: This fish flies for a distance sometimes of nearly a quarter of a mile, usually not rising more than three or four feet. Its motions in the water are extremely rapid, and its motive power is certainly the movement of its powerful tail in the water. On rising from the water the movements of the tail are continued for some seconds until the whole body is out of the water. While the tail is in motion the pectorals are in a state of very rapid vibration, and the ventrals are folded. When the action of the tail ceases, the pectorals and ventrals are spread, and, as far as can be seen, held at rest. When the fish begins to fall, the tail touches the water and the motion of the pectorals recommences, and it is enabled to resume its tinishes by falling in the water with fight, which it finally a splasir. When on the m . ift ; at first it is in a straight fly. The motion is very s.wift; at first it is in a straight line, but this becomes defle, 'te d to a curve, the pectoral on the inner side of the arc being λ ent downward. It is able to some exstent to turn its coursce to shy off from a vessel. The motion seems to have no rifin ence to the direction of he wind.
The Use of Chloruphyl in Vegetabite Groooth. - This questicn appears to be as yet by no meara ₹ definitely settled. Dringheim, it will be rembered recerm ly suggested ros protect the sub calo jacent cells and their contents from those rayss , -+ have been wo ould be adverse to the secondary processes thia have been distioguished as growth. But Dr. Gilbert, im L is recen address to the Chemical Section of the British NsBo ?iation, points out that the plant may receive abundance \mathbb{F}, " itrogen, may produce abundance of chlorophyl, and be suby ${ }^{\circ} \mathrm{ct}$ to the influence of sufficient ligghat,
and may yet not assimilate a dute amount of carbon. He shows that the presence of a duesupply of potassium salt and of sufficient available nitrogen is necessary for the proper assimilation of carbon by plants. The amount of carbon assimilated evidently does not dep end on the protective power of the chlor ophyl alone, nor on its chemical action, In connection with the coloring malt ${ }^{\text {'ter }}$ of leaves it has been obcrved the the leaves of the Virginia serven a to the well known beai ful rea sooner on walls exposed to the north and east, and that if the weather be wett during the time when they usually chemge color the red tin is only sparingly dev eloped.
Influbnee of Colowerd Lights on Ani. mal Development.-M. ung, in a note to the French Acadensy (Comptes Rendus, p. 440), gives some the results obtained by him in his experments on the action of colored lightson the de. velopment of animals. Eggs of the squid and cuttlefish, laid at the same time, were put into vessels in arbich the water was regularly renewiad. These vessels were placed in glasts bowls of the same form, but larger; and the intervening space was filled with different colored liquids. The with difurface were covered with thick upper surfaces were covered with thick cardboard, so that the eggs received
light that was nearly monochromatic. Under such conditions the eggs deve oped unequally, as had previously been found the case with the eggs of the frog,.trout, etc. The development was stimulated by violet and blue lights, but retarded by red and green. Yellow light, in its action, came near est to white. In experimeuting with the beautiful ascidian Ciona intestina lis, M. Yung found that those larvæ which were reared in vessels submitted
を'RESH-WATER MEDUSE, AT THE BOTANICAL GARDENS LONDON.
を'RESH-WATER MEDUSE, AT THE BOTANICAL GARDENS LONDON.
 which were reared in vessels submilled

vore vigrous individuals than and developed into much colored lights. These results, taken in connection with the like ones obtained by M. Serrano-Fatigati on infusoria seems to show one general character for aquatic animals. It now remains to be seen whether terrestrial animals a influenced in the same way.

TRANSACTIONE OF THE AMERICAN SOCIETY OF ENGINEERS.

The above named publication for the month of Novembe contains some important papers.
The subject of
web strains in simple trusses with parallel of inclined booms,"
is ably discussed in a paper read by Mr. Elnathau Sweet Jr., at the twelfth annual convention of the society, held May 25, 1880. Mr. Sweet, in this paper, aims at greate directness and simplicity in the treatment of the subject tha has hitherto been attained; and he asserts that the hand books hitherto published base their solutions of the problems relating to this class of trusses upon a false assumption This assumption is, that as a moving load passes over the panels of a truss, each panel is fully loaded before the adja cent triangle in advance bears any part of the load.
"In trusses with a single system of triangulation, or those in which the web strains of any panel pass to the abutmen through the web members of the adjacent panel, this assump tion is obviously erroneous, for the instant the head of the load passes a panel joint of such a truss a part of it is trans mitted by the floor system to the adjacent triangle of the same system."
With this proposition in view, the author proceeds to somewhat abstruse mathematical discussion, in which he adopts as the most natural unit of length the panel length By this means he is able to simplify the formulæ necessary so considerably as to justify the wisdom of the adoption of the panel length as the unit of length, and to determine the maximum shearing strain at any panel joint by much les complex expressions than have been heretofore required.
a discusion upon inthr-oceanic canal projects, eferring to former papers which have appeared in th Transactions, together with additional information obtained by recent surveys in Nicaragua, by Mr. A. G. Menocal throws much light upon current questions relative to the problem of communication by means of canals between the Atlantic and Pacific oceans As an abstract of this paper cannot be given without reference to the papers criticisedin it, we can only glance at one or two salient points. One of these is ably taken. In speaking of a canal on the Nicaragua route, the time of transit ought to be estimated not as though the whole distance were canal transit, but the transit ought
to be separated into its component parts, to wit. "Canalization, 62 miles; slack water navigation, admitting nearly ocean speed, 63 miles; and lake navigation, admitting ocean speed, $561 / 2$ miles;" total, $1811 / 2$ miles. The time of transi would, therefore, be shortened very much below that est in $381 / 2$ hours, the transit including a lockage of 108 feet.
The practicability of utilizing the channel of the river Grande is another point strenuously urged by the writer in favor of the Nicaragua route
Minutes of meetings and the annual reports of the Board of Direction, Committee on Finance, the report of a Committee on a Uniform System of Tests for Cements, and a list of members, with additions, changes, corrections, and resignations, complete the contents.
The Committee on Tests for Cements make only a brief report, enumerating an extensive series of papers received stating that they will commence an interchange subject, stating that they will commence an interchange of views
during the present winter, and announcing that they will endeavor to complete their duties on or before the date of the next annual convention.

Meteorological Observations by Telegraph.

Mr. N. Hoffmeyer, of Copenbagen, observes that "in meteorological prognoses we cannot expect a scientific cer tainty; these prognoses are based upon empirical suppositions, and are, therefore, subjected to all possible errors which may be caused by that method. So long as the cauces and the real mature of meteorological disturbances have not yet been explained, so long as we are only able to know the how and not the why of meteorological phenomena, so long a very exact observation only of the storms which by tele graph is transmitted from one coast to another, will be of practical value to the mariner."
This observation, however, is connected with greater dif ficulties than has been hitherto supposed. Mr. Hoffmeyer has, during a period of 21 months, made the closest investi gations in regard to the storms and winds on the Atlamtic Ocean, and he maintains that the conditions upon which these meteorological phenomena depend are so highly com plicated that the telegraphic reports sent by the "Herald
Weather Department" from America to Europe-although being a proof of the energy and ability of Mr. Bennetthave an imaginary value only
It has been proved that the atmospheric disturbances usually move in the same direction across the ocean as across the continents, viz., from west to easi, and that abnut 61 per cent of the storms which we have to encounter on the
Atlantic bave arrived there from the American continent;
but it is also known that 39 per cent of the storms-a n mber
not to be overlooked-are originated upon the Atlantic itself, and that besides only 50 per cent of the storms observed on the Atlantic arrive at Europe. The direction which the tmospheric disturbances show in America, before the arrive at the coast of the Atlantic, can be no secure basis for conclusions regarding the further course of these disturb ances and the phenomena connected with them. Even if the observations on the European and American coasts wer to be combined, a reliable prediction of what will happen on the ocean will be impossible. If, therefore, meteorologica observations shall have a real benefit for our mariners, such observations must not only be made on the coast, but also on the Attantic itself, and Mr. Hoffmeyer proposes to erect for this purpose a regular meteorological service, the stations f which are situated upon the ocean-i. e., upon islands which lie between the two continents. These stations should be connected by telegraph with the continents, so that Faroe Island Iceland South Greenland and the Azore may be brought into communication with the European coast and the Bermudas with North America.
Although these stations are very distant from each other, he meteorological observations made there will, on accoun of a meteorological peculiarity of the Atlantic, be of value for predicting the weather and atmospheric disturbances which will occur between these stations.
Mr. Hoffmeyer, by daily constructing synoptical maps, discovered that the barometric minima in the atmosphere which rests upon the Atlantic have a tendency to approach Greenland and Iceland on the one hand, and the Azores on he other, while from the latter to the Bermudas may be usually observed a high pressure of the air and fine weather Even a slight change taking place at this part of the ocean predicts almost to a certainty great disturbances in the other egions. This barometric maximum, according to Hoff meyer, forces the depressions of the atmosphere to take a certain direction and influences their velocity of movement in a high degree. Therefore it is absolutely necessary to be acquainted with these atmospheric maxima which prevail upon the ocean, and they can naturally be observed only upon the ocean itself-i. e., upon those islands mentioned therefore observations made there, in connection with thps made on the coast, will be perfectly sufficient for all practi cal purposes. Mr. Hoffmeyer hopes, proceeding upon thi basis, to perfectly transform our meteorological service, and to enable our scientists not only to predict the weather for a day or two, but for a longer period of time. The import ance of such predictions for the transatlantic navigation is evident. The synoptic maps will enable the ships leaving the ports to enter regions which are subjected to great atmo spheric changes, and to choose those ways which, during certain time of the year, are the least exposed to danger they will give irfortant information about the condition of the monsoons near the Azores, which are much more irregu lar than they are generally supposed to be; and they will be valuable for the owners of vessels in making it possible for them to account for possible delays of their ships.
Mr. Hoffmeyer's labors have been communicated to the meteorological institutions of Europe, and necessary step will probably be taken to make a practical use of the sug gestions of this gentleman, as the resolutions, taken April 3, 1880 , at an assembly of the presidents of the German meteo rological stations at Hamburg, highly recommend the sug. gestions made by Mr. Hoffmeyer.

Paper Pulp from wood.

The following interesting description of the process of making wood pulp is from an account of the opening of the Thorold Pulp Paper Company's establishment published by the Thorold Post, Canada
"The wood, four feet in length and of any thickness, brought in at the basement, placed in the barking-jack (one stick at a time), where two men, with draw knives, rapidly peel off the bark. It is then conveyed by the elevator to the first floor, sawed in two foot lengiths with cross cut saws passed on to the rip raw, where it is slabbed (that is, a small portion of wood on opposite sides taken off), to permit it rest ing firmly in the grinding engine. It is then passed to the boring machine (an upright one and a half inch auger, with foot attachment driven by power), where the knots are bored out. The wood is then placed in racks of the same size as the receptacle in grinding engine and carried out to be ground. The grinding engines are upright, and receive at a filling one-twentieth of a cord of wood. The wood is placed in a receptacle, and by a simple, variable, automatic feed process is pressed flatwise between two outward revolving rolls, compused of solid emery, which are flooded with a spray of water, carrying off the fibrilized pulp in a stream
through revolving screens to the tank or stuff-chest in the basement. It is screens to the tank or stuff-chest in
bumped up into a vat that form part of the wet machine. In this vat is constantly revolving a large cylindèr faced with fine brass wire cloth, which picks :p the particles of pulp.out of the water and places them on the felt (an endless piece of woolen goods which makes between rolls, for different purposes, a continual círcuit of the wet machine). On the cylinder is turning a heavy roll,
called the concha; between the two, where they meet, called the concha; between the two, where they meet, the
cylinder leaves the pulp, with most of the water pressed from it. The pulp now makes its appearance on the felt above the concha roll in a beautiful sheet, thirty-eight inches in width, and is carried along in a steady flow a distance of again being pressed from it) but set beyond two heavy roll-
ers, the upper iron, the lower wood; it adheres to the upper roll, which is constantly turning, wrapping it up, and when a sufficient thickness is attained, is cut off by a knife being pressed to the roll, attached to the machine for that purpose It now leaves the roll in a thick, white sheet, 36×38 inches which is received by the boy in attendance on a table con veniently attached to the machine, and folded into sheets 14×26 inches. It is then placed on scales until the weight 14×26 inches. It is then placed on scales until the weight
is one hundred pounds, when it is placed in the press and firmly tied into square compact bundles. It is now ready for shipment to the paper mill to be made into printing and tea paper. The wood paper pulp has been placed in the market and found a ready sale. Last week a contract to the amount of $\$ 1,000$ was made with one of our large paper mills."

Loss of Water Pressure in Hose Pipes.

The recent engine test in New York city was interesting in many ways, but in none more so than as exhibiting the loss of power by friction in hose. Two hundred feet of Maitese cross rubber hose were laid from the engines, and at the base of the playpipe a gauge was inserted in the line. The steamers were working at from 100 to 120 pounds steam pressure. The following table exhibits the average general pressures taken every three minutes simultaneously:

Engines. \qquad

Clapp an
Ahrens.
Amoskea

Jones..............

From this it will be seen that tive loss of power by fric ion in 200 feet of hose was very nearly 50 per cent. Had there been 1,000 feet of hose, the loss would have been very much reater, of course. The size of the hose used was $21 / 2$ inches Had it been 4 -inch hose, as the Jourinal has advocated fo fire service, the friction loss would have been far less. In is little book entitled "Fire Streams," Chief Leshure, of Springfield, Mass., gives numerous valuable tables illustrat ing the friction loss in hose. He says: "It may be stated as near enough for most practical purposes, that when delivering the same number of gallons per minute, the friction loss in two pipes (or hose) of equal lengths, the diameter of ne of which is twice that of the other, the loss in the larger will be one thirtieth of that in the smaller, or the loss in the smaller will be thirty times that in the larger." A better rgument for increasing the size of hose for fire service could not be put forth. The weight of the hose need not be materially increased, for the present hose is made unneces sarily heavy to withstand fictitious pressures: that is to say, hose is now made and warranted to withstand anywhere from three to six hundred pounds pressure. When in actual service the pressures seldom exceed those given above. In a 4 -inch hose it would be almost impossible to get 200 pounds pressure on the hose at any point in the line, and the hose could be made correspondingly lighter. As a matter of fact, 4 -inch cotton hose is now made in large quantities for mining purposes that weighs but 70 pounds to the section, while much $21 / 2$ inch fire hose weighs fully as much or more -Fiveman's Journal.

ENGINEERING INVENTIONS

An improved rotary engine has been patented by Mr . ohn H. Newell, of Scottville, Ill. The invention consists in mechanism for operating the valve, and the combination herewith of a variable cut-off
An improved stock car has been patented by Messrs. An improved stock car has been patented by Messrs.
James V. Brown and Benjamin R. Neal, of De Soto, Ill. The object of this invention is to construct a car for trans porting cattle and other live stock, so that the car can read ly be divided into two or more stalls, and the food and ater be conveniently transported and fed to the animals.
Mr. Daniel Kunkel, Sr., of Oregon, Mo., has patented an mproved car coupling, so constructed that the cars will be coupled automatically as they are run together, also permit ting their convenient uncoupling.

Chemistry of Plants.

Dr. S. Ringer, who has for some time past been experimenting upon the physiological action of Narcissus, Galan. thus, Hamanthus-genera belonging to the natural order Amaryllidacec-has recently examined the properties of an alkaloid from the common garden tulip-a liliaceous plant, and communicated his results to the Practitioner. It has been found by him that nitrate of tulipine differs almost entirely from the alkaloids derived from the amaryllids, it being a muscle poisoa which affects the muscles like veratria, but to a less degree. These results are interesting from a botanical as well as a physiological standpoint, as going to confirm the theory that the relationships between natural orders may, to a certain extent, be indicated by the nature of their chemical constituents. The nearer relation ship of the Liliacere to the Melanthacece seems shadowed forth by the fact that a liliaceous plant has yielded an alka loid like veratria. In the same manner the position of the Australian genus Duboisia, as belonging to the Solanacee rather than to the Serophulariacee, was demonstrated by the elimination of the alkaloid duboisine, and the discovery that its physiolngical action was analogous to that of the solanaceous alkaloids

