ments so that they may be easily caught in the field, een patented by Mr. Charles J. Gustaveson, of Salt City, Utal Territory. The improvement consists in :k bands connecter to the ends of a chain by simple lurable connection.

CURIOUS FACT IN NATURAL HISTORY.
 by o. F. Holder.

illustration represents the American iguana crossing r, the Chagres, as wide as the Harlem at High Bridge, the surface of the water, without sinking below it. wonderful performance was witnessed by Mi, John G. the well known naturald former comparion of ibon. Mr. Bell states as he was approaching iver he came suddealy the reptile, and alarmed that it sprang into the but instead of sinking. is surprise, it rushed over the water, making aws go like lightning, so he could not see them, thus keeping the whole above the water. It quite a foam bchind, in about two minutes was the river, up the bank, out of sight. When it membered that this aniweighs from five to ten us, and bas slender claws 1 for tree-climbing, the lerful character of the srmance will be appred. It is from four to feet long, and its general
is green shaded with brown. It has a strong and distinct \mid tion of a colored organ will reach its minimum under the ruaning along the whole length of the back and tail, and influence of a light of the same coior es the organ, and its ge dewlap or pouch under the throat, the edge of which tached to a cartilaginous appendage of the bone of the at. The tail is very long, slender, compressed; and red with small, imbricated, keeled scales. It has a very tidable look at first sight, and when irritated it puts on ry menacing appearance, swelling out its throat pouch, ting the crest on its back, and lashing its tail about with t violence. It is, nevertheless, a harmless creature, unlaid hold of, when it bites with considerable force. Al. ther the occurrence is a most remarkable one and entire Jtagonistic to the supposed habits of the animal.

FRESH-WATER MEDUSE

ar engraving represents the Limnocodium sozoerbii, the 1-water medusa, recently discovered in the Victoria a tank at Regent's Park, by Mr. Sowerby the Secretary he Botanical Society. Our scienreaders will observe in the struc of this unique jellyfish the excep al characteristics which distinguis om other meduse, as pointed out Jr. E. Ray Lankester in his report ce Royal Society, at a recent mee of the Society; where also Mr. erby showed a number of living imens which he had kept in con ment, and mentioned some of their liar habits. If the water is not up to a temperature of about 85° , the animal falls to the bottom o water and remains torpid until th perature is raised, when it agai mes active. He bas also observed medusæ feeding on the daphnia ch abounds in the same water he diameter of the disk of the me dees not exceed one-third of a Dr. Ray Lankester, to whom w ndebted for the sketch from whic illustration is engraved stat the only medus which inhit the h water, and must have d with tropical weeds from th ${ }^{\top}$ ridies. -Graphic.

erice of ligith.

piration of Piar.
e Comptes Rendus' of the Bre (emy gives the following reshime paper, by M. H. Comes, on the spiration of plants, being the re; reached after numerous experital researches:
.) The emission of aqueous vapor rh takes place in plants is submitnot ${ }^{-1} \mathrm{v}$ to the action of the physigents whic. ' influence the ordinary ,aration free surface of or, but from bo light. Conme, but also to that on ${ }^{2}$ itions, a sently, undes.-equal concur ation
 ight than it doe \rightarrow by light on .) The action exerte
the transpir,
intensity. Co plants augments in proportion to its tion reaches its n aximum shortly after midday.
(3.) Light favors tuapiration only in the portion which absorbs it through t_{1} ecqloring matter of the organ. Consequently, conditions, the organ which has the deepest deepest color transpires ourum in which the light is most active in that part of the spe

(4.) The luminous rays which
are-ahsorbed by the color-
aror the transpiration of ing matter of an organ alone such organ. Then, condilions bet
\%aud, the transpira

ERESH-WATER MEDUSE, AT THE BOTANICAL GARDENS LONDON.
perties. The glands in the pitchers of Nepenthes he statesto be quite analogous to the peptic follicles of the buman stom ach; and when the process of digestion is conducted with albumen, the products are exactly the same as when pepsine is engaged. The results give the saine reactions with eagents, especialiy the characteristic violet with oxide of oper and potash, and there can be no doubt that they are How Flying-fish Fly. - Apropos of an article on this sub ject in the American Naturalist, Prof. D. S. Jordan, the well knowu ichthyologisk, gives the following statement in large flying-fish Exocutuss californicus: This fish flies for a distance sometimes of nearly a quarter of a mile, usually not rising more than three or four feet. Its motions in the water are extremely rapid, and its motive power is certainly the movement of its powerful tail in the water. On rising from the water the movements of the tail are continued for some seconds until the whole body is out of the water. While the tail is in motion the pectorals are in a state of very rapid vibration, and the ventrals are folded. When the action of the tail ceases, the pectorals and ventrals are spread, and, as far as can be seen, held at rest. When the fish begins to fall, the tail touches the water and the motion of the pectorals recommences, and it is enabled to resume its tinishes by falling in the water with fight, which it finally a splash. When on the wing it resembes a large dragon fly. The motion is very s.wift; at first it is in a straight
line, but this becomes defle 'te d to a curve, the pectoral on line, but this becomes defle, 'te d to a curve, the pectoral on the inner side of the are being λ ent downward. It is able to some exstent to turn its coursce to shy off from a vessel. The motion seems to have no rifin ence to the direction of he wind.
The Use of Chloruphyl in Vegetabite Groooth. - This question appears to be as yet by no meara * definitely settled. Pin ly suggested that protect the sub calo jacent cells and their contents from those rays , wo evfld be adverse to the secondary processess thia have been distioguished as growth. But Dr. Gilbert, im L is recent address to the Chemical Section of the British Assbo ?iation, points out that the plant may receive abundance \mathbb{F}, " itrogen, may produce abundance of chlorophyl, and be suby ${ }^{\circ} \mathrm{ct}$ to the influence of sufficient ligghat, and may yet not assimilate a dute amount of carbon. He shows that the presence of a duesupply of potassium salt and of sufficient available nitrogen is necessary for the proper assimilation of carbon by plants. The amount of carbon assimilated evidently does not dep end on the protective power of the chlor ophyl alone, nor on its chemical action, In connection with the coloring malt ${ }^{\text {'ter }}$ of leaves it has been obcrved the the leaves of the Virginia served he to the well known beai ful rea sooner on walls exposed to the north and east, and that if the weather be wett during the time when they usually change color the red tin is only sparingly dev eloped.
Influbnee of Colowerd Lights on Ani. mal Development.-M. ung, in a note to the French Acadens (Comptes Rendus, p. 440), gives some the results obtained by him in his experments on the action of colored lightson the de. velopment of animals. Eggs of the squid and cuttlefish, laid at the same time, were put into vessels in arbich the water was regularly renewiad. These vessels were placed in glasus bowls of the same form, but larger; and the intervening space was filled with different colored liquids. The with difurface were covered with thick upper surfaces were covered w ith thick cardboard, so that the eggs received
light that was nearly monochromatic. Under such conditions the eggs deve oped unequally, as had previously been found the case with the eggs of the frog,.trout, etc. The development was stimulated by violet and blue lights, but retarded by red and green. Yellow light, in its action, came near est to white. In experimeuting with he beautiful ascidian Ciona intestina lis, M. Yung found that those larvæ which were reared in vessels submitted

