city and St. Lambert, each paying one-half the cost of \mid San Francisco would save 1,500 miles by way of Tebuante maintenance. The iron road or the ice bridge railways between Hochelaga and Longtieuil, is a much more difficult and expensive affair. The surface has to be care fully leveled, then the sleepers are securely frozen in, and the track laid in the usual way. Last winter the Northern Pacific Railway used an ice road across the Missouri River for construction trains, transporting in this way a vast amount of material for the road beyond. During the pres ent season the Russians have adopted the same plan for a freight railway on ice between Oranienbaum and Cronstadt.

electric illumination at menlo park

To subject his system of electric lighting by incandescence to the crucial test of actual outdoor use on a large scale Mr. Edison has set up at Menlo Park a plant embracing five hundred lamps distributed over an area one mile long and half a mile wide. His laboratory stands upon a gentle emi nence from which the lines of lamps extend half a mile to right and left, the entire area under illumination being, from the slope of the land, easily visible from the central station.
The lamps are in a circuit comprising seven miles and three-quarters of wire, and are supplied by a current generated by nine dynamo-electric machines driven by one en gine. The lamps are of sixteen candle-power, equal to an ordinary street gaslight, and are absolutely steady, shining with a mild and serene effulgence, which is exceedingly pleasing to the eye. The division of the current is complete and economical, and the entire system of lights can be turned up or down, off or on, as easily as one can regulate the flow of gas in an ordinary burner.
Simply as an exhibition of perfect illumination under perfect control, covering a vast area, this array of lamps presents a most remarkable and delightful sight, and is alone well worthy of a trip to Menlo Park. As a demonstration of the perfected working of a great and novel system of il lumination, sure to become in a little while a potent con tributor to the comfort and economy of city life, it is a spec tacle which cannot fail to impress powerfully the uind of any observer.
The lamps have been but slightly modified in form and construction, since they were figured and described some months ago in this spaper. In principle they are unchanged. The present appearance of the lamps is clearly shown on our front page: the plan of suspending the lamps as in the chandelier, serves particularly well in elevated lights, since the shadow of the fixture is thereby avoided. Three sizes of lamps are made, one-third, one-half, and full size, or equivalent to $5 \frac{1}{3}, 8$, and 16 candles respectively. Unlike other electric lamps the incandescent lamp requires no attention; there are no carbons to change, and need not be toucbed save to keep the outer globe free from dust, during the entire period of its existence, which covers several months. In case a lamp is broken by accident of internal defect, another can be put in its place as easily as a candle can be set in its socket. The suspension of one lamp has no effect whatever on the others in the circuit. According to the latest tests, to supply the current for one lamp of 16 candle power, for one hour, réquires the consumption of two-fifths of a pound of coall. Still greater economy of power is expected by the use of the large generator now ap proaching completion.

THE TEHUANTEPEC SBIP RAILWAY.

The prompt and cordial acceptance by the Mexican people of the feasibility and the entire practicableness of Mr. Eads' plan of a ship railway across the Isthmus of Tehuan tepec is probably without parallel in the bistory of nations, as it is in the history of great undertakings. Scarcely less remarkable is the generous spirit with which the Mexican Government has welcomed the enterprise. The liberal con cession which it has granted to Mr. Eads gives him the right to construct a ship railway on the plan illustrated and described in the Scientific American of Nov. 13, 1880, on any line that he may select, the work to be begun within two yeass from the date of the grant and completed within twelve years. He is to have a right of way across the Isthmushalf a mile in width, with an additional half mile of width where stations are required; also a subsidy equal to $1,000,000$ acres of public land, to be located on the Isthmus or elsewhere, toward the construction of a harbor on the
Pacific Ocean. Pacific Ocean.
The grant gives, further, the right to acquire the Tehuantepec Railway, now building, and to improve such rivers and harbors as may be of use to the ship railway service, collecting tonnage dues from vessels entering them. Li beral tariff charges are allowed for transporting ships over the road and for auxiliary service; and the enterprise is ex empted from all export and import duties on money and material during the entire period of the grant, ninety-nine
years. At the end of this time the government is to take years. At the end of this time-the government is to take
possession of the works, paying therefor two-thirds of their value. Permission is given for the United States Govern ment to lend its aid, thus making our Government practically a partner with Mexico in carrying out the enterprise.
The length of the Tehuantenec route is 112 miles; the es timated cost of the proposed road is $\$ 75,000,000$. The great advantage of the route over the Panama route-aside from American shipping and the avoidance of the unfavorable winds and calms of the lower latitudes, the Panama route lying 1,200 miles further south. Ships from New Y ork to

San Francisco would save 1,500 miles by way of Tehuante-
pec; while 2,300 miles are saved over Panama between New Orleans and California.
At Mr. Eads' request an expedition comprising about fifty individuals-engineers, assistants, laborers, and soldiersto assist him in making a survey of the Isthmus to deter mine the most practical route for the ship railway, has been prepared by the Mexican Government and sent to the Isthmus. This commission is under the direction of the eminent civil engineer, Francesco De Garay, who is in charge of the drainage of the Valley of Mexico, and who was commissioned to represent the Mexican Government at
the Paris Canal Convention. He is directed by the government to assist the engineers of Captain Eads in the instrumental survey of such routes as he may designate. Messrs. Williams and Corthe! 1 will direct the survey during the absence of Capt. Eads, who has returned to Washington. It is thought that a large saving in the length of the railway can and its tributary, the Usuparapa

SHOULD A BABY BE FAT?

While there is a measure of truth in the assertion that fat babies are not necessarily healthy, the following much quoted extract from a physician's letter to a Boston paper is likely to do mischief by its extravagant condemnation of fat. Speaking of fatty degeneration the physician says:

Most infants do become thus diseased before they are three months old. This stops the growth and leaves the poor deceived parents nothing but increase in weight to boast of ; and when the poor little victim to his own greed and his parents' folly gets to the end of his tether he melts away like butter in a hot oven, and then it is seen how poor (in flesh) he has been all the time. Few comprehend the broad difference between flesh and fat. The first is lean meat-muscle-the result of growth; while fat-I don't care how, hard and solid it may be-is the prod uct or accumulation of unexcretial excess. This is why no one bets a dollar on a fat horse or a fat man-they are 'soft' and 'can't stay.' It is every whit as true of a fat baby. The only wonder is that any infant lives sixty days from birth Fed before birth but three times a day, he is after birth subjected to ten or twenty meals in the twenty-four hours. Before birth he grows at the rate of about ten pounds per year, after biith he is permitted to fat at the rate of fifty pounds per year until cbronic dyspepsia or some acute disease interferes. Feel of a kitten, calf, colt, or a young than skin and bones and fur or feathers, because unable to get enough to fatten them, and they never die-rarely have any sort of disease. Children are never fairly 'out of the woods' until they reach the lean age and have pipe-stem legs and arms, with no rolls of fatty tissue anywhere about them. Could they be kept so from birth and not permitted to over-indulge, so that their appetites would always be reliable for plain food, they would have no infantile diseases to enrich our pockets.
Why should the kitten, the colt, or the young robin be taken as a model of infantile health, rather than the puppy, the bear cub, the pig, or the young pigeon?
It is the nature of some young animals to be lean and healthy; of others to be fat and healthy; and there is as marked a difference in the natural tendency of young chil dren. Infants of the same parentage and fed at the same breast will differ in this respect, and both be healthy. Fat laid on at the rate of "fifty pounds a year" is quite another matter, and one not liable, we take it,
to be a common cause of anxiety. Injudicious feeding is more apt to show itself in lack of fat, and lack of proper muscular tissue as well. That sort of leanness is much too common in young humanity.

The Value of Weather Prophecies.

Professor Cleveland Abbe, of the Signal Service, was re cently interviewed by a Washington correspondent of the Boston Herald, who asked the following pertinent questions Has the weather bureau paid any official attention to Mr . Vennor's prognostications? A.-To test the accuracy of
his work, we have occasionally compared his predictions as published in the newspapers, which accounts, of course, contain telegraphic and typographical errors for which Vennor is not responsible, with the real facts. We find that one-quarter of his predictions are verified, if they are intended for the St. Lawrence valley. If they are meant for this locality, as those who would give him credit for pre dicting the recent storm here must believe, then not ten per centum of his prophecies come true. In view of his con tinued failures, one or two brilliant successes would not
justify us in adopting his system of foretelling the weather. Q.-Upon what are his methods of announcing the weather based? A - He keeps his system a secret to himself. There are, however, a few ways in which a comparatively truthful guess can be made at the weather months ahead. The firs a long period. If we find that, for several months, the aver age has been wet or cold, it may be predicted that, during the immediate succeeding months, the weather will be the verse, that is dry or warm. Then we can get at the mat er in another way. When January, February, and March have certain characteristics, the latter part of the year, Octo-
ber, November, and December, will have corresponding characteristics. Thus the weather may be foretold, in a
general sense, some months ahead. But no man in the
world has ever devised a plan which will foretell special storms on certain days, or which will offer a genuine pre diction for a long period in advance. We are sometimes asked to give the weather several days in advance in the case of festival occasions. Under favorable conditions we can do this, with a very good cbance of successful predic tion. For instance: The chances are that the last few days of August. will be clear, because the records show that this is the case five times to one. This, of course, relates to a particular locality, and cannot be made to cover the whole country. I suppose all Mr. Vennor's predictions are made by these methods.
Q.-Have you watched the weather predictions of the New York Herald, which are cabled to Europe? A.-Yes, sir During the first months of that service I very thoroughly and carefully compared their predictions with the weathe in Europe, and am satisfied that there is not more than 17 per centum of verifications in the predictions made by the Herald bureau. There are about 25 per centum of cases that might be considered doubtful, making a little more than 40 per centum of predictions which come near the truth. A perfectly independent investigation was made by the director of the London meteorological office, and he arrived a precisely the same figure, 41 per centum. This is really no better than could be done by guesswork.

ELECTRIC LIGHT GOOD FOR THE EYES

When the electric light first began to be used in our shops, factories, and places of amusement, it was confidently asserted by its opponents that so dazzling a light must be injurious to the eye. The objection seemed plausible at least, although the light when diffused seemed to have the quality of bright moonlight, which is the reverse of irritat ing. People would persist in looking at the source of the light, and as the early lamps were far from steady, the ob server's eyes suffered both from the intensity of the light and the sudden and large variations in the quantity of it. It appears, however, from the experiments recently made by Professor Cohn, of Breslau, whose name is so familiar in connection with the investigation of color blindness and ther optical defects, that our eyes will be benefited rathe than hurt by the new method of lighting, and it is obvious that with incandescent electric lighting the advantages will be still more marked.
While testing the influence of electric light on visual per ception and the sense of color, Dr. Cohn proved, he thinks. that letters, spots, and colors were perceived at a much greater distance under electric illumination than by gas light, or even daylight. Compared with daylight, the elec tric light increased the sensation of yellow sixtyfold, red six fold, and green and blue about twofold. Eyes that in day fold, and green and blue about twofold. Eyes that in day-
light or gaslight could perceive and distinguish colors only light or gaslight could perceive and distinguish colors only
with difficulty were much aided by the electric light, and with difficulty were much aided by the electric light, and
the visual perception was much strengthened. In all cases of distant signaling, Dr. Cohn believes that the elec tric light will prove exceedingly and especially useful.

William A. Lighthall.

William A. Lighthall, the oldest designer and builder of marine engines in this country, and inventor of the widely used surface condenser for ocean steamers, died it Brooklyn, N. Y., January 4. Mr. Lighthall's connection with steam engineering began with the engines of the Claremont the first steamer plying on the Hudson River; and for many years be was engaged as superintendent and constructing engineer for river and ocean lines of steamers. He was State Inspector-General of steamboat hulls and boilers in California for three years. From 1847 to 1862 be was inspector of steamboats and boilers in this State. Of late years be has been engaged in the manufacture of surface condensers.

Volcanic Ash for Phylloxera.

It is reported that a Neapolitan gentleman residing at the foot of Mount Vesuvius has cleared his boeyard of phyl loxera by the use of volcanic ashes. Seeing that the soil of the country about Vesuvius is largely composed of volcanic ash, it is hard to reconcile the existence of the vine pest there with the alleged inability of the insects to endure its presence.

Charles B. Stewart

The eminent civil engineer, General Charles B. Stewart, died in Cleveland, Ohio, January 4. General Stewart was engaged in the construction of the Philadelphia, Wilmington, and Baltimore Railroad, one of the first railroads in the country built for passenger service. Subsequently he constructed the Brooklyn dry docks, dis. playing therein an ability which secured his appointment as Engineer in Chief of the U. S. Navy. His volumes on naval architecture, the construction of dry docks, etc., at tracted wide attention at home and abroad, and gained him much distinction at the hands of foreign authorities. He was for one term State engineer of New York, and deserves much, if not most of the credit for the first Niagara suspension bridge. His title was gained during the late war, in command of a regiment and afterwards a brigade of en. gineers.
Broken Dikes in Holland.-A break in the embank ment of the river Maas, between Nieukuik and Vlymen Holland, December 29, resulted in the submergence of eighteen villages. The whole country called the land of eighteen villages. The whole count
Heusden and A Itena was inundated.

