
a weekly journal of practical information. art. ScIEvce. mechanics. Chemistry and manufacture Vol. XLIV.-NO. 4.]

NEW YORK, JANUARY 22, 1881.

EDISON'S NEW DYNAMO-ELECTRIC MACHINE.

The remarkable activity prevailing at the Menlo Park laboratory and machine shop, and the evidences of the enormous outlay of capital which one sees at these works on every hand, are convincing proofs of the good faith and thorough earnestness of Mr. Edison and bis co-laborers and supporters. The great work of perfecting a complete system of electric lighting in all its details is necessarily a very slow operation, however much the work may be urged, as time-tests of the endurance of lamps, perfection of the insuladurance of lamps, perfection of the insula-
tion of the underground conductors, and a hundred other time-consuming operations must, of necessity, be gone through with.
As it is Mr. Edison's determination that his system of electric illumination shall not be presented to the public until it is complete and commercially practicable to the smallest detail, the would-be-users can afford to wait patiently for the perfected thing rather than be subjected to the trouble and possible disap pointments attending the perfecting of the system while it is in public use, as is commonly the case with great inventions.
Besides carrying to a successful issue the grand experiment of illuminating a large out-of-door area with incandescent lamps, Mr. Edison has practically demonstrated that the bighont economy in the conversion of power

into electricity can be reached only by use of very large machines, and by the d application of the power to the arma without the intervention of belts or (means of transferring power.
Our engraving represents a gigantic d mo-electric machine approaching compl at Mr. Edison's machine shop, and desi to replace sixteen of the largest machine this kind previously made. The dyname the driving engine are both mounted massive cast iron bed, $81 / 2$ by 7 feet and 2 deep, very heavy and strongly ribbed entire machine weighing 8 tous. the middle of the bed is mounter dynamo-electric machine, which, we. is the largest ever constructed. I' magnets, three in number, are $61 / 2$ feet The armature is 21 inches in diameter a inches long, and weighs $11 / 2$ tons. Thee is 100 horse power, of the Portertype, built especially for this purpose Southwark Foundry, Philadelphia. stroke is 10 inches. The internal diam its cylinder is 9 inches. The crank d placed on the end of the armature Steam pressure, 120 lb . per square inch engine cuts off at one-fifth of the strok makes 600 revolutions per minute. working pressure of the dynamo is 140 the resistance of the armature is one hundredth of an ohm.

The current is taken from the commutator cylinder by twelve brushes, six on either side, either one of which may be removed without disturbing the others. These brushes are supported by an arm capable of being rotated on an axis coincident with the axis of the armature, so that they may be made to approach or recede from the neutral point, and in this manner control the current.
This machine will furnish a current to eight hundred incandescent lamps. According to the most recent estimates as to economy, as obtained by indicating his present engine with 500 lamps, three and a half pounds of coal burned under the boiler per hour will generate a nett current sufficient for $83 / 4$ incandescent lamps of 16 candles each, or 16 lights of 8 candles each.

IMPROVEMENTS IN THE SILVERING OF MIRRORS.

Astronomers, and all who are interested in the production of mirror surfaces for optical purposes by the deposition of silver upon glass, will learn with pleasure that this subject has been receiving practical attention at the hands of a painstaking experimentalist, Professor Piazzi Smyth, the Astronomer Royal for Scotland. Convinced of the great value of re flecting over achromatic telescopes for certain phases of astronomical research, Professor Smyth has lately been directing his attention to the eliminating from the film of deposited silver certain objectionable features which marred its usefulness when applied to the reflector or glass mirror of large reflecting telescopes.
Subject to slight improvements to be afterward mentioned, the quickest, best, and most reliable method of depositing silver on glass, and that by which large glass specula as well as flat reflectors for a heliostat have been prepared by thi astronomer, is the following:
Solution A. -175 grains nitrate of silver dissolved in 10 ounces of distilled water.
Solution B.-262 grains of nitrate of ammonia dissolved in 10 ounces distil!ed water.
Solution C. -1 ounce of caustic potash, purified by alcohol, in 10 ounces distilled water.
Solution D.-Half an ounce of sugar candy and 32 grains tartaric dissolved and boiled for ten minutes or so in 5 ounces distilled water. When cold add 1 ounce of alcohol, and make up to 10 ounces with water.

To Mix.-Put one-quarter of A into a glass beaker, add one-quarter of B , and then, gradually, one-quarter of C . Stop if it gets cloudy and add a drop or two of B, and continue with one-quarter of C until it is all got in. Then add a drop or two of A till the mixture has a slight brown color that will not dissolve in á couple of minutes; let it settle, or filter through cotton wool. To this add one-quarter of D , when the glass is ready to put on.
The quantity of the whole should be such that when the glass is placed on the fluid there should be about a depth of three-quarters of an inch below it. If everything is right, the mixture will turn first a pale sherry color, and then an inky black. In ten minutes in hot weather, or twenty minutes in winter, deposition will be completed, after which the mirror is then removed, washed, dried, and polished with a rouged pad.
From an observation of the fact that the silver formed much more readily on glass lying on the top of the solution than that which lay in the bottom of the vessel, a little going downward, but by far the greater portion ascending, Prof. Smyth reasoned that the so-called silver could not be pure silver after all, but must be combined with some substance that has altered its specific gravity. To that substance which he concludes is potash in some form, he attributes the further factothat a damp warm thaw coming on after cold whll sometimes cause the polished film to leave the glass and rise up in blisters. By what means, therefore, was this hy groscopic element to be eliminated? Alldifficulties are over come by lifting the mirror from the silvering bath, and after allowing some of the solution to drip off, transferring it to a bath of alcohol, into which it is allowed to remain, with gentle agitation, till no more coloring matter is given off. A great advantage is also found in the substitution of soda for the potash in solution C, using much less of it. The effect of the alcoholic bath is noteworthy and valuable. A more perfect adhesion to the glass, with consequent freedom from the blisters mentioned, added to the greater smoothness and amenability to the action of the rouge polishing pad, are among these advantages.
An effective way of cleaning the surface of the glass pre vious to its being silvered consists in rubbing it with nitric acid, which must then be wiped off with a cloth, followed by an application of powdered Spanish whiting, to which is added enough distilled water to make a paste. This is rubbed over the surface and allowed to become quite dry, when, by rubbing with cotton wool, it is all removed. On being see to be dry and clean the plate is gently lowered, face down ward, into the solution, taking care not to sink it so low as to allow the back to get wetted. The film, thus obtained possesses great body, solidity, and luster after being rubbed with the rouge pad, these qualities being very apparent when compared with a film obtained by the older processes.

Three car loads of silkworms' eggs, consigned to George Carhart, and valued at $\$ 1,000,000$, arrived in this city at 6 o'clock on Wednesday morning, January 5, by the Erie Railway, and were immediately put on board the French ine steamer for France. They came from China, reaching San Francisco on the 28th ult.

grientific eqmexian.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors.
PUBLISEED WEELLY AT
NO. BY PARK ROW, NEW YORK.
O. D. MUNN. A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN.

One copy, one year postage included.....
One copy, six months, postage included
$\begin{array}{r}8390 \\ .160 \\ \hline\end{array}$
Clubs.-One extra copy of THE SCIENTIFIC AMERICAN will be supplied
gratis for every club of five subscribers at $\$ 3.20$ each : additional copies at same proportionate rate. Postage prepaid.
same proportionate rate. Postage prep
Remit by postal order. Address
MUNN \& CO., 37 Parik Row, New York.
The Scientific American Supplement
Is a distinct paper from the Scientific American. THE SUPPLEMENT is issued weekly. Every number contains 16 octavo pages, uniform in size $\$ 5.00$ a year, postage paid, to subscribers. Subscription for SUPPLEMENT, all news dealers throughout the country.
Combined Rates. - The Scientriftc American and Suppicminet papers to one arddress or or differentan addresses as desired. The safest way to remit is by draft postal
Address MUNN \& CO., 37 Park Row, N. Y.

Scientific American Export Edition.
The SCIENTIFIC AMwRyCAN Export Edition is a large and splendid peri-
odical, issued once a month. Each number odical, issued once a month. Each number contains about one hundred
large quarto pages, profusely illustrated. embracing: (1.) Most of the plates and pages of the four preceding weekly issues of the sccervicim
AMURICAN, with its splendid engravings and valuable information: (2) Commercial, trade, and manufacturing announcements of leading houses.
Terms for Export Edition, $\$ 5.00$ a year, sent prepaid to any part of the world. Single copies 50 cents. Manu facturers and others who desir to secure foreign trade may have large, and handsomely displ
nouncements published in this edition at a very moderate cost.
The SCIENTIFIC AMLRLCAK Export Edition has a large guaranteed circu-
lation in all commercial places throughout the world. Address MUNN \& lation in all commercial places throughout the world. Address MUNN \&
CO... 37 I'ark Row. New York.

NEW YORK, SATURDAY, JANUARY 22, 1881.

TABLE OF CONTENTS OF
THE SCIENTIFIC AMERICAN SUPPLEMENT No. 264.

For the Week ending January 22, 1881.

II. TECHNOLOGY AND CHEMISTRY.-Manufacture of Salts....

$=$

PHARAOH'S SERPENTS-ARE THEY DANGEROUS TOYS?
Serpents' eggs, or, as they were at first called, " Pharaoh's serpents," are much more easily produced than their extraordinary properties and the high-toned sound of the name, mercurous sulphocyanide or sulphocyanide of mercury, would indicate. For this mercurous sulphocyanide is a very fine, white, soft-feeling powder, and when wet up with weak gum water may be kneaded or moulded into any desir ed form. In early days the standard form was a cone about one-third of an inch high, and the conical masses, after dry ing, were covered with tin foil. Of late the pill form is the fashion.

But the mercurous sulphocyanide is not a commercial article, and perhaps there are not in all the world balf a dozen stores where it is kept in stock; probably its only industrial application is to be found in the serpent manufacture. Moreover the raw materials, which, by a direct and simple process of mixture, result in the production of the mercurous sulphocyanide, are not commercial; these materials are sulphocyanide of potassium and nitrate of mercury. When solutions of these salts are mixed, the mercury and potassium change places, and immediately there result mercurous sulphocyanide, the serpent constituent, which precipitates, and nitrate of potash (saltpeter); which remains in solution. The foregoing is all the in struction which a chemist should require to understand and execute successfully the serpent making process; he should know what materials to start with and how to manage them. For tyros and others who may be concerned to know it, we give the complete process from the beginning:
Mix intimately two parts of yellow prussiate of potash with one part of sulphur; carefully melt this mixture in an iron or porcelain vessel at a gentle heat, far below redness, stirring all the time with an iron rod. The melting is successfully completed when the mass has become a tranquil liquid and will not throw up any more gas bubbles. On cooling you will have a black, brittle mass, from which water dissolves the sulphocyanide of potassium. Next dissolve mercury in diluted nitric acid, taking care that at the end of the process there shall still be undissolved mercury; you have then a solution of protonitrate of mercury. Dilute filtered solutions of the nitrate of mercury and of the sulphocyanide of potassium are to be prepared and to be mixed by pouring the former into the latter as long as a precipitate is produced. This precipitate is the mercurous sulphocyanide (the serpent substance), which is to be collected, washed, dried, etc.
When these marvelous serpent toys were invented, about twenty years ago, they were admired and talked about all over the world; there was a popular enthusiasm over them comparable in earnestness to that which sixty years ago greeted Sir David Brewster's kaleidoscope. But to-day it is the temper of the people to scotch Pharaoh's serpents, while Sir David's toy is as popular as ever. The fact is, the kaleidoscope is one of the joys forever, and the serpents belong to the breed of the venomous. The venom of Pharaoh's serpents is mercury.
Pharaoh's serpents at first were made and sold on a great scale, and it was not long before their vicious traits were manifested all over the country. At one of the serpent factories in this city, where the work was performed mostly by girls, it was found that about one in ten would be pros trated on the first day at the factory, and that a majority of the employes would be visibly injured within the first week of their stay by mercurial poisoning. Among the curious cases which turned up was that of an employe who continued in the business from first to last in the most robust health; he seemed to thrive on the mercurous sulphocynide which he was continually, one way and another, taking in, and thus to elucidate the old adage of meat and poison. We have known a person who could not with impunity touch mercury or remain in a room where a small surface 999 of mercury was exposed to the air. When the eggs are ig nited one of the products of the combustion is mercury in vapor.
We are constrained, therefore, emphatically although regretfully, to condemn Pbaraoh's serpents as dangerous toys. Perhaps they may be permitted among the brilliant experi ments of the chemical lecture, but for children to play ments of the chot at all.
These remarks are suggested on reading a letter from an esteemed correspondent who thinks that the serpents may not be dangerous. He says he has made hundreds of them and has suffered no evil. If all the dangerous things wer fatal, there would be no survivors to sound the warning.

ICE ROADS AND RAILWAYS ON ICE.

As soon as the St. Lawrence River is firmly frozen about Montreal the work of constructing winter ice roads is begun to connect the city with the mainland. As described in the local papers the method of making the roads is sim ple, and in frosty weather the work is easy. The track is first marked out by lines of small bushes; then the rough surface of the packice is hewn smooth and the fragments cemented by pouring on water. There are two roads to Longueuil, one rounding the corner of Ile Ronde and the other passing the eastern end of St. Helen's Island. The city pays half the cost of maintaining the lower road, while it constructs and maintains one-half of the upper road. The Laprairie road, which passes beneath the piers of Victoria Bridge, is located and constructed by the Laprairie authori ties, the city of Montreal paying one-half the cost. The St
city and St. Lambert, each paying one-half the cost of maintenance. The iron road or the ice bridge railways between Hochelaga and Longuieuil, is a much more difficult and expensive affair. The surfacurely frozen in the track laid in the usual way. Last winter the Northern Pacific Railway used an ice road across the Missouri River for construction trains, transporting in this way a vast amount of material for the road beyond. During the present season the Russians have adopted the same plan for a freight railway on ice between Oranienbaum and Cronstadt.

electric illumination at menlo park

To subject his system of electric lighting by incandescence to the crucial test of actual outdoor use on a large scale, Mr. Edison has set up at Menlo Park a plant embracing five hundred lamps distributed over an area one mile long and half a mile wide. His laboratory stands upon a gentle eminence from which the lines of lamps extend half a mile to right and left, the entire area under illumination being, from the slope of the land, easily visible from the central station.
The lamps are in a circuit comprising seven miles and three-quarters of wire, and are supplied by a current generated by nine dynamo-electric machines driven by one en gine. The lamps are of sixteen candle-power, equal to an ordinary street gaslight, and are absolutely steady, shining with a mild and serene effulgence, which is exceedingly
pleasing to the eye. The division of the current is pleasing to the eye. The division of the current is complete and economical, and the entire system of lights can be turned
up or down, off or on, as easily as one can regulate the flow of gas in an ordinary burner.
Simply as an exhibition of perfect illumination under perfect control, covering a vast area, this array of lamps presents a most remarkable and delightful sight, and is alone well worthy of a trip to Menlo Park. As a demonstration of the perfected working of a great and novel system of illumination, sure to become in a little while a potent contributor to the comfort and economy of city life, it is a spectacle which cannot fail to impress powerfully the mind of any observer.
The lamps have been but slightly modified in form and construction, since they were figured and described some months ago in this paper. In principle they are unchanged. The present appearance of the lamps is clearly shown on our front page: the plan of suspending the lamps as in the chandelier, serves particularly well in elevated lights, since the shadow of the fixture is thereby avoided. Three sizes of lamps are made, one-third, one-half, and full size, or equivalent to $5 \frac{1}{3}, 8$, and 16 candles respectively. Unlike other electric lamps the incandescent lamp requires no at tention; there are no carbons to change, and need not be touched save to keep the outer globe free from dust, during the entire period of its existence, which covers several months. In case a lamp is broken by accident of internal defect, another can be put in its place as easily as a candle can be set in its socket. The suspension of one lamp has no effect whatever on the others in the circuit. According to the latest tests, to supply the current for one lamp of 16 candle power, for one hour, réquires the consumption of two-fifths of a pound of coal. Still greater economy of power is expected by the use of the large generator now ap proaching completion.

THE TEHUANTEPEC SHIP RAILWAY.

The prompt and cordial acceptance by the Mexican people of the feasibility and the entire practicableness of Mr Eads' plan of a ship railway across the Isthmus of Tehuantepec is probably without parallel in the history of nations, as it is in the history of great undertakings. Scarcely less remarkable is the generous spirit with which the Mexican Government has welcomed the enterprise. The liberal concession which it has granted to Mr. Eads gives him the right to construct a ship railway on the plan illustrated and described in the Scientific American of Nov. 13, 1880, on any line that he may select, the work to be begun within two years from the date of the grant and completed within twelve years. He is to have a right of way across the Isthmus half a mile in width, with an additional half mile of width where stations are required; also a subsidy equal to $1,000,000$ acres of public land, to be located on the Isthmus or elsewhere, toward the construction of a harbor on the Pacific Ocean.
The grant gives, further, the right to acquire the Tehuan tepec Railway, now building, and to improve such rivers and harbors as may be of use to the ship railway service, collecting tonnage dues from vessels entering them. Li beral tariff charges are allowed for transporting ships over the road and for auxiliary service; and the enterprise is ex empted from all export and import duties on money and material during the entire period of the grant, ninety-nine years. At the end of this time-the government is to take possession of the works, paying therefor two-thirds of their value. Permission is given for the United States Govern ment to lend its aid, thus making our Government practically a partner with Mexico in carrying out the enterprise.
The length of the Tehuanterec route is 112 miles; the es timated cost of the proposed road is $\$ 75,000,000$. The great advantage of the route over the Panama route-aside from its superior healthfulness-lies in the saving of distance fo American shipping and the avoidance of the unfavorable winds and calms of the lower latitudes, the Panama route
lying 1,200 miles further south. Ships from New York to

San Francisco would save 1,500 miles by way of Tehuantepec; while 2,300 miles are saved over Panama between New Orleans and California.
At Mr. Eads' request an expedition comprising about fifty individuals-engineers, assistants, laborers, and soldiersto assist him in making a survey of the Isthmus to determine the most practical route for the ship railway, has been prepared by the Mexican Government and sent to the Isthmus. This commission is under the direction of the eminent civil engineer, Francesco De Garay, who is in charge of the drainage of the Valley of Mexico, and who was commissioned to represent the Mexican Government at the Paris Canal Convention. He is directed by the government to assist the engineers of Captain Eads in the instrumental survey of such routes as he may designate. Messrs. Williams and Corthell will direct the survey during the absence of Capt. Eads, who has returned to Washington. It is thought that a large saving in the length of the railway can be made by taking advantage of the Coatzacoalcos Rive and its tributary, the Usuparapa

SHOULD A BABY BE FAT ?

While there is a measure of truth in the assertion that fat babies are not necessarily healthy, the following much quoted extract from a physician's letter to a Boston paper is likely to do mischief by its extravagant condemnation of fat. Speaking of fatty degeneration the physician says:
' Most infants do become thus diseased before they are three months old. This stops the growth and leaves the poor deceived parents nothing but increase in weight to boast of; and when the poor little victim .to his own greed and his parents' folly gets to the end of his tether he melts away like butter in a hot oven, and then it is seen how poor (in flesh) he has been all the time. Few comprehend the broad difference between flesh and fat. The first is lean meat-muscle-the result of growth; while fat-I don't care how, hard and solid it may be-is the product or ac cumulation of unexcretial excess. This is why no one bets a dollar on a fat horse or a fat man-they are 'soft' and 'can't stay.' It is every whit as true of a fat baby. The only wonder is that any infant lives sixty days from birth Fed before birth but three times a day, he is after birth subjected to ten or twenty meals in the twenty-four hours. Before birth he grows at the rate of about ten pounds per year, after biit th he is permitted to fat at the rate of fifty pounds per year until cbronic dyspepsia or some acute disease interferes. Feel of a kitten, calf, colt, or a young robin-they are and remain while growing but little more than skin and bones and fur or feathers, because unable to get enough to fatten them, and they never die-rarely have any sort of disease. Children are never fairly 'out of the woods' until they reach the lean age and have pipe-stem legs and arms, with no rolls of fatty tissue anywhere about them. Could they be kept so from birth and not permitted to over-indulge, so that their appetites would always be reliable for plain food, they would have no infantile diseases to enrich our pockets."
Why should the kitten, the colt, or the young robin be taken as a model of infantile health, rather than the puppy, the bear cub, the pig, or the young pigeon?

It is the nature of some young animals to be lean and healthy; of others to be fat and healthy; and there is as marked a difference in the natural tendency of young children. Infants of the same parentage and fed at the same breast will differ in this respect, and both be healthy. Fat laid on at the rate of "fifty pounds a year" is
quite another matter, and one not liable, we take it quite another matter, and one not liable, we take it,
to be a common cause of anxiety. Injudicious feeding is more apt to show itself in lack of fat, and lack of proper muscular tissue as well. That sort of leanness is much too common in young humanity.

The Value of weather Prophecies.
Professor Cleveland Abbe, of the Signal Service, was re cently interviewed by a Washington correspondent of the Boston Herald, who asked the following pertinent questions: Has the weather bureau paid any official attention to $\mathbf{M r}$ Vennor's prognostications? A.-To test the accuracy of his work, we have occasionally compared his predictions as published in the newspapers, which accounts, of course, contain telegraphic and typographical errors for which Vennor is not responsible, with the real facts. We find that one-quarter of his predictions are verified, if they are in this locality, as those who would give him credit for pre dicting the recent storm here must believe, then not ten per centum of his prophecies come true. In view of his con tinued failures, one or two brilliant successes would not justify us in adopting his system of foretelling the weather.
Q.-Upon what are his methods of announcing the weather
based? A -He keeps his system a secret to himself. There oased? A-He keeps his system a secret to himself. Ther
are, however, a few ways in which a comparatively truthfu guess can be made at the weather months ahead. The first is by observing the average weather during eath month for a long period. If we find that, for several months, the average has been wet or cold, it may be predicted that, during the immediate succeeding months, the weather will be the reverse, that is, dry or warm. Then we can get at the mat er in another way. When January, February, and March ave certain characteristics, the latter part of the year, Octo ber, November, and December, will have corresponding characteristics. Thus the weather may be foretold, in a
general sense, some month. ahead. But no man in the
world has ever devised a plan which will foretell special storms on certain days, or which will offer a genuine pre-
diction for a long period in advance. We are sometimes diction for a long period in advance. We are sometimes asked to give the weather several days in advance in the case of festival occasions. Under favorable conditions we can do this, with a very good cbance of successful predic tion. For instance: The chances are that the last few days of August. will be clear, because the records show that this is the case five times to one. This, of course, relates to a particular locality, and cannot be made to cover the whole country. I suppose all Mr. Vennor's predictions are made by these metbods.
Q.-Have you watched the weather predictions of the New York Herald, which are cabled to Europe? A.-Yes, sir During the first months of that service I very thoroughly and carefully compared their predictions with the weather in Europe, and am satisfied that there is not more than 17 per centum of verifications in the predictions made by the Herald bureau. There are about 25 per centum of cases that might be considered doubtful, making a little more than 40 per centum of predictions which come near the truth. A perfectly independent investigation was made by the direc tor of the London meteorological office, and he arrived a precisely the same figure, 41 per centum. This is really no better than could be done by guesswork.

ELECTRIC LIGHT GOOD FOR THE EYES

When the electric light first began to be used in our shops, factories, and places of amusement, it was confidently asserted by its opponents that so dazzling a light must be injurious to the eye. The objection seemed plausible at least, although the light when diffused seemed to have the quality of bright moonlight, which is the reverse of irritating. People would persist in looking at the source of the light, and as the early lamps were far from steady, the ob server's eyes suffered both from the intensity of the light and the sudden and large variations in the quantity of it. It appears, however, from the experiments recently made by Professor Cohn, of Breslau, whose name is so familiar in connection with the investigation of color blindness and other optical defects, that our eyes will be benefited rather than hurt by the new method of lighting, and it is obviou that with incandescent electric lighting the advantages wil be still more marked
While testing the influence of electric light on visual per ception and the sense of color, Dr. Cohn proved, he thinks that letters, spots, and colors were perceived at a much greater distance under electric illumination than by gas light, or even daylight. Compared with daylight, the elec tric light increased the sensation of yellow sixtyfold, red six fold, and green and blue about twofold. Eyes that in day light or gaslight could perceive and distinguish colors only with difficulty were much aided by the electric light, and the visual perception was much strengthened. In al cases of distant signaling, Dr. Cohn believes that the elec tric light will prove exceedingly and especially useful.

William A. Lighthall.

William A. Lighthall, the oldest designer and builder of marine engines in this country, and inventor of the widely used surface condenser for ocean steamers, died in Brooklyn, N. Y., January 4. Mr. Lighthall's connection with steam engineering began with the engines of the Claremont the first steamer plying on the Hudson River; and for many years he was engaged as superintendent and constructing engineer for river and ocean lines of steamers. He was State Inspector-General of steamboat hulls and boilers in Cali ornia for three years. From 1847 to 1862 he was inspector of steamboats and boilers in this State. Of late years he has been engaged in the manufacture of surface condensers.

Volcanic Ash for Phylloxera.

It is reported that a Neapolitan gentleman residing at the oot of Mount Vesuvius has cleared his boeyard of phyl loxera by the use of volcanic ashes. Seeing that the soil of the country about Vesuvius is largely composed of volcanic ash, it is hard to reconcile the existence of the vine pest there with the alleged inability of the insects to endure its pres ence.

Charles B. Stewar

The eminent civil engineer, General Charles B. Stewart died in Cleveland, Ohio, January 4. General Stewart was engaged in the construction of the Pbiladelphia Wilmington, and Baltimore Railroad, one of the first railroads in the country built for passenger service Subsequently he constructed the Brooklyn dry docks, dis. playing therein an ability which secured his appointment as Engineer in Chief of the U. S. Navy. His volumes on naval architecture, the construction of dry docks, etc., at tracted wide attention at home and abroad, and gained bim much distinction at the hands of foreign authorities. He was for one term State engineer of New York, and deserves much, if not most of the credit for the first Niagara sus pension bridge. His title was gained during the late war, in command of a regiment and afterwards a brigade of en gineers.
Broken Dikes in Holland.-A break in the embank ment of the river Maas, between Nieukuik and Vlymen, Holland, December 29, resulted in the submergence of eighteen villages. The whole country called the land of eighteen villages. The whole count
Heusden and A ltena was inundated.

Wormwood as an Insectifuge.
In a communication to the French Academy (Comptes The principal objection to the ordinary cigarmaker's knife Rend ${ }_{1 /}$, p. 607), M. Poirot attributes to the wormwood is that after using it for a short time a gummy substance col (Artemisia absinthium) extraordinary properties as an in- lects on the blade near its cutting edge, and unless this is seetifuge. He states that among the plants of this species frequently removed, the wrapper-leaf, while being trimmed, that cover the vast plains of North America. he has never is liable to adhere to the blade, and the leaf is often torn in seen flies, ants, or any other kinds of insects; and to these cutting, and rendered useless as a wrapper. The common he adds worms, scorpions, rattlesnakes, and other serpents. way of removing this gum is by drawing the blade horizon He proposes to use this property in the extinction of the tally between the lips. This method is not only inconvefient phylioxera, as he believes this pest would not be able to go and unpleasant, but its necessarily frequent repetition is phyloxera, as he meat maste of time and no doubt injurious to the heaith with the leaves and stalks of the plant.

IMPROVED BENCH-PLANE.

The engraving shows a device by which the knife or "iron'" of the plane is adjusted to various inclinations and secured in any position to suit the various degrees of hard ness and grain of the different kinds of wood on which it may be used. The cap or back iron is adjusted to suit the required angle of the knife, and at the same time the back requred and iron serves the double pur
or cap as ordinarily used.
In planing soft wood the plane will be adjusted as shown in the engraving, but when it is desired to use it on hard wood, the thumb-screw above the iron is retracted, and the nut below the iron is unscrewed from the threaded stud until the iron touches the cap as shown in dotted lines, or the iron may be placed in any intermediate position. The nut upnn which the back of the plane iron rests carries an ccentric pin which engages one of three or four slots in iron projects from the face of the plane.

STEERS' BENCH-PLANE.

A sbaft extending across the plane has a pin which pro jects into a hole in the cap; by turning this shaft the cap is moved in one direction or the other as may be required.
When all of the parts are in the required position they are made fast by turning the thumb-screw that bears upon the back of the iron
This invention has been patented by Mr. William Steers of Sherbrooke, Canada

MACHINE FOR RIVETING THE TUBES OF GALLOWAY BOILERS.
Messrs. Galloway \& Beckwith, of Manchester, England, Messrs. Galloway \& Beckwith, of Manchester, England have constructed a simple and effective machine for riveting the conical tubes of the Galloway boiler
In the engravings, from $A n$ nales Industrielles, the walls of the boiler are indicated by A , and the tubes to be riveted thereto by B. Through the cast iron blocks, C and C^{\prime}, at the ends of the tube, the shaft, D passes, held at the shaft, D, passes, held at the top by gear wheel, E, at the botton by a nut. The conical extension of the shaft, D^{\prime}, is surrounded by a cast iron sleeve. By the lever, N, the sleeve can be locked in any desired position. A hydraulic riveter is pivoted between the jaws, F and F^{\prime}, at the lower end of the sleeve, the upper end of the riveter being held by the rods, H being held by the rods, H, pivoted at the upper end of the sleeve. The inclination of the riveter can be varied at will by means of the screw, K. Since the die must be adjusted to the diameter of the tube to be riveted it is not attached to the piston, but slides in the box, G, and s held in any desired posi tion by the screw, L ion by the screw, L. The die rest, \mathbf{O}, carries a die a each end, and is placed in proper position by a work. man within the boiler, the lower die being set over a rivet at the bottom of the

IMPROVED APPARATUS FOR UPWARD PERCOLATION Mr. William Elborne, in a paper entitled " The Recover of Residual Tinctures from Macis by Upward Displacemen with Water," in pointing out the various processes hereto fore proposed for the preparation of tinctures, draws atten tion to the objections which have been raised against th displacement of the residual tincture in the marc by pour ing water upon it. He says: "It will be convenient ic allude to these objections, as the result will show that the tend favorably in support of the process which I am abou to bring forward: First, the specific gravity of water being higher than that of rectified or proof spirit, it naturally per meates down into the spirit, which at the same time has tendency to rise into the water, thus materially assisting the diffusion or mixing of the two liquids; secondly, vege table tissues, possessing a greater affinity for water that for spirit, the latter is readily liberated from them and ren dered free to rise in the water. Having mentioned the dis advantages of this process, I arrive at that which forms the leading feature of this paper, namely, upward displacement or the removal of the residual tincture retained in a marc by means of water (the heavier liquid) rising from below.

ELBORNE'S APPARATUS FOR UPWARD DISPLACEMENT.
Working on this principle, the objections above mentioned are inapplicable, and the results are fairly satisfactory. One impediment, however, is the slight diffusion which takes place at the line of contact, but this may be partially remedied by using a modification of the menstruum. Of the group of tinctures prepared by maceration and percolation the following proof spirit tinctures were made: Tr. aurantii calumbæ, cinchonæ, cinnamomi, lupuli, rhei;and with recti fied spirit: Tr. aconiti, and zingiberis (fort'or). The quan tity prepared of each was one pint, and in those made with proof spirit spec grav 0.090 I used spirit having the spec grav. 0.915 , made by diluting the requisite quantity of rec tified spirit with distilled water to 19 ounces instead of and adding $21 / 2$ drachms extra of rectified spirit, thus allowing for the contraction of volumes, and for use of the mixture immediately M.y mode of procedure is tc powder the ingredients and macerate them with the whole of the spirit. spec grav. 0.915, for the specified time with occa sional agita tion; the supernatant liquid is then drawn off, the dregs stirred up and transferred to a cylindrical percolator, and allowed to drop until the liquid passes clear and bright; the receiver is then attached, and both the turbid and superna tant liquids returned to the percolator. Instead of tying a piece of muslin over the bottom of the percolator, as is usually done, a cork is inserted with a hole bored through the center capable of admitting a piece of ordinary glass tube, above which is put an inch layer of coarsely pounded glass to prevent the orifice becoming choked. Percolation being complete, Pether half inch layer another half inch layer of glass is placed on the top of the mare to prevent the floating of solid particles. Having removed the receiver and supported the percolator on a retort stand, the open end of tube, and the upper so as to hold the head of a rivet to be would be not only a patriotic expedient, but an absolute a piece of glass tube two inches long is inserted in the cork, completed. The water reaches the piston, J, after passing necessity for the proper appreciation of the progress of the other end of the tube being previcusly drawn out in the through the rotating joint, \mathbf{Q}, and the tubes, R and S . electrical science.
the other end of the tube being previcusly drawn out in the
flame so as to leave only a capillary opening. To this end
attached about a yard of India-rubber tubing commun ting with a vessel placed above, containing distilled water e pressure of a column of water being thus obtained re India-rubber tube being filled with water and adjusted the percolator, the wire clamp attached to the lower por n of the tube is removed, when a slow and steady flow of ter commences; after the lapse of an hour and a half, fficient displacement will have been effected, the water ving risen considerably above the marc, and with it will ve been removed the retained tincture, which forms a nse stratum upon its surface. On dipping a glass rod to this upper stratum and applying it to a flame, the disaced tincture burns nearly as readily as the percolated rtion, indicating its comparative strength of spirit evertheless, diffusion will have taken place to a slight exat, and is perceptible by the gradual shading off of the ghly colored tincture into the water beneath it. To finisu f the tincture, its measure was brought up to $191 / 2$ ounces the addition of the requisite quantity of surface liquid om the percolator, the product filtered, and made up to a nt with proof spirit. Thus having measured the product percolation, I know exactly how much surface liquid draw off to bring the measure up to $191 / 2$ ounces, hich is done by means of a glass siphon, and having mixed e two products, filtered by the automatic method through thin 3 -inch paper, and made up to a pint with proof spirit, bave produccd a tincture prepared at a comparatively lall loss.-Pharm. Journal.

Large Yields of Grapes.

The vineyards of the Napa Valley, California, averaged the st year about eight tons of grapes to the acre. In one stance three acres of Malvoisies yielded ten tons to the re. The grapes were sold for $\$ 25$ a ton. Twenty-eight res in San Joaquin County produced 300 tons of grapes, two sorts, Mission and Black Prince, the average price which was $\$ 27$ a ton. Choice grapes grown on mounin sides brought $\$ 30$ a ton. In both these cases the vines ere old. A yield of ten tons to the acre from three-year d Sultana vines is reported in one instance in Sulano unty. The Sultana is a seedless grape, in high repute for isin-making.
another Brussels Exhibition.-It is stated that in insequence of the great success of the Belgian National xhibition, two projects are now under discussion-one for)lding at Brussels in 1883 or 1884 a Universal International xhibition, and the other for organizing• a Universal Interttional Educational Exhibition.

NOVEL STEAM BOILER.

The special feature of the new boiler shown in the accom nying engraving consists in the transverse water tube e fire box. Its obvious effect is to aid mateally the raising of steam of high pressure in a ort time. The boiler may be set vertical or clined, the latter position being preferred his boiler is the invention of H . Berchtold, of arich, Switzerland. The illustration is from ie Allgemeine Zeitschrift für'Textil-Industrie

MECHANICAL INVENTIONS.

Mr. John F. Garatt, of Spencer, N. Y., has atented an improved windmill, so constructed ; to adjust itself to the force of the wind, the itomatic adjustment being effected by two eights at diametrically npposite sides of the heel which are acted on by centrifugal force. Mr. Gavin Telfer, of Detroit, Mich., has atented a combined hammer and screw-driver hich is simple and convenient. It consists of hammer containing an adjustable screw•driver 1 the lower end of its hollow handle.
An improved sash lift and automatic sash lock, hich locks the sash automatically as soon as re same has been lowered to rest on the sill, but nlocks it as soon as pressure is applied to the ft for the purpose of raising the sash, has been atented by Mr. William W. Sweetland, of idwardsburg, Mich.
An automatic attachment to lathes for cutting lbber and other rings has been patented by Mr. oseph T. Ridgway, of Trenton, N. J. The obsct of this invention is to make the lathe work 1ore quickly and accurately by substituting atomatic mechanism for mechanism operated y land, thereby increasing and improving the roduct of the lathe and diminishing the cost of re product.
An improved water and steam wheel has been tented by Mr. Thomas R. Simmons, of Houma, a. The inventor uses a wheel that consists of hub provided with wings that extend to an ater inclosing cylinder, the wheel being fitted a shaft contained in a chamber through which the fluid ss.
Messrs T. H. Scott, A. G. De Pontee, and H. E. Wyman Crown Point Center, N. Y., have patented a machine for atting wood fiber for paper pulp. The invention consist a novel knife and the combination thereof with a revolv g head for cutting wood fiber to be used in making paper ulp.

An improved electric alarm, which is designed to be set off to give a continuous warning by the breaking of an electric circuit, has been patented by Mr. Lambert F. Fouts, of Greenfield, Iowa.

BOTTLE COCK FOR EFFERVESCING LIQUIDS.
In using aerated water, champagne, or other effervescing iquids, especially in sick rooms where small quantities are

IMPROVED BOTTLE COCK FOR EFFERVESCING LIQUIDS
required in frequently repeated doses, it is undesirable to open a fresh bottle every time, and quite impossible to preserve for any length of time the briskness of an opened bottle. To meet such cases the simple apparatus shown in the annexed engraving has been devised. It consists of a hollow corkscrew mounted upon a little stand, and so arranged that the outlet may be opened by a slight pressure on a

RECENT INVENTIONS
im. Wimam C. Beattie, of Taunton, Mass., has patented inprovement in butter dishes, which is applicable to all kinds of analogous covered dishes, such as pickle casters, jewel cases, sugar dishes, baking dishes, etc. The object of the invention is to provide a neat and tasteful means for raising and suspending the cover in elevated position above the dish.
In an improved boot heel, patented by Messrs. Riley D. Plunkett and Jason P. Rollins, of Little Rock, Ark., the heel is made detachable and attachable. Both the sole and heel have heel plates, which connect by dovetail tongue and groove, and are maintained in mutual engagement by a single screw.
An improved gatherer and ruffler for sewing machines has been patented by Mr. James B. Farrar, of Wilmington, N. C. It gathers a piece of fabric either at its edges or throughout its entir surface, or will gather or shirr a piece of fabric on a ground work, or gather one piece of fabric to another, and at the same time attach a ribbon, tape, or braid, at the seam, all in a single operation.

Egyptian Obelisks.

There are thirty of them at the present time scattered over Euro e. Rome has eleven, four of which are higher than our. New York obelisk. The highest of the Roman obelistrs, which is also the highest in Europe, stands before the Church of St. John Lateran. The obelisk in the piazza of St. Peter's is 82 feet 9 inches high. Both of these were mounted on high pedestalls. The pedestal of the St. John Lateran obelisk is 44 feet high, making the entire height of obelisk and pedestal 150 feet. The pedestal of the St. Peter's obelisk is a trifle less than 50 feet high, making the whole height of the monument 132 feet 2 inches.

The Egyptian Obelisk now in New York.
At a recent meeting of the New York branch of the United States Naval Institute, held at the Brooklyn Navy Yard, Lieutenant Commander Gorringe described the means employed to remove the obelisk from its site in Alexandria to the United States. His remarks were illustrated by models. The obelisk was buried, he said, to a height of nine feet above the pedestal in a mass of débris and sand. The age of obelisks can be determined with considerable accuracy by the depth of the surrounding accumulations. There were two plans to choose from in removing the obelisk from its upright position. One was by securing the segment of a huge wheel to the obelisk, with two guys fastened to the shaft behind. Then the obelisk would be tilted so as to throw the weight on the guys, and excavations being carried on under the base it would slowly turn over. This was the simplest plan, but as the nature of the ground was unknown, and as rocks would very likely render the excavation difficult or impossible, the idea was adopted of mounting the obelisk like a cannon upon a kind of gun carriage. This carriage was made in Trenton and taken to Egypt in pieces. The obelisk was carefully incased in timber, and four derricks were erected. The iron plates of the trunnions, weighing six tons each, were boisted into place on the sides of the obelisk and bolted together by bars running across, being also supported by rods running up and down. Then the carriage was placed underneath, and the trunnions just fitted into the rests on the carriage. The different parts were securely fastened by bolts, then the obelisk was lifted bodily and turned over of its own weight. Trusses were placed on each side, with steel bands running to the heel and end of the shaft, in order to keep the obelisk from breaking in two when suspended by the middle. It was top-heavy, the part above the trunnions weighing four tons more than that below, and therefore came down upon the high cradle prepared for it with a tremendous crash. Some of the timbers were broken, but special preparation had been made for this, and a kind of cushion of timbers was ready to receive the shaft.
Stacks of timbers were placed under the obe lisk. When it was recumbent it was lifted by hydraulic jacks, and the timbers were taken out one ly one until it was lowered to the level of the pedestal. A deep pit or canal had been dug underneath, and a huge box or caisson was in readiness large enough to float the obelisk out to sea. Here a mishap occurred which has been wrongly said to have been maliciously caused. The caisson had to go 210 feet to reach the sea. It went 20 feet and then stopped. For the remainder of the way it had to be pushed by a pressure of 120 tons inch by inch to the sea. Afterward it was found that between the ways and the cradle were several pieces of iron and stones, wnich probably found their way in accidentally. The sea was very rough, and once the obelisk was sunk but it was finally towed seven miles and put in a dry dock, It was laid diagonally to the keel of the ship, in the side of was laid diagonally to the keel of the ship, in the side of
which a large port had been opened. By the aid of a kind which a large port had been opened. By the aid of a kind
of railway formed of 6 inch channel iron and $51 / 4$ inch canof railway formed of 6 inch channel iron and $51 / 4$ inch can-
non balls the obelisk was moved forward, being turned when non balls the obelisk was moved forward, being turned when
half way into the ship so as to go parallel with the keel, and
it finally lay upon a bed on the very top of the keel. Then mere blurred and faint patches of light, apparently about as the port was closed up. The weather was good except for three days of the voyage. No danger at all was apprehended; in fact Mr. Gorringe considered that such a rigid body rather strengthened the ship.

NEW INVENTIONS.

An improvement in mowers has been patented by Mr Peter P. Coler, of Clyman, Wis. The object of this invention is to furnish mowers so constructed that they may be readily adjusted as front cut or rear cut machines.
A vehicle spring, patented by Mr. Fred. Schelp, Jr., of Baldwin, Mo., consists in the combination with the side-bars and cross-springs of a side-bar wagon of a median longitudinal spring passing under the front and rear axles, and connected with the body by stay-rods, whereby a more elastic easier run by stay rods, whereby a more elastic, eas
ning, and stronger spring gear is secured.
ning, and stronger spring gear is secured.
An apparently important improvement in wellboring apparatus has been patented by Mr. Edgar P. Watrous, of Moravia, N. Y. The invention relates to wells which are formed by sinking metal tubes. The tube is provided with a cutting edge at the lower extremity, and is made to penetrate the earth by rotation on its vertical axis, being fed to its work by means of a screw-feeding arrangement. The rotation is accomplished by a hollow crank joined to the top of a tube section through which water is forced, the water being discharged from the upper part of the tube section, to which is attached a small chamber and spout.
In a machine for packing bran, patented by Wm. L. Williams, of San Diego, Cal., a series of stamps are fitted within a vertical cylinder in which they are reciprocated, while at the same time the entire series is revolved on its vertical axis to pack the bran in a bag attached to the lower end of the cylinder which is open. The bran is fed to the bag through a feed-pipe obliquely joining the side of the cylinder.
By novel and very simple details of construction a reclining chair, patented by Mr. Phillip Herbold, of Galion, Ohio, may be adjusted in different positions.
An improved aerial apparatus has been patented by Mr. Frederick W. Brearey, of Maidenstone Hill, Blackheath, London, Secretary of the Aeronautical Society of Great Britain. The inventor makes use of a vessel or apparatus the body of which is long and narrow, with tapering ends, and of the greatest sectional area at or near the center of gravity, in order to present the least possible resistance to the air, and at the same time furnish suitable space for containing the motive power and other requisite machinery and also accommodation for passengers. Two or more lever arms are attached and jointed to the longitudinal body at or near the front thereof, and the said arms are vibrated by suitable power, and give motion to flexible fabric, whereby the apparatus is sustained and propelled. Mr. John F. Mackenzie, of 16 Hawley street, Boston, Mass., represents this invention in the United States.
In a speaking-tube, mouth-piece, and bell-lever patented by Mr. William R. Ostrander, of New York city, speaking. tubes and bell-levers for operating bell wires are combined in one apparatus, which effects. economy in construction and convenience in use. The bell lever is pivoted on the mouth-piece, and both are secured to the wall by a single at tachment.
Mr. William Winegar, of Chambersburg, Ill., has patented an invention which avoids the necessity of special supports for the wheels of grain drills, and provides that each wheel shall maintain a constant position relative to the bottom of its tooth for all changes in the position of the tooth by an automatic adjustment. He combines with the hollow drill tooth a pronged wheel attached directly to the side of the tooth and carried by the latter, which clears the drill teeda of straw or other obstructions instead of arranging such wheel between the teeth of the drill as has heretofore been done.

Cututumomancr.

A Remarkably Brilliant Meteor, as Seen at Bloom-
ington, Ind., December 30, from 8 oclock to 11 ington,
o'clock.
The night of the 29th and 30 th was very cold $\left(-15^{\circ}\right.$ by Six's thermometer) and windy. The thermometer at 8 o'clock A.M. -6°. The sky slightly hazy.

The mock suns, A, A^{1}, were very large and bright, rivaling the sun in splendor, and they cast into the room well defined shadows, and their light on the wall was rather yeliowish compared with the white light of the sun. These parhelia were at the intersection of the inner halo, A E A ${ }^{1}$, and the horizontal circle, W W . This halo was very distinct, somewhat brighter at its summit, E, than on each side of it. The diameter of the inner halo, as roughly estimated from the shadows cast by the sun and one of the parhelia, was 42° or 43°. The second halo, B R B ${ }^{1}$, was not so bright; it was surmounted by a brilliant colored arc of about 120°, with its convexity toward the sun. We could easily distinguish the red, orange, yellow, and blue colors. The center of this arc was in the zenith. The parhelia at the intersection of this halo and the horizontal circle were perfectly distinct-as bright as those usually seen on the inner halo. The parhelia, $\mathrm{C} \mathrm{C}^{1}$, were perfectly white and somewhat fluctuating, C^{1} the brighter of the two. D and D^{1} were
far from a point diametrically opposite the sun, as \mathbf{A} and A^{1} were from the sun. The cross in the inner halo, as represented in the figure, added much to the beauty of the phe nomenon. The haloes were seen till nearly noon, when they disappeared, then they appeared again between 2 and 3 o'clock P.M., nearly as splendid as in the morning, but lasting only a short time.
T. A. Wylie.

Bloomington, Ind., Dec. 30, 1880
[In addition to the above, we have received letters and sketches from other correspondents widely separated from Mr. Wylie and from each other, who observed this splendid

METEOR SEEN AT BLOOMINGTON, DEC. 30, 1880

phenomenon. Mr. J. Mahr, of Suel, Minn., saw it first at noon, and says it was visible throughout the greaterportion of the afternoon. Mr. C. Petri, of Hannibal, Mo., saw it. Rev. W. M. Richards, of Berlin, Wis., writes that he observed a similar phenomenon on the 26th ultimo, which surpassed anything he ever witnessed of the same nature; and to assure us of the correctness of his dates has written a second letter stating that the display observed by him should not be confounded with that seen on the 30th ultimo.]

The Parhelia.

To the Editor of the Scientific American
On the morning of the 30th ult., at about 10 A.M., a very
beautiful atmospheric phenomenon was observed at this

PARHELIA AS SEEN AT JERSEYVILLE, ILL.
place, such as I never before wituessed, or ever found wholly described in any written work on the subject. I made a sketch of it on the spot, as faithfully as possible, and herewith send you a rough though true copy thereof, the relative dimensions and distances being preserved as correctly as possibie. The night preceding was intensely cold, the mercury falling to 20° below zero.
There appeared, at the hour above stated, two very brilliant mock suns intersected by a well defined, slightly iris colored, bright circle, having the sun at its center. This circle was divided into quadrants by four brilliant rays of white light, radiating apparently from the sun, two hori zontally and two vertically; the horizontal rays intersecting the mock suns, and extending some distance beyond, as shownin the diagram.

The most remarkable part of this interesting phenomenon was the appearance of a brilliant inverted crescent near the zenith, subtending from cusp to cusp an angle of about 14°. The colors were disposed in prismatic order and as brilliant as those of the most beautiful rainbow I ever saw; the red outside, toward the sun; the violet inside. The mock suns were also strongly tinged with red on that side farthest from the sun.
This beautiful celestial spectacle, which almost every one urned out to see, reached its maximum brilliancy about oon, and gradually diappeared about 3 P.M.
I am aware that the crossed circle and mock suns are not new, for I remember having noticed a description of an appearance of this kind in either the Scientific American or its Supplement, some years ago, but the beautiful and brilliantly colored crescent that so much enhanced the splendor of the spectacle is, to me, new.
I should be pleased to krow whether this phenomenon was seen from other places, and whether the like has been before observed.

Jerseyville, Ill., January 1, 1881.

Magnificent Parhelia.

To the Editor of the Scientific American
At about 10 o'clock this forenoon quite a num ber of our citizens observed a very strange, magnificently grand spectacle, never before seen by any of the spectators. It consisted of two mock suns, an arc of a rainbow inverted, and a balo of wonderful beauty.

The wind last night was nearly northwest. Yesterday morning the thermometer indicated 25° below zero, and averaged 15° all day yesterday; to-day, at the time of seeing the parhelia, it indicated 2° below. The sky this morning was clear, and the air sharp and crisp, with quite a slight breeze.
The parhelia or mock suns were bright and distinct and in the usual places, namely, in the two intersections of a strong and large portion of a halo, with an imaginary circle parallel to the horizon passing through the sun. Each parhelion had its tail of a varied yellow, red, and white color, and in apposition to the true sun, that toward the east being 20 degrees long and that toward the west 15 degrees, both narrowing to a point at the remote ends.
The mock suns were quite red toward the sun, but pale or whitish at the side, as was the halo also. Still higher in the heavens was an arc of a curiously inverted rainbow about the middle of the distance from the top of the halo and the vertex. The arc was as marked and distinct in its colors as the common rainbow, yet somewhat wider.
The red color was on the convex and the blue on the concave of the arc, which seemed to make 180 degrees in length, its center being in or near the vertex. On the top of the halo was a kind of an inverted bright arc. This brilliant scene was visible for more than half an hour.
Although it is recorded that quite a number of parhelia have been seen, both in ancient and modern times, yet I can find an account of but one similar in its appearance to the one seen here to-day, from which I have copied largely in my description, as they seemed so nearly alike.
The other spoken of is found on page 329, of volume ii., of the Family Magazine, published in New York in 1835, by Redfield \& Lindsay. It is there stated that hey were seev at Lyndon, in the County of Rutland, England, at 11 o'clock in the morning on the 22d day of October, A.D., 1721, and were seen the following day, and again on the 26 th .
J. Ivor Montgomery.

Sandwich, Ill., December 30, 1880.

Restoring the Dead.

Professor Fort has presented the question of premature interments to the French Academy in a paper on artificial respiration. One fact he mentions is, that he was enabled to restore to life a child three years old by practicing artifcial respiralion on it some four hours, commencing three hours and a half after apparent death. A similar case is reported by Dr. Fournol, of Billancourt, who reanimated a nearly drowned person after four hours of artificial respiration. This person had been in the water ten minutes, and the doctor arrived one hour after asphyxia. Professor Fort advocates also the utility of artificiai respiration in order to eliminate the poison from the lungs and glands. The length of time it is. desirable to practice artificial respiration in any case of apparent death from asphyxia may be said to be several hours.

A Case of Leucoderma.

Dr. J. H. Thompson, of Goshen, N. Y., writing to the Medical and Surgical Reporter, states that there is a negro of quite advanced age living in that village, whose case gives an affirmative auswer to the question, "Can the Ethiopian change his skin?" He furnishes a unique example of the rare skin affection known as leucoderma, or achroma. The rare skin affection known as leucoderma, or achroma. The
transformation has been in gradual progress for several years, until, at the present date, the man, formeriy of typical negro blackness, has become of fair Caucasian whiteness in at least half extent of surface. He is, as always happens in leucoderma, piebald as regards transformation. As an extraordinary specimen of a dermatological lesion the indjvidual is a decided curiosity.

ON MAGIC MIRRORS

The people of the far East, the Chinese and the Japanese, in bygone times were only acquainted with metallic mirrors; and even to-day they make only these. They are made of speculum metal, of various forms andsizes, but always port able. One of the faces is polished and always slightly convex, so that its reflection gives images which are reduced in size; the other face is plane or slightly concave, and always has cast on it ornaments which are in relief. Among the many mirrors thus constructed there are a few which possess
a wonderful property: when a beam of the sun's light falls upon the polished surface and is reflected on to a white screen, we see in the disk of light thus formed the image of the ornamentation which is on the back of the mirror. The Chinese have long known of these mirrors and value them highly; they call them by a name which signifies mirrors which are perm
Magic mirrors are exceedingly rare. We only find men tion of them four times in the Comptes Rendus of the French Academy of Sciences. The first was presented to the Academy by Arago, in 1844; the second and the third were brought to the notice of the Academy in 1847 by Stanislas Julien and by Person, and the fourth was exhibited before that society in 1853 by Maillard. It is true that even so far back as 1832 Brewster gave a theory of the phenomena o magic mirrors; but his explanation was made on the basis of the description of one of these mirrors which came from Calcutta, but which Brewster had never seen. Finally, in 1864 and 1865, M. Govi read before the Academy of Turin two papers on very beautiful experiments which he bad made with three magic mirrors; this brings to seven only the number of these mirrors which, up to that date, had been seen in Europe since men have begun to observe facts in a scientific manner. Therefore very few persons had seen magic mirrors till the month of last Λ pril, when an English physicist, Mr. Ayrton, professor at the Polytechnic Schoo at Yeddo, exhibited several of these mirrors, which he had brought with him from Japan. He experimented with them, and very successfully, before a small audience in the labora tory of M. Carpentier. He then left for London, and it will probably be a long time before we again have the privilege of seeing these marvelous mirrors.
In the meantime I received a visit from M. Dybowski my former pupil, who had returned from Japan, where for two years he had been the colleague of Professor Ayrton He brought back with him as objects of curiosity four tem ple mirrors-that is to say, antique mirrors; these are far superior to mirrors of moderu production, for the manufacture of these mirrors has been nearly abandoned by reason of the introduction of the silvered mirrors of Europe. We tried them together; three were circular, and the thinnest of them, which is a disk of $15 \cdot 3$ centimeters in diameter, was found to be slightly magic.
To try such a mirror we reflect a sunbeam from its polished surface on to a white cardloard, about one meter distant But to obtain the very best effects we must illuminate the mirror with a diverging peucil of light; this pencil is made still further divergent by reflection from the mirror, because its reflecting surface is convex. We can now receive the reflected rays on a screen at a greater distance, and we at once see distinctly the magnified image of the ornamentation on the back of the mirror. These raised designs appear on the screen in white on a dark ground. The image thus made by our mir ror was confused, because the mirror was not a good one; it would have been sharply defined had the mirror been properly made. I then knew of no means by which I could make it give better effects.
The means by which the mirror could have been improved were first pointed out by M. Govi in the second of his two papers to which we have referred. It is a consequence of the true theory
Stanislas Julien has found in the writings of a Chinese author of the twelfth century of our era an explanation of the wonderful effects of these mirrors. The author supposes that the designs in relief on the back of the mirror are reproduced by deep engraving on the front, and then a finer and more highly reflecting metal is poured into the lines of this engraving. On polishing the face of the mirror the magic effect is produced in the image by the greater reflecting power of the finer bronze.
The theory of Brewster does not differ substantially from that of the old Chinese. The polishing of the mirroreffaces traces of the operation of engraving, rendering the surface the same throughout when inspected by ordinary light, but this engraving is developed when the sun's rays are reflected from the face of the mirror. But Brewster, who proposed this explanation, was not a ware that this reflecting surface was really amalgamated.
This very ingenious thenry was not known in France when they began to take interest in magic mirrors; if it had been it might have misled those who sought an explanation of these curinus phenomena. The first French physicist, Person, who had the opportunity of experimenting with one of these mirrors, at once gave the true explanation of its action. He satisfied his own mind, by direct experiments, that the polished surface of the mirror was not regularly convex: It was so in all parts except those corresponding to the design on the back of the mirror. "The rays," sayshe, "reflected from the convex portions diverge and give but a feebly illuminated image; while, on the contrary, the rays
reflected from the plane portions of the mirror preserve their parallelism and appear on the screen as an image by reason of their contrast with the feebler illumination of the rest of the image.'
This irregularity of surface of these mirrors is brought about by the peculiar process adopted in working them, and which was explained to us by Professor Ayrton.
The mirror comes from the mould as a disk with a plane The mirror comes from the mould as a disk with a plane
surface, and before it is polished this surface is scored in all surface, and before it is polished this surface is scored in all
directions with a pointed tool, and naturally it offers more resistance in the thick than in the thin parts. This operation ends to make a slightly concave surface, but the reaction of the elastic force of the plate makes this surface slightly convex; and this convexity is more pronounced in the thin por tions of the plate than in those corresponding to the design on the back of the mirror. This irregularity of form of sur face cannot be detected in diffused light, but it may, in the case of thin mirrors, produce the magic effect by the reflec tion of a very bright light, like that of the sun or of an oxy hydrogen jet. This is, indeed, the case with all badly wrought metallic mirrors; thus a plate of silver may give good reflected images, but on reflecting from it the sun' ravs we will see on the image formed on a screen all the marks of the hammer which it received when it was being flattened. It is really a true magic mirror, only its reflected image is irregular and confused, while that of the magic mir ror is regular like the design on its back.

THE MAGIC MIRROE

The experiments of Govi were made to overthrow the heory of Brewster and to establish that of Person. Though these experiments are very interesting, I shall not bere de scribe them, because they have already been extensively published in the annals of science; I will only recall the last and the most curious of his experiments, that in which he heats the back of the mirror. The thin portions should heat more rapidly than those in relief; they will become more convex, the irregularities in the form of the surface will be come more pronounced, and the magic effect will be in creased; it may even be thus produced in mirrors which without such treatment, are devoid of magic properties.
When I became acquainted with the papers of M. Govi, I proposed to M. Dubosq to associate himself with me, in order, tirst, to repeat the experiments of the learned Italian and then to study generally the interesting phenomena of magic mirrors, in the hope of being able eventually to re produce them in his workshops. At first we had at our disposal only the mirror brougnt from Japan by M. Dybowski, and which gave confused images with the reflected solar rays. These images became very sha.ply defined when we had beated the back of the mirror with a gas lamp, and the mirror gave very magic effects.
We then made a mould and reproduced this mirror, not in Japanese bronze, but in ordinary gun metal. The first copy was roughly worked on the lathe, after the Japanese manner, in order to render it magical, but this was broken. The second was worked carefully on an optical grinding tool; the surface was then polished and nickel plated, but it was not magical; but it acquired this property in a high degree when it was heated, and it even retained traces of this property after it had been repeatedly heated. Several Japanese mirrors which we have procured have given analoous results.
We then engraved letters on the back of little rectangular Japanese mirrors. On beating these the letters appeared in design on the back of the mirror, heat rendered them very magical, for the design stood out framed in the black lines which bordered the figures.
Thus it is seen that heat is very efficacious in rendering mirrors magical; but it is not without its inconveniences. First of all, it injures the mirrors, which thus lose their polish, especially when they have been amalgamated; also, the mirror is often not heated equally and the images are deformed. It occurred to us that the change of curvature which was required could be obtained more uniformly by means of pressure. M. Dubosq therefore constructed a
shallow cylinder of metal, closed at one end by the metallic
mirror, and at the other by a flat plate of brass, having in its center a stop cock, which we could attach by means of a rubber tube to a little hand pump. This pump could be made either to condense or rarefy air. If the rubber tube was attached to the pump, arranged as a condenser, a few strokes of the piston sufficed to compress sufficiently the air in the shallow cylinder; the mirror became more and more convex, the cone of reflected ray became more and more pen, and in the image on the screen the design on the back of the mirror became more and more distinct. Our Japau se mirror, when thus treated, gave very fine images, and the copy which we had made, and which gave no result a ordinarily experimented with, now became a magic mirro as perfect as any of those which Professor Ayrton had ex hibited before us. A mirror in brass, nickel plated, on whose back was soldered tin plate figures, around whose borders were cut lines, became very magical by pressure and gave the design on its back in light surrounded by dark borders.
This is what I call the positive image. We can also obtain he negative image, or the inverse of the preceding one, by rarefying the air in the shallow box. To do this we hav only to attach the rubber tube to the pump arranged as an ordinary air pump. On now working the lathe the air in the shallow box is rarefied, the mirror becomes concave, the cone of the diverging reflected rays close up, the image of the design is reduced in size, changes its appearance, and becomes an image of the design on the back of the mirror but this now shows in shade bordered with bright borders. These experiments require an intense light. A jet of coal cas is insufficient; but the oxybydrogen light is sufficiently intense. We intercept it with a screen perforated with a small hole, so that the diverging pencil which falls on the mirror may not spread too much. The mirror is mounte on the top of a column, so that it can be made to face in any required direction. The effects are most brilliant and the best defined when we experiment with the rays of the sun When we expose the mirror to the beam of the porte-lumiere it is generally not entirely covered by the light; in this case it is best to use a diverging beam obtained by means of lens placed between the porte-lumière and the mirror.
Thus we have seen that we can now make copies of the Japanese mirrors, some of which may be magical, but all may be rendered so by making them covers of the shallow box containing either compressed or rarefied air. This pres sure box and its mirror, made in the Japanese style, cer tainly forms one of the most curious pieces of apparatus which is to be found in the cabinet of physics.
We shall not, however, stop here. One of these days, while our mirror is magical under the influence of pressure, we will take a cast of its surface, and then reproduce this by means of galvano-deposition. This surface will have all the irregularities of that of the magic mirror, and will produce by its reflected rays the image of a design which no longer exists on its back.-Journal de Physique.

Artificial Indigo

Mr. Adolph Baeyer, of Munich, has discovered that by the action of sulphuric acid upon orthonitrophenylpropiolic acid a new product may be obtained which is capable of being converted into new coloring matters, or a dyestuff which he calls " artificial indigo."
The author says: "I take orthonitrophenylpropiolic acid, and in the cold I mix the said acid with sulphuric acid-say for instance, with from about ten to twenty parts, by weight, of sulphuric acid of about 1.84 specific gravity to every one part, by weight, of orthonitrophenylpropiolic acid employed. In effecting the said mixture care is to be taken to avoid a considerable rise of temperature above, say, 20° Centigrade. The mixture thus obtained quickly assumes a bright yellow or orange color, and the reaction is allowed to pro ceed in the cold until a sample of the mixture, upon being tested for the presence of orthonitrophenylpropiolic acid by means of glucose and alkalies, no longer contains any appre ciable quantity of the said acid. The sulphuric acid mixture thus produced is then submitted to the action of suitable reducing or deoxidizing agents in order to effect the conver sion into artificial indigo.

In practice I have found a great number of substances be longing to various classes of chemical compounds which act as deoxidizing agents upon the above-mentioned new product, and I may specially mention ferrous sulphate (green vitriol, copperas).
'As an example of the manner in which I prefer to conduct the aforesaid operation, I take the orange-colored mixture resulting from the treatment of one part, by weight, of orthonitropheny!propiolic acid with about from ten to trienty parts sulphuric acid, as above described, and I mix the same with a solution containing about five parts, by weight, of ferrous sulphate. The mixture is then allowed to stand at the ordinary temperature until the blue color, which it quickly assumes, is fully developed, and the dyestuff or coloring matter thus produced may be separated out of the mass by diluting the result of the operation with water, by which the new dyestuff is precipitated, and may be filtered and washed. The dyestuff is then ready for use.

The claracteristics of my new dyestuff or coloring matter, prepared according to my above-described process, are the following: The dyestuff or coloring matter resembles in appearance vegetable indigo, and it can be used in dyeing in a manner similar to it; but it is in a great part soluble in aniline at an ordinary temperature, and also in an aqueous solution of sulphurous acid."

NEW RADIAL DRILL.

Te present an cngraving of a radial drilling machine reily perfected by Messrs. Wm. Sellers \& Co., PhiladelIn this machine they have utilized the plan of belt ing so successfully employed on their other forms of ical drilling machines. They claim a gain of from 15 to er cent in the amount of work done by a belted spindle hine as compared with radial drills in which the power nveyed to the spindle through a long train of gears; drills, too, are said to last longer, to be less likely to k , owing to the smooth motion imparted by the belt as oared to that by gearing. The swinging carrying the drill spindle is hung, crane on, to a long saddle; this saddle slides on ıce of a stout upright-is, in fact, so long and $3 l l$ fitted as not to need clamping when the is in place. This saddle and arm is raised owered by power, the mechanism for this use being operated by a hand lever at ide of upright. The saddle carrying the le is moved out and in on the swinging bar diagonal slaft operating a spiral pinion $1 g$ into a straight rack after the manner se known in the planing machines buili by Sellers \& Co. The spindle which carries ill passes entirely through its driving sleeve, ence has always the same length of beart is also very close to the face of the swing m ; it has a quick band motion and an ad le feed by power. This feed is novel and any advantages; it is stopped and started tly by a simple motion of a lever above the vheel in front of the drill spindle. The tained from one of the guide pulley shafts adjustable through a wide range of gra 3, in two series, one for small drills, and a series to be used when the back gear is ed, as when using large drills or when The spindle, although belt-driven, for s of drills under say $1 \frac{1}{2}$ inches, is pro vith back gearing for larger sizes; in this it corresponds and acts as any back lathe head used for the same purpose ck gearing of this machine is in a conposition on the saddle and withiu cas f the workman. The spindle is counter dup.
;reat advantage claimed is in the raising ering of the swinging arm as compared machines in which this arm is fixed at rth, and to which the vork must be set. In this : the work to be drilled can be clamped to a table, l or rested on the bed plate or adjusted on trestles; ase the work, when placed within range of the maas the spindle quickly moved to it by power and ing done with the least loss of time possible. urn that the makers claim many new features in this , which they will protect by letters patent. They o sizes, one with 4 feet 6 inches and the other with lius, each with power in proportion.

IMPROVED STEAM FOG HORN.

provements in the fog horn, shown in the engravwith, were suggested by Professor Holmes, their tad ing to secure rce and regu the action of and greater g power to emitted.
be operated
essed air or
ich enters by
. The valve,
ated by the ated by the dmitting the air into the
). At E are
disks com
siren, one
ched to the
ther loose.
ge from the
, the large
the air or
; a rotary
a rotary
the free
errupting
and pro
sound.
ent is said
werful.
गy Messrs.
and has
for use
h line of steamers from New York to Havre

Domesticated Hornets.

farmer has adopted an efficient but slightly ff ridding his house of flies. He has hung from his parlor a nest of hornets, transferred bodily
ls. The removal of the nest did not seriously
displease the hornets, and as they found the house well automatic wagon brake for which letters patent No. 196,406, tocked with tlies for food, they soon became familiar and dated October 23,1877 , were issued to W. L. Whitman and barmless, devoting their energies to the extermination of \mathbf{E}. Manes.

he flies.

MISCELLANEOUS INVENTIONS.

Julia A. King, of Sherman, Texas, has patented a cougb medicine consisting of a decoction of Indian pleurisy root Asclepias tuberosa), saltpeter, honey, and brandy.
Mr. Walter Savage, of Crookston, Minn., has patented an improved snow plow for removing snow from railroad

WM. SELLERS \& CO.'S RADIAL DRILL.
A. Buckle, especially adapted for fastening and securing rolled cloths and other goods that are put up in rolls, has been patented by Mr: Calvin W. Polen; of Hazel Dell., 111. The buckle is made of wire, bent so as to form a rectangular frame, having two square loops and a central crossbar that las two downward curved hooks, and it has a doublepointed and barred wire tongue placed on the central crossuckle, the tongue points being pointed in the direction opposite to that of the frame hooks.
Mr. Louis W. Ott, of Indianapolis, Ind., has patented an improved bedstead lounge which is readily opened and closed and is not liable to get out of repair.
An improved neck yoke has been patented by Mi. John W. Bartoni, of Emporla, Kan. The object of this invention is to provide an elastic support within the neck yoke for securing and holding the tongues of all kinds of vehicles, including reapers, mowers, and other machines.
Mr Henry Thompson, of Brooklyn, N Y hos Mr. Hery in, has patented a ventilated can in which milk or other
liquid may be filtered and from which it may be drawn free from impurities.
A bath box for the use of photographers and others, by which the escape of poisonous gases, to the injury of the operator, is prevented, has heen patented by Mr. James C. Macurdy, of Boonville, Mo.
An improvement in patterns for close fitting sleeves for dresses has been patented by Mary A. 'Taylor, of New York city. In order to obtain the required fullness for the elbow, sleeves have heretofore been made in two pieces with a seam on the outer curve; but difficulty is expe. rienced in joining the seam neatly on account of the fullness that has to be gathered in the seam. The object of this invention is to obtain a proper fit with the requried fullness for the elbow by a pattern that can be readily sewed up at the seams. The invention consists in a sleeve pattern made in a single piece and formed with a dart extending from one side toward the center to form a short seam that extends from the lengthwise scam of the sleeve to near the point of the elbow.
Mr. George P. Cole, of Johnstown, N. Y., hais patented a composition for cleansing marble, tracks. This plow is designed to be made of wood clad with |etc., consisting of lime; whiting; sal soda, soft soap, fine ron to increase its weight, strength, and durability.
An improved cylinder for thrashing or hulling has been patented by Mr. James I. McClung, of Sidney, Ohio. The invention consists in constructing the cylinder with rabbeted and recessed lugs to receive the teeth, and in constructing the teeth with tenons or tongues, so that the teeth may be reversed and replaced.
A combined cracte and carriage has been patented by Mr. George F. Doyle, of Boston, Mass. The invention consists in combining with the rockers of a cradle the axles of a carriage, the axles being concaved to receive the rockers, so that the rockers and axles may be readily attached and dethat th

(2 salt, emery dust, fish oil, and water
Mr. Thomas Wherritt, of Cynthiana, Ky., has patented Mr. Thomas Wherritt, of Cynthiana, Ky., has patented
an improved fire escape which consists in a swinging frame carrying a windlass having reel heads, a rope wound between the reel heads and of a length sufficient to reach to the ground, a set of friction straps fastened to the swinging frame and wrapped once or twice around the windlass on each side of the reel, and connected at their lower ends to a sleeve encompassing the rope, which sleeve is provided with an adjustable friction device, which; binding with the rope as it pays out, regulates the tenision or brake action of the friction straps.
orake action of the friction straps.
Messrs.F. Parker and F.Dumont,
Messrs.F. Parker and F. Dumont, Jr., of Jersey City Heights, N. J., have patented a case for key and stem
winding watches, the object being to produce light and inexpensive cases:

An Improvement in the class of fire escapes adapted to be suspended from a window of a building, has been
 Robert Quiutavilus Theodore Lindberg, of Brooklyn, N Y. It is more particularly an improvement upon surh apparatus as con. surh apparatus as con-
sists of a frame that is designed to be attached to a window sill, and is provided with a curved standard, from which a basket or other receptacle for persons and goods is suspended by means of a rope running through a sheave or pulley block.
An improved wrap. per for glass bottles for the purpose of ob.

A hat ironing machine, so constructed that the shell can hat body guided to all parts of the sides and crown of a L. A. McCormick, of Newark, N. J.

An improved wagon brake has been patented by Messrs County Thitman, of Ringgold, Ga., and J. D. Igon, of James

STEAM FOG HORN.

 also purpose of ob viating the danger of breakage, and also for protecting the labels from abrasion or other injury by contact of the bottles with each other or with other objects while being handled or shipped, has been patented by Mr. Martin V. Kacer, of St. Louis, Mo.An improved hopple of the kind used for fettering an
ments so that they may be easily caught in the field, eeen patented by Mr. Charles J. Gustaveson, of Salt City, Utah Territory. The improvement consists in k bands connected to the ends of a chain by simple lurable connection.

CURIOUS FACT IN NATURAL HISTORY.

BX O. F. HOLDER.
r illustration represents the American iguana crossing or, the Chagres, as wide as the Harlem at High Bridge the surface of the water, without sinking below it. wonderful performance was witnessed by Mr. John G. the well known naturald former comparion of ıbon. Mr. Bell states as he was approaching iver he came suddenly the reptile, and alarmed that it sprang into the but instead of sinking. is surprise, it rushed over the water, making aws go like lightning, so he could not see them, thus keeping the whole above the water. It quite a foam behind, n about two minutes was the river, up the bank, out of sight. When it membered that this aniweighs from five to ten ids, and bas slender claws 1 for tree-climbing, the derful character of the irmance will be appred. It is from four to feet long, and its general
is green shaded with brown. It has a strong and distinct \mid tion of a colored organ will reach its minimum under the running along the whole length of the back and tail, and influence of a light of the same coior as the organ, and its ge dewlap or pouch under the throat, the edge of which maximum under the influence of a ligat of complementary tached to a cartilaginous appendage of the bone of the color.
at. The tail is very long, slender, compressed; and red with small, imbricated, keeled scales. It has a very tidable look at first sight, and when irritated it puts on ry meuacing appearance, swelling out its throat pouch ting the crest on its back, and lashing its tail about with t violence. It is, nevertheless, a harmless creature, unlaid hold of, when it bites with considerable force. Alther the occurrence is a most remarkable one and entire stagonistic to the supposed habits of the animal.

FRESH-WATER MEDUSE

ar engraving represents the Limnocodium soverbii, the 1-water medusa, recently discovered in the Victoria a tank at Regent's Park, by Mr. Sowerby, the Secretary he Botanical Society. Our scienreaders will observe in the struc of this unique jellyfish the excep 1 characteristics which distinguish com other medusæ, as pointed ou Ir. E. Ray Lankester in his report re Royal Society, at a recent meet of the Society; where also Mr . erby showed a number of living imens which he had kept in con ment, and mentioned some of their liar habits. If the water is not up to a temperature of about 85° , the animal falls to the bottom of water and remains torpid until the perature is raised, when it agai mes active. He has also observed medusæ feeding on the daphnia, ch abounds in the same water he diameter of the disk of the me does not exceed one-third of an . Dr. Ray Lankester, to whom we ndebted for the sketch from which illustration is engraved, state that the only medu which ind the ony mut whe bent water, and must have been intro ed with tropical weeds from th $\mathbf{T}_{\mathrm{nd}} \mathrm{dies}$-Graphic.

rence of high.

piration of Plan.

Comptes Rendus of the Fri lemy gives the following resilme paper, by M. H. Comes, on the spiration of plants, being the re; reached after numerous experital researches.
.) The emission of aqueous vapor r.h takes place in plants is submit-$0^{-1} \mathrm{v}$ to the action of the physigents whic ${ }^{\text {n }}$ influence the ordinary oration from a free surface of 3r, but also to that or ${ }^{\text {c }}$ light. Contently, unders-equal conutions, a
 ght than it dot \rightarrow by light on .) The action exerteu

IGUANA CROSSING CHAGRES RIVER ON THE SURFACE.

Digestion in Plants.-Dr. Lawson Tait has recentity bee investigating anew the structure and digestive principies of plants. While he has obtained complete proof of the existnce of a digestive process in Cephalotus, Nepenthes, Dioncet, and the Droseracece, be entirely failed with Sarracenia and Darlingtonia. The fluid separated from one of the sundews (Drosera binata) he found to contain two substances, to which he gives the names " droserin" and " azerin." Dr. Tait confirms Dr. Hooker's statement that the fluid removed from the living pitcher of Nepenthes into a glass vessel does not digest. A series of experiments led him to the conclusion

the transpir. *ion of plants augments in proportion to its perties. The glands in the pitchers of Nepenthes he states to intensity. Co esodue ntly, under equal conditions, transpira- be quite analogous to the peptic follicles of the human stom. tion reaches its a aximum shortly after midday. ach; and when the process of digestion is conducted with (3.) Light favors transpiration only in the portion which absorbs it through t_{l} Eeqloring matter of the organ. Conalbumen, the products are exactly the same as when pepabsorbs it through t_{1} conditions, the organ which has the reis engaged. The results give the same reactions with sequently, under equal i most, and transpiration is most copents, especialiy the characteristic violet with oxide of deepest color transpires cort, and in which the light is most coper and and there can be doubt that they are active in that part of the spe
(4.) The luminous rays which
are ahsorbed by the color-

- ject in the American Naturalist, Prof. D. S. Jord be the coloring matter of ant organ alone ther the thansiration of well known ichthyologist, gives the following statement in such organ. Then, conditions bes "紷 cequad, the transpira- regard to the behavior of large flying-fish Exoccetus cali fornicus: This fish flies for a distance sometimes of nearly a quarter of a mile, usually not rising more than three or four feet. Its motions in the water are extremely rapid, and its motive power is certainly the movement of its powerful tail in the water. On rising from the water the movements of the tail are continued for some seconds until the whole body is out of the water. While the tail is in motion the pectorals are in a state of very rapid vibration, and the ventrals are folded. When the action of the tail ceases, the pectorals and ventrals are spread, and, as far as can be seen, held at rest. When the fish begins to fall, the tail touches the water and the motion of the pectorals recommences, and it is enabled to resume its flight, which it finally " \ddagger inishes by falling in the water with a splash. When on the ing it resembles a large dragonfly. The motion is very s.wift; at first it is in a straight line, but this becomes defle 'te d to a curve, the pectoral on the inner side of the arc being λ ent downward. It is able to some exstent to turn its coursce to shy off from a vessel. The motion seems to have no refin ence to the direction of the wind.
The Use of Chlorophyl in Vegetable Growth.-This ques icn appears to be as yet by no mear * definitely settled. Pringsheim, it will be remembered, recem ly suggested that alonophyl was chiefly of use as a screent to protect the sub jacent cells and their contents from those ray: of light which world be adverse to the secondary processess thiai ${ }^{++}$have been distingurished as growth. But Dr. Gilbert, in L is recent address to the Chemical Section of the British Asso siation, points out that the plant may receive abundance oll ${ }^{\text {nitro }}$ gen, may produce abundance of chlorophyl, and be suby ${ }^{2}$ ct to the influence of sufficient lighit, and may yet not assimilate a dive amount of carbon. He shows that the presence of a due supply of potassium salt and of sufficient available nitrogen is necessary for the proper assimilation of carbon by plants. The amount of carbon assimilated evidently does not ded end on the protective power of the chlor ophyl alone, nor on its chemical actions. In connection with the color ing mat ter of leaves it has been ob servedl the t the leaves of the Virgini reper ge to the well known beaid iful red the sooner on walls expose the northa and east, and that if the weather be welt, durirg the time when they usually change color the red tin is only sparingly dee eloped.
Influbnce of Colowed Lights on Ani mal Development.-M. ung, in a note to the French Acadenyy (Comptes Rendus p 440) gives some of the result obtained by him in his expern ments on the action of colored lights on the de. velopment of animals. Eggs, of the squid and cuttlefish, laid at the same time, were put into vessels in arbuich the water was regularly renereed. These vessels were placed in glases bowls of the same form, but larger, and the intervening space was filled with different colored liquids. The upper surfaces were covered with thick cardboard, so that the eggs received light that was nearly monochromatic. Under such conditions the eggs deve oped unequally, as had previously been found the case with the eggs of the frog,.trout, etc. The development was stimulated by violet and blue lights, but retarded by red and green. Yellow light, in its action, came near. est to white. In experimenting with he beautiful ascidian Ciona intestina lis, M. Yung found that those larvæ which were reared in vessels submitted
to violet light grew more rapidly and developed into much more vigorous individuals than those reared under other colored lights. These results, taken in connection with the
like ones obtained by M. Serrano-Fatigati on infusoria like ones obtained by M. Serrano-Fatigati on infusoria, seems to show one general character for aquatic animals. It now remains to be seen whether terrestrial animals a influenced in the same way.

TRANSACTIONS OF THE AMERICAN SOCIETY OF ENGINEERS.

The above named publication for the month of Novembe contains some important papers.
The subject of
"Web strains in simple trusses with parallel on INCLINED BOOMS,"
is ably discussed in a paper read by Mr. Elnathau Sweet Jr., at the twelfth annual convention of the society, held May 25, 1880. Mr. Sweet, in this paper, aims at greate directness and simplicity in the treatment of the subject than has hitherto been attained; and he asserts that the handbooks hitherto published base their solutions of the problems relating to this class of trusses upon a false assumption. This assumption is, that as a moving load passes over th panels of a truss, each panel is fully loaded before the adja cent triangle in advance bears any part of the load.

In trusses with a single system of triangulation, or those in which the web strains of any panel pass to the abutmen through the web members of the adjacent panel, this assump tion is obviously erroneous, for the instant the head of the load passes a panel joint of such a truss a part of it is trans mitted by the floor system to the adjacent triangle of the same system.'
With this proposition in view, the author proceeds to somewhat abstruse mathematical discussion, in which he adopts as the most natural unit of length the panel length By this means he is able to simplify the formulæ necessary so considerably as to justify the wisdom of the adoption of the panel length as the unit of length, and to determine the maximum shearing strain at any panel joint by much les complex expressions than have been heretofore required.
a discussion upon inter-oceantc canal projects, referring to former papers which have appeared in th Transactions, together with additional information obtained by recent surveys in Nicaragua, by Mr. A. G. Menocal, throws much light upon current questions relative to the problem of communication by means of canals between the Atlantic and Pacific oceans As an abstract of this paper cannot be given without reference to the papers criticisedin it, we can only glance at one or two salient points. One of these is ably taken. In speaking of a canal on the Nicaragu route, the time of transit ought to be estimated not as though the whole distance were canal transit, but the transit ought
to be separated into its component parts, to wit. "Canalization, 62 miles; slack water navigation, admitting nearly ocean speed, 63 miles; and lake navigation, admitting ocean speed, $561 / 2$ miles;" total, $1811 / 2$ miles. The time of transit would, therefore, be shortened very much below that estimated by some engineers; indeed, it could be accomplished in $381 / 2$ hours, the transit including a lockage of 108 feet.
The practicability of utilizing the channel of the river Grande is another point strenuously urged by the writer in favor of the Nicaragua route

Minutes of meetings and the annual reports of the Board of Direction, Committee on Finance, the report of a Com mittee on a Uniform System of Tests for Cements, and a list of members, with additions, changes, corrections, and resignations, complete the contents.

The Committee on Tests for Cements make only a brief from different parts of the world bearing upon the subject, stating that they will commence an interchange of views during the present winter, and announcing that they will endeavor to complete their duties on or before the date of the next annual convention.

Meteorological Observations by Telegrap
Mr. N. Hoffmeyer, of Copenbagen, observes that " in meteorological prognoses we cannot expect a scientific certainty; these prognoses are based upon empirical suppositions, and are, therefore, subjected to all possible errors which may be caused by that method. So long as the causes and the real nature of meteorological disturbances have not yet been explained, so long as we are only able to know the how and not the why of meteorological phenomena, so long a very exact observation only of the storms which by telegraph is transmitted from one coast to another, will be of practical value to the mariner.
This observation, however, is connected with greater difficulties than has been hitherto supposed. Mr. Hoffmeyer has, during a period of 21 months, made the closest investigations in regard to the storms and winds on the Atlautic Ocean, and he maintains that the conditions upon which these meteorological phenomena depend are so highly complicated that the telegraphic reports seut by the "Herald Weather Department " from America to Europe-although being a proof of the energy and ability of Mr. Bennettbave an imaginary value only
It has been proved that the atmospheric disturbances usually move in the same direction across the ocean as across the continents, viz., from west to easi, and that about 61 per cent of the storms which we have to encounter on the
but it is also known that 39 per cent of the storms-a numbe not to be overlooked-are originated upon the Atlantic itself and that besides only 50 per cent of the storms observed on the Atlantic arrive at Europe. The direction which the atmospheric disturbances show in America, before the arrive at the coast of the Atlantic, can be no secure basis for conclusions regarding the further course of these disturb ances and the phenomena connected with them. Even if the observations on the European and American coasts wer to be combined, a reliable prediction of what will happen on the ocean will be impossible. If, therefore, meteorologica observations shall have a real benefit for our mariners, such observations must not only be made on the coast, but also on the Atlantic itself, and Mr. Hoffmeyer proposes to erect for this purpose a regular meteorological service, the station of which are situated upon the ocean-i. e., upon island which lie between the two continents. These stations should be connected by telegraph with the continents, so tha Faroe Island, Iceland, South Greenland, and the Azore may be brought into communication with the European coast and the Bermudas with North America.
Although these stations are very distant from each other the meteorological observations made there will, on accoun of a meteorological peculiarity of the Atlantic, be of value or predicting the weather and atmospheric disturbance which will occur between these stations.
Mr. Hoffmeyer, by daily constructing synoptical maps discovered that the barometric minima in the atmosphere which rests upon the Atlantic have a tendency to approach Greenland and Iceland on the one hand, and the Azores on the other, while from the latter to the Bermudas may b usually observed a high pressure of the air and fine weather Even a slight change taking place at this part of the ocean predicts almost to a certainty great disturbances in the othe regions. This barometric maximum, according to Hoff meyer, forces the depressions of the atmosphere to take certain direction and influences their velocity of movement in a high degree. Therefore it is absolutely necessary to be acquainted with these atmospheric maxima which prevai upon the ocean, and they can naturally be observed ouly upon the ocean itself-i. e., upon those islands mentioned therefore observations made there, in connection with thes made on the coast, will be perfectly sufficient for all practi cal purposes. Mr. Hoffmeyer hopes, proceeding upon this basis, to perfectly transform our meteorological service, and to enable our scientists uot only to predict the weather for a day or two, but for a longer period of time. The import ance of such predictions for the transatlantic navigation is evident. The synoptic maps will enable the ships leaving the ports to enter regions which are subjected to great atmospheric changes, and to choose those ways which, during a certain time of the year, are the least exposed to danger they will give ireportant information about the condition of the monsoons near the Azores, which are much more irregu lar than they are generally supposed to be; and they will be valuable for the owners of vessels in making it possible for them to account for possible delays of their ships.
Mr. Hoffmeyer's labors have been communicated to the meteorological institutions of Europe, and necessary steps will probably be taken to make a practical use of the sug gestions of this gentleman, as the resolutions, taken April 3, 1880, at an assembly of the presidents of the German meteo rological stations at Hamburg, highly recommend the suggestions made by Mr. Hoffmeyer.

Paper Pulp from Wood.

The following interesting description of the process of making wood pulp is from an account of the opening of the Thorold Pulp Paper Company's establishment published by the Thorold Post, Canada
' The wood, four feet in length and of any thickness, is brought in at the basement, placed in the barking-jack (one stick at a time), where two men, with draw knives, rapidly peel off the bark. It is then conveyed by the elevator to the first floor, sawed in two foot lengths with cross cut saws, passed on to the rip raw, where it is slabbed (that is, a small
portion of wood on opposite sides taken off), to permit it resting firmly in the grinding engine. It is then passed to the boring machine (an upright one and a half inch auger, with foot attachment driven by power), where the knots are bored out. The wood is then placed in racks of the same size as the receptacle in grinding engine and carried out to be ground. The grinding engines are upright, and receive at a filling one-twentieth of a cord of wood. The wood is placed in a receptacle, and by a simple, variable, automatic feed process is pressed flatwise between two outward revolving rolls, composed of solid emery, which are flooded with a spray of water, carrying off the fibrilized pulp in a stream through revolving screens to the tank or stuff-chest in the basement. It is then pumped up into a vat that forms part of the wet machine. In this vat is constantly revolving large cylindèr faced with fine brass wire cloth, whichpick the felt (an endless piece of woolen goods which makes between rolls, for different purposes, a continual circuit of the wet machine). On the cylinder is turning a heavy roll, called the concha; between the two, where they meet, the cylinder leaves the pulp, with most of the water pressed
from it. The pulp now makes its appearance on the felt above the concha roll in a beautiful sheet, thirty-eight inches in width, and is carried along in a steady flow a distance of about eight feet, where it passes between (the water liere again being pressed from it) but set beyond two heavy roll-
ers, the upper iron, the lower wood; it adheres to the upper roll, which is constantly turning, wrapping it up, and when a sufficient thickness is attained, is cut off by a knife being pressed to the roll, attached to the machine for that purpose. It now leaves the roll in a thick, white sheet, 36×38 inches, which is received by the boy in attendance on a table conveniently attached to the machine, and folded into sheets 14×26 inches. It is then placed on scales until the weight is one hundred pounds, when it is placed in the press and firmly tied into square compact bundles. It is now ready for shipment to the paper mill to be made into printing and tea paper. The wood paper pulp has been placed in the market and found a ready sale. Last week a contract to the amount of $\$ 1,000$ was made with one of our large paper mills."

coss of Water Pressure in Hose Pipes.

The recent engine test in New York city was interesting in many ways, but in none more so than as exhibiting the loss of power by friction in hose. Two hundred feet of Maltese cross rubber hose were laid from the engines, and the base of the playpipe a gauge was inserted in the line. The steamers were working at from 100 to 120 pounds steam pressure. The following table exhibits the average general pressures taken every three minutes simultaneously:

Engines.	$\begin{gathered} \text { Steam } \\ \text { Pressure } \end{gathered}$	Water Engine.	$\begin{gathered} \text { Water } \\ \text { Pressure } \\ \text { at } \\ \text { Pipe. } \end{gathered}$	Loss by in
Clapp and Jones.	110.83	173. 55	93.03	80.50
Anreskeag	12033 101.64	$166 \cdot 70$ 143	8838 74	$78 \cdot 32$ $68 \cdot 60$

From this it will be seen that the loss of power by fric ion in 200 feet of hose was very nearly 50 per cent. Had there been 1,000 feet of hose, the loss would have been very much reater, of course. The size of the hose used was $21 / 2$ inches Had it been 4 -inch hose, as the Jourinal has advocated for fire service, the friction loss would have been far less. In his little book entitled " Fire Streams," Chief Leshure, o Springfield, Mass., gives numerous valuable tables illustrat ing the friction loss in hose. He says: "It may be stated as near enough for most practical purposes, that when delivering the same number of gallons per minute, the friction loss in two pipes (or hose) of equal lengths, the diameter of one of which is twice that of the other, the loss in the large will be one thirtieth of that in the smaller, or the loss in will be one thirtieth of that in the smaller, or the loss in he smaller will be thirty times that in the larger." A better
argument for increasing the size of hose for fire service argument for increasing the size of hose for fire service
could not be put forth. The weight of the hose need not be materially increased, for the present hose is made unneces sarily heavy to withstand fictitious pressures: that is to say, hose is now made and warranted to withstand anywhere from three to six hundred pounds pressure. When in actual service the pressures seldom exceed those given above. In a 4 -inch hose it would be almost impossible to get 200 pounds pressure on the hose at any point in the line, and the hose could be made correspondingly lighter. As a matter of fact, 4 -inch cotton hose is now made in large quantities for mining purposes that weighs but 70 pounds to the section, while much $21 / 2$ inch fire hose weighs fully as much or more - Fireman's Journal.

ENGINEERING INVENTIONS

An improved rotary engine has been patented by Mr. John H. Newell, of Scottville, Ill. The invention consists in mechanism for operating the valve, and the combination herewith of a variable cut-off
An improved stock car has been patented by Messrs. James V. Brown and Benjamin R. Neal, of De Soto, Ill The object of this invention is to construct a car for trans porting cattle and other live stock, so that the car can read ily be divided into two or more stalls, and the food and water be conveniently transported and fed to the animals. Mr. Daniel Kunkel, Sr., of Oregon, Mo., has patented an mproved car coupling, so constructed that the cars will be coupled automatically as they are run together, also permit ting their convenient uncoupling.

Chemistry of Plants.

Dr. S. Ringer, who has for some time past been experi menting upon the physiological action of Narcissus, Galanthus, Hamanthus-genera belonging to the natural order Amaryllidacere-has recently examined the properties of an alkaloid from the common garden tulip-a liliaceous plant, and communicated bis results to the Practitioner. It has been found by him that nitrate of tulipine differs almost entirely from the alkaloids derived from the amaryllids, it being a muscle poison which affects the muscles like veratria, but to a less degree. These results are interesting from a botanical as well as a physiological standpoint, as going to confirm the theory that the relationships between natural orders may, to a certain extent, be indicated by the nature of their chemical constituents. The nearer relation ship of the Liliacece to the Melanthacese seems shadowed forth by the fact that a liliaceous plant has yielded an alka loid like veratria. In the same manner the position of the Australian genus Duboisia, as belonging to the Solanacea rather than to the Scrophulariacea, was demonstrated by the elimination of the alkaloid duboisine, and the discovery that its physiological action was analogous to that of the solanaceous alkaloids.

Impromptu Ingenuity.

Some years ago, a Spanish steamer, while crossing the Bay of Biscay in a severe storm, gave such indications, by an unusual uoise at the stern, that there was something wrong with the screw propeller or its shaft outside of the ship-that is, in the open space between the stern and rudder posts where the screw revolves. There was no dry dock in any of the ports on the coast where the ship could go to be examined; and ou arrival at Vigo it appeared as if there was no alternative but to remove the cargo from the stern, and by placing it forward thus lift the screw propeller and shaft to the surface of the water: The alternative, simple as it was, meant a serious delay and great expense. Before commencing to remove the cargo, another consultation was
held. It was then decided to put the stern of the ship over held. It was then decided to put the stern of the ship over
a bed of light colored sand; and as the water was very clear, a bed of light colored sand; and as the water was very clear, there might be a possibility of ascertaining the extent or cause of the mishap. For two days after the vessel was so placed, the wind cansed a ripple on the water, which effect ually prevented anything being seen. It was then suggested by some one on board to try the use of oil on the surface of
the water round the stern of the ship. The effect was most the water round the stern of the ship. The effect was most
satisfactory. The water was becalmed as if by magic, and t was then seen that the wedge or key which keeps the propeller in its place on the shaft had come partly out, and thus left the screw loose on the shaft, which caused the noise. By continuing the use of oil for a few hours the wedge was ultimately driven into its place and secured. Many days of detention and the use of costly appliances and labor were thus saved.
A few years ago an iron bridge of considerable length the weight being about two hundred tons, was constructed in England, and erected in a remote part of Germany. By some mishap, the bridge, when finished, was found to be some distance "out" to one side, an error which the proprietors insisted should be rectified. To take down and reerect the bridge would be simply ruin to the contractor. But necessity is the mother of invention, and so it proved in this case. It was summer time, and the contractor proceeded to find the amount of expansion which was caused by the heat of the sun over the whole length of the bridge. He next ascertained what contraction took place in the night ly cooling. Armed with these data he thought it might be possible to bring the bridge to its proper pusition in a few days. The bridge, of course, in its ordinary condition, expanded from the center, pushing its two ends out ward, or farther apart, and again contracting toward the center. Taking advantage of these conditious, one end was made fast in the morning, and the bridge was forced to expand from that immovable point, instead of from the mid dle, as formerly. When the iron composing the bridge had expanded to its full extent in the direction intended, that end was released, and the opposite end made fast. The bridge then contracted toward its true position. Thus, whatever was gained by the day's expansion was secured by the subsequent contraction when the metal cooled at night, and the process being renewed day by day, the work was successfully accomplished.
An ingenious application of expansion and contraction in metals was made use of in France, and has frequently been taken advantage of since. The walls of a large building in Paris were observed to be giving way by bulging outwards, and the problem was to bring them back to their vertical position. For this purpose a number of bars of iron having screws and nuts on each end were let through the opposite walls and across the interveniug space between them. The nuts and screwed portion of the bars were outside. The bars were now heated by a number of lamps suspended below them until they had expanded as much as possible, and the nuts screwed up against the outsides of the two opposite walls. The lamps were next removed, when the heated bars, in cooling, gradually contracted in their length, bringing the walls very gently, but with irresistible force, into their normal position.
their normal position.
It is well known that in workiug iron, such as welding It is well known that in workiug iron, such as welding
two pieces together, and cven in its manufacture, hollow two pieces together, and even in its manufacture, hollow
places or flaws occur, with merely an outside skin over the defective parts, which any test but a destructive one would fail to discover. Nor would it be difficult to point out numerous examples of disaster thus occurring. To test the homogeueity of the metal, a bar of iron is placed on the equatorial line. A compass with a very sensitive needle is passed along in front of the bar, the needle of course pointing at a right angle to it. If the bar is perfectly solid through its whole length, the needle will remain steady. If, however, there should be a flaw or hollow place in the bar, the needle will be deflected as it passes from the solid to the hollow place, barkioard toward the solid iron; passing on over the hollow place, the needle will come within the range of the solid iron at the other end of the flaw, and will again be deflected formoard. If the bar be cut through anywhere between these two poipts of deflection, a flaw will invariably be found. Many thousands of pieces of iron-some prepared for the purpose of testing this method of trial, others in the ordinary course of business
ated upon with the same unvarying result.
A striking instance of ingenuity in taki
A striking instance of ingenuity in taking advantage of the resources of nature in an emergency, is found in Si Samuel Baker's account of his travels in Abyssinia. His stock of soap had become exhausted; and as he possessed abundance of various kinds of fat, including that of elephants, hippopotami, lions, and rhinoceros, he determined to convert a quantity of this grease into soap. For this pur-
pose he required both potash and lime; and how were these to be obtained? The negleek tree, he found, was excepionally rich in potash; he therefore burned a large quancentrated by boiling. There was no limestone; but the river produced a plentiful supply of oyster shells, which, if burned, produce excellent lime. What was next wanted was a kiln in which to burn the shells, and this he constructed out of one of those great ant hills, which rise to ten feet high, common to those valleys, and which possess a very hard external crust. Two vatives hollowed out one of those hills; a proper draught hole was made below from the outside; it was loaded with wood, and filled with some six bushels of oyster shells, which were again covered with fuel; and after burning twenty-four hours a supply of excellent lime was obtained. Then commenced his soap boiling, which was effected in a large copper pot of Egyptian manufacture. The ingredients of potash, lime, and fat were then carefully mixed; and after boiling ten hours, and having been constantly stirred, he obtained excellent soap, of which he had in all about forty pounds weight.

National Value of Cheap Patents.

At the December 6th meeting of the Society of Engineers, London, Mr. Joseph Bernays, President, in the chair, a paper was read by Mr. Frank W. Grierson on " The National Value of Cheap Patents." The author pointed out that inventors, like all other men, did not work for the mere sake of working, but for their own advantage. In obtaining an advantage for themselves, however, they conferred upon the whole nation a much greater advantage. The advantage an nventor sought was secured to him by a patent; patent should, therefore, be granted at as low a cost as possible. A patentee was desirous of providing improved processes and means of doing what had not before been possible; or of doing something in a quicker and more economical manner than had before been possible. Inventions were very seldom "happy thoughts;" they were nearly always the result of much consideration and many experiments, neither of which would be undertaken for the mere love of the work, but which were undertaken in the hope of eward in the form of a successful patent. The patentee had an obvious incentive for getiing his invention known nd adopted; if it was not au improvement it would certainly not be adopted, but if it was, it would be adopted only in consequence of his persistent efforts, and by its adoption step in advance had been made.
After referring to the evil of "orphan" inventions, the author gave the details of the stamp duties on British and American patents, from which it appears that the stamp duties on a patent in that country, lasting only 14 years, are 175l., while those on an American patent, lasting 17 years, are only 7 y . A table was then given of the patents applied for and granted in the United States and in Great Britain during the last ten years, from which it was shown that the $50 l$. stamp duty at the end of the third year kills about 70 per cent of the patents granted, and that the 100l. duty destroys very nearly 20 per cent more, leaving only 10 or 11 per cent to complete the full term. The effect of these crushing duties is that while on December 31, 1879, there were in Great Britain only 15,755 patents in force, in the United States there were more than 200,000 , not including designs. The United States thus have thirteen times as many patents in force at the sime time, and therefore make thirteen efforts to advance for each one that the Englisb make. During the last ten years 22,868 British patents have been crushed by the heavy stamp duties. An Ameri can patent, once granted, lasts the full term without further payment. The result of this is seen in an enormous import of American goods of varied description, and in the contin ued flow of skilled artisans to America. Mr. Grierson then gave the following comparative table of average results for the last ten years:

British Isles.	United States.
158,2801.	143.0497.
110, 1777 .	
1775i.	7 7.
14 years.	${ }_{17}^{17}$ years.
4,496	19,770
2,980	13,335
1,516	6,415
$\xrightarrow{820}$	
1,851	
436	
66"28	67\%55
33,72 3070	$32 \cdot 45$
$11 \cdot 18$	
6930	
19.52	
$11 \cdot 18$	$100 \cdot 00$
34,500,000	50,900,000
11,577	3,811
25	1
1	3
1	8
1900. None.	${ }_{\text {careful }} 19$.
Frequently.	Rarely.

Mr. Grierson went on to observe that this table showed hat in the United States three patents were granted for one there, after allowing for the difference in population, and that the stamp duties on one patent there would pay those on twenty-five patents in the United States. We might, therefore, fairly say that the British inventor was handicapped 25 to 1
in favor of the American inveutor. It was to be carefully
remembered that in handicapping the inventor they handi capped the nation. The author drew attention to Mr. John Standfield's proposal for reduced stamp duties, which was as follows: On application (to cover cost of provisional protection), $2 l$. ; on filing complete specification (to cover cost of printing, etc.), $3 l$.; total, $5 l . ;$ there should also be an annual tax of $1 l$. Provisional protection to be granted for one year, and the duration of patents to be twenty-pne years. After remarking on the advantage of official technical examination of applications, the author pointed out that it was impossible to calculate the enormous indirect loss the nation suffered from the present exorbitant patent stamp duties, which drove abroad and stifled a large proportion of that inventive faculty upon which alone they were dependent for holding their place among the nations, and which might, if not so hampered, save a considerable number of lives now annually lost in preventable accidents, and might give employment to many who are now unable to obtain work, and who in consequence have to be supported in idleness.

DECISIONS RELATING TO PATENTS

 New York.mattiews cs. sChoneberger et al.-Patent bottle stopper.
Blatchford, J.

1. Every claim of a patent has reference to the descriptive part of the specification, and must be construed as if the words "substantially as specified" formed part of said claim.
2. So where the specification speaks of a part or feature of the patented device as being " an important feature of the invention," and makes it a part of the claim, the omission of such feature from defendant's device saves him from infring. ing the patent.
3. Where a prior device accomplished the same thing, but not so perfectly as the patented device, the claim to the latter must be limited to its precise construction whereby it accom plishes the results more perfectly, and will not include othe means of doing it.
4. A function cannot be claimed. The claim must be ither to the physical structure, the combination of devices or the method of operation.
5. The Codd bottle stopper, consisting of a glass marble inside of a bottle seating against a rubber seat in the mouth f the bottle by the pressure of gases from within, is not an infringement of the Albertson patents for a gravitating stop er consisting of a stem with a rubber valve or skirt aroun it, which seats on the interior of the neck of the bottle
This suit was brought on two patents. One of them is reissue, No. 2,386, granted to the plaintiff October 30, 1866, or an improvement in bottle stoppers, the original patent baving been granted to Albert Albertson, as inventor, August 26, 186. . This patent has expired.
The second patent sued on is No. 44,684, granted October 11, 1864, to J. N. McIntire, on the invention of Albert Albertson, for an improved method of stopping bottl Bill dismissed.

Concrete Blocks.

In reference to the art of concrete block building, Mr Imrie Bell, of London, has סeen much struck by the want of attention paid to the art of producing a fair and finished surface in the exposed faces of the blocks, as exemplified in many of the large engineering works in course of construc tion in the metropolis and elscwhere, where the exposed faces of the concrete present a rough honeycombed appear ance, with the marks of the joints of the timber planks form ing the moulds in which the blocks bave been formed, or the frames inside of which they have been built in situ, in place of showing a fair and smonth surface. The author has given this matter much consideration, and the result of his experience is that in concrete building it is perfectly easy with a little attention, not only to produce a fair surface, but to form mouldings and panels, and even tracery and ornament, and at the same time make this face work as durnament, and at the same time make this face fork as dur-
able and solid as any part of the block. There are tyo reasons why little attention has hitherto been paid to this artone is carelessness or indifference to appearance, the other is that most engineers who have attempted it have done so by "rendering," a most objectionable and dangerous mode of effecting the object; and which, even if successful for a time, is simply veneering, and is subject at any time to decay, the failure generally occurring after wet and frosty weather, which has naturally caused a want of contidence, and stopped a repetition.
The plan which the author has followed, and with com plete success and at an inappreciable increase of cost, by which a smonth, uniform, and equal colored face can be obtained (and if wanted, the color of the blocks might be slightly varied by different colored sand), and which, both above and below low water, has stood successfully the test of eight years' exposure to frost, heat, storm, and rain. This plan i: simply to have a smooth planed board for the face of the mould painted previous to commencing the work witha mucilage of soap, and to line inside with a finer coucrete or mortaras the work proceeds, so that the mixture placed close to the face boards is carried up with that contained in the body of the block, the whole forming one homogeneous mass, and insuring that the selling process of the whole mass shall progress simultaneously: and in fact this face, like the skin of cast iron, is actually the strongest portion of the block.

The Charge for Insertion udder this head is One Dollar a line for each insertion ; about eight words to a line. Advertisements must be reccived at publication office
as early as Thursady morning to appear in next issue. Saunders' Pipe Cutting and Threading Machines. See adv... p. 45.
Alibe Bolt Forging Machines and Palmer Power Ham-
mer. a specialty. Forsaith \& Co., Manchester All makes and sizes of steam hammers bored out. L
B. Flanders Machine ॠorks, Philadelphia, Pa. . Flanders Machine Norks, Philadelphia, Pa Steam Launches built and delivered to any par
country. Address R. A. Morgan, Noank, Conn. Coune's Pat. Felt and Asbestos Non-conducting Re Toope's Pat. Felt and Asbestos Non-conducting Re-
woovanle Covering for Hot or Cold Surfaces; 'Toope's Pat.
irate Bar. Chas. Toope, M'f'g A gt., 353 E. 78 th St , N. Y irate Bar. Chas. Toope, M'f'g Agt., 353 E. 88 th St , N.Y.
Hotchkiss' Mechanical Boiler Cleaner, 84 John St., N. Y., only device in existence automatically removing
sediment from boilers oy circulation at first cost.. En-
gineers make 10 per cent selling other parties than em ineers make 10 per cen
Protect your steam pipes and boilers with genuine
Asbestos Covering. H. W. Johns N 'f'g Co., 57 Maiden Asbestos Covering. H. W. Johns A'f'g Co., 57 Maiden
Lane, New York, sole manufacturers of Asbestos Roof ing, Liquid Paints, etc.
List 25 .-Descriptive of over 2,000 new and secondhand machines, now ready for distribution. S
for same. Forsaith \& co., Manchester, N. H.
Complete Sets of Castings for 2×2 Vertical Engines, with cylinder and slides bored. and small casting brass, with cylinder and
Price, $\$=00$ each.
wick. Galena, Il.
Pure Oak Lea Belting. C. W. Arny \& Son, Manufac
turers. Philadelphia. Correspondence solicited For. Philadelphia. Core
For Machinists’ Tools, see Whitcomb's adv., page 28
Two Patents for sale. R. Munroe, Fitchburg, Mass.
Within the last ten years greater improvements have been made in mowing machines than any other agricu!-
tural implement. It is universally acknowledged that the Eureka Mower Co., of Towanda, Pa., are making the best mower now in use, and every farmer should
write to the manufacturers for catalogue, with prices. Eureka Vogetable Boiler Scale Eradicator, strictly
vegetable, and perfectly harmless to iron. Warranted to remove scale of any thickness, and to prevent scaling from either fresh or salt water use. Circulars and pater
ticulars of G. E. Brinckerhoff, 10 Liberty St., N. Y.
The Sweetland Chuck. See illus. adv., p. 12.
Moulding Machines for Foundry Use. 33 per ce
saved in labor. See adv. of Reynolds $\&$ Co., page 12.
The I. B. Davis Patent Feed Pump. See adv., p. 12. Jenkins' Patent Valves and Packing "The Stand
Jenkins Bros., Proprietors, 11 Dey St., New York.
Presses \& Dies. Ferracute Mach. Co., Bridgeton, N
Superior Malleable Castings at moderate rates Superior Malleable Castings at
Richard P. Pim, Wilmington, Del.
Wood-Working Machinery of Improved Design and Wood-Working Machinery of Improved Design and
Workmanship. Cordesman, Egan \& Co., Cincinnati, o. The " 1880 " Lace Cutter by mail for 50 cts.; discount
to the trade. Sterling Elliott,262Dover St., Boston, Mass. The Tools, Fixtures, and Patterns of the Taunton Foundry and Machine Company for sale, by the George
Place Machinery Agency, 121 Chambers St., New York. Experts in Patent Causes and Mechanical Counsel

Park Benjamin \& Bro., 50 A stor liouse, New York.

Corrugated Wrought Iron for Tires on Traction En-
sines, etc. Sole mfrs., H. Lloyd, Son \& Co., Pittsb'g. Pa. gines, etc. Sole mfrs., H.Lloyd, Son \& Co., Pittsb'g. Pa
Malleable and Gray Iron Castings, all descriptions, by rie Malleable Iron Company, limited, Erie, Pa Power, Foot, and Hand Presses for Metal Workers.
owest prices. Peerless Punch \& Shear Co.. 52 Dey St.,N.Y, owest prices. Peerless Punch \& Shear Co. 52 Dey St.,.N.Y,
Recipes and Information on all Industrial Processes. rk Benjamus Exper, Ome, 50 A For the best Stave, Barrel, Keg, and Hogshead National Steel Tube Cleaner for boiler tubes. Adj
e, durable. Chalmers ince The Brown Automatic Cut-off Engine; unexcelled for
Orkmanship, economy, and durability. Write for inBest Oak Tranned Leather Belting. Wm. F. Fore-
augh, Jr., \& R os., 53i Jefterson st., Phi'adelphia, Pa. Stave, Barrel, Keg. and Hogshead Machinery a spe ali y, by E. \& B. Holmes, Buffillo, N. Y
Downer's Cleaning and PolishingOil for bright metals, 3 the oldest and best in the market. Highly recee.n-
aended by the New York, Boston, and other Fire Deaended by the New York, Boston, and other Fire De-
artments throughout the country. For quickness of leaning and luster produced it has no equal. Sample
vegallon can besent C. O. D. for $\$ 8$. A. H. Downer, 17 vegallon can be sent
eck slip, New York.
eck Slip, New York.
Wright s Patent Steam Eugine, with automatic cut W.: The best engine made. For prices, address William
Vright, Manufacturer, Ne burgh. N. Y.

National Institute of Steam and Mechanical Engineer1g, Bridgeport, Conn. Blast Furnace Construction and cal Instruction in Steam Engineering, and a good situa n when competent. Send for pamphle
Split Pulleys at low prices, and of same strength and Torks, Drinker St., Philadelphia. ''a.
Presses. Dies. and Tools for working sheet Metal. etc. ruit \& other can tools. Bliss \& Villiams. B'klyn. N. Y. C. B. Rogers \& Co., Norwich, Conn., Wood

Machine Knives for Wood-working Machinery, Book nders, and Paper Mills. A Also manufacturers or Solo-
an's P'arallel Vise, Taylor. Stiles \& Co..Riegelsville.N.J. an's Parallel Vise, Taylor. Stiles\&Co.,Riegelsville.N.J.
Nickel P.ating:--sole manufacturers cast nickel andees. pure nickel salts. Importers Vienna lime, crocus
Condit. Hanson \& Van Wincle, Newark, N. J., and Condit. Hanson \& Van Wi
and 94 Liberty St., New York.
Clark Rubber Wheels adv. See page 29.
Eclipse Portable Engine. See illustrated adv., p. 30. ollstone Mac. Co.'s Wood Working Mach'y ad. p: 29. Steam Engines. Boilers, Portable Railroads, Sugar
ills. Atlantic Steam Ensine Works,
Peck's Patent Drop Press. See adv., page A5.

Blake "Lion and Eagle " Imp'd Crusher. See p. 45.
Apply to J. H. Blaisdell for all kinds of Wood and Apply to J. H. Blaisdell for all kinds of Wood and Send for illustrated catalogue.
The Chester Steel Castings Co., office 407 Library st Philadelphia, Pa.. can prove by 15,000 Crank Shafts, and
10.000 Gear Wheels, now in use, the superiority of their all others Circular and price list free. Brass \& Copper in sheets, wire \& blanks. See ad. p. 45 Wren's Patent Grate Bar. See adv. page 45
Diamond Drills, J. Dickinson, 64 Nassau St., N. Y. The Improved Hydraulic Jacks, Punches, and Tub
Expanders. R. Dudgeon, 24 Columbia St., New York. Expanders. R. Dudgeon, 24 Columbia St., New Yo
For best Indirect Radiators, see adv., page 45. Eagle Anvils, 10 cents per pound. Fully warrante Gear Wheels for Models (list free); experimental and model work, dies and punches, metal cutting, manufac-
turing, etc. D. Gilbert \& Son, 212 Chester St., Phila., Pa Machinists' Tools and Special Mach'y. See adv.., p. 44 Soapstone and Empire Gum Core Packing. Specia The b The best Truss ever used. Send for descriptive circuFor Shafts, Pulleys, or Hangers. call and see stoc Honstor Houston's Four-sided Moulder. See adv., page 45. H. A. Lee's Moulding Machines, Worcester, Mass. The Student's Illustrated Guide to Practical Draught ng. By T. P. Pemberton. Sent on receipt of prise, $\$$.
dduress T. P. Pemberton, 5 Dey St, Room 13, New York
Wm. Sellers \& Co., Phila., have introduced a ne Saw worked by a single motion of a lever Safety Linen Hose; a protection from fire for and stores. Greene, Tweed \& Co., 118 Chambers St., N.Y. Skinner \& Wood, Erie, Pa.. Portable and Stationary Engines, are full of orders. and withdraw their lllu
ted advertisement. Send for their new circulars. 4 to 40 H P. Steam Engines. See adv. p. 45 . Use Vacuum Oil Co.'s Cylinder Oil, Rochester, N. Y For Yale Mills and Engines, see page 45.

HINTS TO CORRESPONDENTS.
No attention will be paid to communications unles accompa
writer.
Names
Names and addresses of correspondents will not be
ven to inquirers.
We renew our request that correspondents, in referring o former answers or articles, will be kind enough to name the date of the paper and the page, or the number
of the question. easonable time should repeat them. If not then pub lished, they may conclude that, for good reasons, the Editor declines them.
Persons desiring special information which is purely of a personal character, and not of general interest, ould remit from $\$ 1$ to $\$ 5$, according to the subject, we cannol be expected to spend time and
btain such information without remuneration.
Any numbers of the Scientific American Supple MENT referred to in these co
office. Price 10 cents each.
(1) A. H. S. writes: Having heard the statement from old hunters that a rifle ball gains in velocity after leaving the riffe barrel, I wish to ask if it
is true; and, if it is, what gives it an increase of velocity? is true; and, if it is, what gives it an increase of velocity?
I have stated that the greatest velocity is at the instant I have stated that the greatest velocity is at the instant
ohe ball leaves the barrel; but several say that a ball he ball leaves the barrel; but several say that a bal than it would if it were within a few feet. A. You are the muzzle of barrel.
(2) G. M. J. asks: Is a jacketed steam cylincter containing steam from the boiler direct or live
team a saving or the reverse? A. We bélieve it is yet a "mooted" question among engineers whether a
jacket heated by live steam is a source of economy. Some say it is, but we think the majority consider good (3) J. V. D. asks how to anneal steel make it very soft. A. For a small quantity, heat the steel to a cherry red in a clarcoal fire, then bury it in sawdust, in an iron box, covering the sawdust with
ashes, Let it stay until cold. For a larger quantity, and when it is required to be very soft, pack the stee with cast iron (lathe or planer) chips in an iron box a
follows: Having at least half or three-quarters of an inch in depth of chips in the bottom of the box, put in a layer of stecl, then morechips to fill spaces between the steel and als. e half or three-quarters of an inch space be-
tween the sides of the box and steel, then more steel; tween the sides of the box and steel, then more steel;
and lastly, at least one inch in depth of chips, well ramand lastly, at least one inch in depth of chips, well ram-
med down on top of the stce.. Heat to and keep at a med down on top of the steel. Heat to and keep at a
red heat for from two to four hours. Do not disturb the red heat for fro
box until cold.
(4) J. Q. asks: If a pipe two inches in diameter is flowing into a cistern, how many pipes, one
inch in diameter, are required to carry away the water inch in diameter, are required to carry away the water
that will flow through the two inch pipe? The pressure on the pipes is equal and the incline is equal. A Four, leaving out of the question the friction of the
(5) J. G. writes: 1. I want to make fiffteen electro-magnets of about the same strength as common
two-inch horse shoe magnets that are sold in the city at ten to fifteen cents each. What sized wire and how much will be required for each magnet (they are to be con-
nected close together)? A. Make the cores of your magnected close together)? A. Make the cores of your mag-
nets three eighths of an inch in diameter and one and a half inch long. and wind with six or eight layers of No. 20 magnet wire. 2. How many cells of gravity battery
will I need to work them, the battery being also close
o the magnet? A. You shonld allow one cell of battery for each magnet, if you work them all at the same time.
(6) C. R. A. writes: I am making a small yacht, 15 feet long and 42 inches beam and 3 feet dept $11 / 2$ horse power: boiler20 inches diameter by 30 inches in height; supposed to run from eight to ten knots a hour. Do you think that is beam enough? A. Yes
but keep all your weights as low in the

(7) J. H. W. asks: 1. What is the horse

 power of an engine 20 inch diameter of cylinder, 48 pounds steam pressure to the square inch? A. See SUPPlement, 253, for rule for calculating horse power of engines. 2. Where can I get some good books on steamengineering? A. Write industrial publishers who ad engineering? A. Write industrial publishers who ad-
vertise in our columns. 3. What was the horse power vertise in our columps. 3. What was the horse power
of the engine that ran the machinery at the Centennial? A. 1,200 to 1,400 horse power, but only on eighth to one-tenth of this power was used.
(8) J. D. C. writes: I have a gauge con nected with a set of boilers, and tighty feet away I hav another gauge. The carrying pipe is thoroughly cov-
ered, boxed, etc. The pressure on each glass is exactly he same, that is, at boilers 40 lb ., eighty feet away 40 lb . Is the temperature of the steam the same at both gauges $\%$ A. If there is steam at both ganges, and the pressures are equal. the temperature will be the same but it is probable that in use you have water and no
steam in the gauge which is eighty feet from the steam in
boilers.
(9) C.
(9) C. W. asks: 1. How many Bunsen A. Tomake an electric light of any considerable powe will require 25 cells. 2. If a Knowles steam pump wer to be made to run by compressed air at the rate of
thirty stroles a minute, and a pressure of 100 lb ., and to thirty strokes a minute, and a pressure of 100 lb ., and t
pump air into the same vessel that it is taken from to pump air into the same vessel that it is taken from to
run the pump, could you keep the pressure the same, o run the pump, could you keep the pressure the same, or
would it increase or diminish ? A. The pressure would would it in
diminish.
(10) J. J. asks: How are the bottoms of boots and shoes finished to give them a good bright of the polish, the latter with the rub stick, after the sole has been buffed. Al good oak and union leather will make a fair colored
bottom, though some tannages are lighter than others, but in many of the hemlock tannages, where the hide is "plumped" by a mineral acid, the color is very dark toms to imitate oak, but on account of the acid in the leather, the color given is not enduring. One stain ruch used is made of equal quantities of borax, oxalic acid, and water, with which the sole is dampened, and,
when nearlydry, it is rubbed with French chalk or pipe clay.
(11) E. B. K. asks: 1. When does a gas holder give the greatest pressures, when completely filled or when nearly empty? A. When completely filled. 2. Is it possible to entirely shut off the pressure
on the street mains (gas) by the gover or; that is, that no pressure will show on the pressure gauge? A and the initial pressure in the pipes is relieved.
(12) W. H. asks: What is the composition of the indelible ink used with type by shirt and collar makers? A. Nigrosine dissolved in as
tity of water. Printers ink is also used.
(13) W. E. S. asks: 1. How strong will a battery need to be to heat to redness a strip of platinum hifty an inch long, one-eighth of an inch wide, and one
sixth of an inch thick ? A. Use twenty quart Bun sen or bichromate cells. 2. Can a strip of platinum as above be heated to or nearly to redness whiie in close
contact with glass? A. Yes. 3. I send a sample of contact with glass? A. Yes. 3. I send a sannple of
shell marble; is it of any value? A. The shell marble is of little value.
(14) C. S. P. asks: Will the addition of say 25 per cent of almond or olive oil, to kerosene oil of
112 degrees reputed fire test, render it explosive? If not, then what may I add to attain this explosive If not, then what may I add to attain this
end \boldsymbol{P} A. Nothing can be added to poor kerosene oil that will effectually prevent the escape of the volatile
hydrocarbons which make it dangerous. These can easily be separated, hower, by fractional distillation (15) A. H. R. says: In the study of chemistry great difficulty is experienced by many students
in remembering the formulæ of chemical substances, in remembering the formulæ of chemical substances, and the want of a short and concise reference book has
been our constant trouble. He suggests the following form. The metal sodium forms a series of salts:

and the metals hydrogen, potas, and ammonium, form the same series. The metal barium forms th
compounds

and the metals strontiurn, calcium, zinc, lead, coppe silver, mercury, form the same compounds. A. There
are several recent publications (German) on are several recent publications (German) on chemical
formulæ in which tables similar to those you suggestare formulæ in which tables similar to those you suggestare
employed. In such books the new system of nomenclature (which is now in almost universal use) should be employed; and in order to make the book serviceable toothers besides chemists proper, the various names (older) under which each substance is known to the
pharmacist or druggist and in the trades should be pharmacist or druggist and in the trades should be
added in a "ready reference" and comprehensive form.
(16) W. H. B. asks: Is there a process by which I could nickel-plate faycets myself? also, if I
can do it without'taking them off while plating them ? can do it without taking them off while plating them ?
A. You cannot nickel-plate the faucets without taking
them off. See article on nickel plating, p. 209, Vol. 38,
them off. See article
Scientific American.
(17) L. D. G. asks: 1. Is the pressure on more. ture. 2. Is the pressure on the glass water gauge or
tube the same an the boiler ? A. Yes. 3. Will dip-
ping a knife in hot water injure the temper ? ping a knife in hot water injure the temper? A. Not nless kept there a great length of time
(18) S. \& R. ask: 1. What kind of steel is best for knives for a spoke lathe cutting mostly dry oak
timber ? A. What is known as "chrome steel" will timber? A. What is known
probably answer your purpose
(19) L. A. R. writes: I have an iron pipe leading sirup from sugarhouse to refinery. The strup
is slightly acid, and is colored by its contact with the is slightly acid, and is colored by its contact with the
iron. It affects materially the quality of our sugars. The iron. It affects materially the quality of our sugars. The
use of a copper pipe would obviate this trouble, but, bease of a copper pipe would obviate this trouble, but, be
sides the cost, I consider it unhealthy. What would you recommend? Is there such a thing as enamel not generally belleved to esercise any deleterious action upon sirup may be inferred from the fact of the vessels in some of the largest refineries being formed of that metal. We have seen one of Howard's patent vacuum ans eight feet in diameter, worm or a coppipe through which steam was passed for boiling th uice; and in the Scientific American for November 27,1880 , will be found a description of Deeley's enormous vacuum pan, the coils of which are also formed of copper. Gun metal has also been used
for the fittings and scoops in refineries. In some inor the fittings and scoops in refineries. In some intances mouids of porous clay have been supplanted by
others of iron coated either with varnish or glaze, or others of iron coated either with varnish or glaze, or
even painted with white lead paint. The iron pipe in question might be superseded with advantage by one of glazed earthenware or of wood; but the best conduit pipe would be one of iron coated with vitreous enamel cooming so generally employed for articles in culinary
(20) E. V. S. asks: Is there any specia publication on potter's glass? A. One of the best and ostcomprehensive origin, Progressive Improvement, and Present State of the Manufacture of Porcelain and Glass." I is published by Longmans, of London, England, butmay easily be obtained through any bookseller
(21) G. B. inquires: What is methylated pirit of wine? A receipt given to me containsthis, an cannot obtain it at any drug store in our city. A. It is
rdinary alcohol adulterated with ten per cent of wood aphtha to prevent its being used for potable purpose , win a view to encourage the arts and manufacture he English government permits it to be sold free of al pirits in that country subjects the experimethalist to pirits in that country subjects the experimentalist to
severe penalties. Common alcohol may be employed or every purpose for which the methylated preparation
(22) J. A. S. asks: 1. What is a gelatine nould for casting plaster ornaments composed of ? A. Allow twelve ounces of gelatine to soak for a few hour in water until it has absorbed as much as it can, the pply heat, by which it will liquefy. If the mould is quired to be elastic, add three ounces of treacle an (precise proportions are immaterial) be added to th elatine it causes it to lose its property of being agai dissolved in water. A saturated solution of bichromate of potash brushed over the surface of the mould, allowed become dry and afterwards exposed to sunlight for ew minutes, renders the surface so hard as to be unaffected by moisture. 2. What change does calcined
plaster undergo while setting? A. Calcined sulphate of lime, or plaster of Paris, when mixed with wate produces heat and hardens to a solid mass, slightly en larging its bulk, hence its value in giving a sharp im pression. The rapid hardening is explained by the an hydrous burnt sulphate of lime again chemically com ining with as much waler as it lost during the ignition Had the heat at which the gypsum was calcined ex
ceeded 320° Fah., it would have lost its affinity for not harden
(23) L. S. H. asks: What kind of solution nay be used by cigar makers to dip the leaves in to
ive the cigars an agreeable flavor ? A. Ordinary cigars may be scented by moistening them with a strong tincture of cascarilla to which a little gum benzoin and storax is sometimes added; or the leaves which are to form the cigars may be soaked for a short time in a strong infusion of cascarilla, and then dried by a gentle
heat. A small quantity of camphor, together with the heat. A small quantity of camphor, together with the
iis of cassia and cloves, are by some added to the tinc re mentioned.
(24) W. H. inquires: What is the solution sometimes employed by opticians to stain brass of a
black color? A. A solution of chloride of platinum is black color? A. A solution of chloride of platinum the stain most commonly used for this purpose.
cheaper preparation is obtained by dissolving the blac scales of iron of the blacksmith's forge (proto-sesqui oxide of iron), in muriatic acid to saturation.
(25) C. F. A. asks: Is there not a wire screen that you can put to a window in a basement and look out into the street. but throngh which one cannot
look into the room? A. Any wire screen formed with fine meshes will, if painted on the outside, fulfill these conditions. Finely perforated zinc is much employed for this purpose. These, together with flowered white muslin, prevent any one from seeing the interior of a
room, while they present no serious barrier in the wa of looking out through them.
(26) B. L. G. asks: 1. By what means can I obtain lead absolutely pure for chemical purposes $?$ of commerce is in most instances sufficiently pure fo every purpose. 2. How may I prepare chemically pure zinc? A. Granulate commercial zinc (which is seldom if ever pure) by melting and pouring into water, then place in a Hessian crucible with a fourth its weight o nitrate of p stash; cover well and apply heat. After deflagration, remove the dross, melt the zinc, and pour into
an ingot mould.
(27) R. O. asks how to make a hair dye like that used by barbers. A. Cleanse the hair with
dilute ammonia water. Then moisten it uniformly with diute ammonia water. Then moisten it uniformly with
dilute solution of gallic acid or ammonium sulphide, and go over it with a comb moistened with solution of one part nitrate of silver in nine parts of water, touch ing the scalp as little as possible. Stains may be re moved by applying a little dilute solution of iodine in iocide of potassium dissolved in water, and then with
solution of sodium hyposulphite.
(28) L. W. D. asks: Do you know of any material or process by which a fine gloss, white finish, on wood can be obtained without the use of damar varand polish down with pumice stone or rotten stone and
(29) G. W. S. asks: 1. Are not blinds that are used on horses' bridles injurious to their eyes?
A. We think not. 2. When Paris green is sprinkled on vegetables will the dew and air draw the poison out on vegetables will the dew and air draw the
so that it will be less fatal if eaten? A. No.
(30) C. C. H.-The "oiled tissue" you send is goldbeater's skin, prepared from the peritoneal membrane of the cæcum, which, as soon as it is detion of potash,and stretched on a frame. While in this position a similar membrane is applied to it so that the surfaces which adhered to the muscular membrane of soon dry. They are then glued to frames, washed with alum water, dried, washed with solution of isinglass in wine to which spices have been added, and varnished with white of egg.
(31) A. U. asks: 1. How are opals separated from the matrix? Are there any machines that can be used for that purpose? A. Consult Traill's "Treatise on Quartz and Opal." Emanuel's " Diamonds and Precious Stones," and Byrne's "Handbook for the
Artisan." The latter contains a good article relative to Artisan." The latter contains a good article relative to the best methods and rachinery for such work. Address tise in this paper. 2 Is there likely to be a market for these stones in America? The specimens are very brilliant fire opals, and I have seen pieces two
inches in diameter and half an inch thick. A. Yes.
(32) E. M. asks: 1. Can Jupiter's great spot be clearly seen with the telescope described in SUP-
PIENENT, 252 ? A. Yes, when a n achromatic objective is used.
(33) C. B. C. asks: How is chloride of siler made? A. Although it may be formed by the ter way is to dissolve chloride of sodium (common salt) in water in one vessel, and nitrate of silver in another, distilled water being used by preference for the latter. Now pour the one solution into the other, and instantly there will be formed a dense, white, curdy precipitate. two or three times to wash the chloride free from the traces of the nitrate of soda, the other product of the of silver being 170 , while that of chloride of sodium is
58.5 , these proportions should be adhered to when dis$58 \cdot 5$, these proportions should be adhered to when dis-
solving the salts. The proportion of water is immasolving
terial.
(34) L. B. F. wishes a receipt for making an acid-proof cement. A. It would have been desirable had particulars of the object for which it is required
been given, as acids act so differently upon different substances. A mixture of equal parts of pitch, resin,
and dried plaster of Paris is much used as a cement in chemical works where sulphuric acid is prepared. Troughs for holding acids may be effectively cemented by the following: Resin, 6 lb .; dried red ocher, 1 lb. ; calcined plaster of Paris, $1 / 2 \mathrm{lb}$.; linseed oil, $1 / 4 \mathrm{lb}$. These must be incorporated by well stirring together when melted. For smaller purposes an alcoholic solution of shellac, or a solution of bitumen in benzol, answers
well. To render this latter less brittle, it is desirable to dd a few drops of a solution of India-rubber. Marine glue also resists acids. It may be formed of India-rub ber 1 part, digested, with heat, in a covered vessel containing 12 parts of mineral naphtha, to which, when solution is effected, 20 parts of powdered shellac are slab to solidify.
(35) J. R. S. writes requesting information especting the recently introduced methods of obtaining eproductions of writing in inks of any desired color. A. Pour intoa flat zinc trough, or upon a zinc plate having the edges turned up a quarter of an inch, a
warm solution of the following substancess: Water, 130 parts: sulphate of baryta 75 parts; sugar 30 parts parts; sulphate of baryta, 75 parts; sugar, 30 parts;
gelatine, 30 parts; glycerine, 180 parts. This mass when cool becomes stuff and forms th printing surface The writing to be reproduced is written with any suitable ink, methyl violet being generally preferred; and this, when quite dry, is laid down upon the gelatine film and the hand rubbed over it. By this operation the ink is absorbed. Quite a number of impressions may now
be obtained from this gelatinons surface, by laying be obtained from this gelatinous surface, by laying
upon it a sheet of paper and rubbing with the palm or upon it a sheet of paper and rubbing with the palm or
edge of the hand. If the weather be very hot, to preedge of the hand. If the weather be very hot, to pre-
vent the film from becoming sticky the proportion of baryta above given may be increased to 100 parts. By the following modification of this process the plate may be inked like a lithographic stone, and thus be made to yield an indeffnite number of impressions in ink of any color. The proportion of water must be reduced, and
the ink with which the writing or drawing is made must contain alum. On theoretical grounds the best ink to employ wsuld be a saturated solution of the alum to which was added enough common writing ink to give it color A wet sponge having been passed over the gelatine surface, the writing is laid down, and after the lapse of a few moments it is removed, when the writing will be found to be eaten into the film as if en. raved. A roller charged with printer's ink is now will now yield any required number of impressions. By preference the inking roller should be formed of India-rubber; fresh inking must be had recourse to aftereach impression has been taken.

Minerals, etc.-Specimens have been re ceived from the following correspondents, and examined, with the results stated
H. R.- Barytocalcite- $\mathrm{BaCO}_{3}+\mathrm{CaCO}_{3}$.-J. S. W.-
No. 1 is dolomite-magnesian limestone lite-a hydrated borosilicate of calcium. - M. B.-The gravel contains no metals. The bright particles are mica and a little iron sulphide pyrites. The rock is quartzose, carrying a littte chalcopyrite-iron-copper sulphide.-P. S.-It is lead sulphide-galena; may contain a trace of silver.-J. P.-It is blast furnace scorianot a native nil
with petroleum.

COMMUNICATIONS RECEIVED

On Inventors' Academy. By E. W. S.
On Railroad Rail Binding. By E. A.S
On a Curious Icicle. By E.
On Rainfalls. By J. \quad '. N .

NEW BOOKS AND PUBLICATIONS

The American Chemical Journal.

 The number for December contains several very able articles, among them the following papers: "Researches "Estimation of Alkaioids by Potassium Gibbs. Iodide," by Albert B. Prescott. Contributions from the Chemical Laboratory of Harvard University: "On the Ethers of Uric Acid: Dimethyluric Acid," by H. B. Hill and C. F. Mabery. "Researches on the Substituted Benzyl Compounds: Ortnobrombenzyl Compounds," by C. Loring Jackson and J. FlemingWhite. "The Constitution of the Tartrates of White. "The Constitution of the Tartrates of
Antimony," by F. W. Clarke and Helena Stallo. On thel Relative Stability of Certain Organic Salts," by Miles Beamer and F. W. Clarke. "Some New Salts of Uranium," by F. W. Clarke and Mary E. Owens Graphite from Ducktown, Tennessee," by W. I. Dudley and F. W. Clarke. "On the Distribution of Arsenic in the Human Body in a Case of Arsenical "Synthesis of Salicylic Acid," by Edgar F. Smith.
Theorie der Gewoelbe (The Theory of Vadlus). By A. Foeppl
Arthur Felix, $1880 . \quad 152 \mathrm{pp}$.
This work is divided into four chapters, of which the first embraces the "Elementary Theory of Barrel
Vaults." their conditions of stability,the graphical calculations for obtaining the pressure line, etc. The second chapter treats of the "Theories of Elasticities" in barrel vaults; the third chapter is devoted to the theory of the pressure and elastlcity in domes; whereas the fourth treats of groined arches. This work was not intended for the beginner, as it requires considerable acquaintance with the subject; but for such persons it will be found to
be of great value, as it contains a large store of information, especially in regard to modern developments and the elasticity of vaults.
[OFFICIAL. 1
INDEX OF INVENTIONS
Letters Patent of the United States wer Granted in the Week Ending December 21, 1880
AND EACH BEARING THAT DATE.
[Those marked (r) are reissued patents.]
A printed copy of the specification and drawing of any patent in the annexed list, also of any patent issued ar. In ordering please state the number and date of the patent desired and remit to Munn \& Co., 37 Park Row,
New York city. We also furnish conies of patents granted prior to 1866; but at increased cost, as the speci-

Aerial navigation, J. F. Mackenzie.................235,792 Aging and purifying spiritous liquors, apparatus
for, F. L. Wood............................ Air compressor, E. A. Rix.
Axle box, R. W. Irwin.....
Axle lubricator, T. White.
Axle lubricator, T. White..
Baking powder, C. E. Aver
Ball and socket hanger, N. Stedman
Boiler furnace, Kilroy \& Flick
Boiler furnace, P. w. Lamb..
Boilers and other vessels, manufacture of, L. S.
White
Boilers, composition for preventing incrustation
of, H. Heimann.
Bolts, tool for printing, P. Hartin
Book, blank, I. Reynolds (r)
Boot and shoe toe protector, J. A. Stockwell (r)
Bracelet, F. Kursh..............
Breastpin, L. P. \& L. P. Jeanne.
Bridle, S. A. Nolen....
Bung, faucet, Reynolds \& Shaw
Button and stud, J. Kennedy.
Calcium, apparatus for the
alcium, apparatus for the decomposition
chloride of. E . solvay
Canister, P. Lehmann.
235,840
235,816
235,723
$235,7 / 22$
T. Maybury (r).................

Cans, mechanism for placing and soldering head
Car brake, J. Crollard.

Car coupling, J. H. Quacke

Car coupling, J. H. Quacken
Car mover, F. B. Galloway

Cartridge loader, c. W. Osgood
Casting hollow ingots, mould
Morse..
Casting pencll sharpeners,....ould
Centrifugal machine. R. Lafferty
Centrifugal machine, M. K. Much
Chair head rest, A. schwaab
Check receiver, J . Casey...........................
Chuck for turning polggonal bodies, lathe, I

Chuck, lathe, W. H. Wils
Cider mill, S. Males (r).
Cider press, \mathbf{H}. A. King
Cigar clipper, W. H. Gil
Clock pendulum attachment, J. A. Barrett Cockle separator, J. W. Collins.............. Corset, I. W. Birdseye...
Corset, w. A. Nettleton.
Corset parts, folding guide for, J. s. Crotty
Cultivator, wheel, J. H. Rhamy (r)............
Ditching and embanking machine, Chappell
Ricketts.
Ditching machine. W. H. Hickok
Drag, sulky, J. M. Wakeman
Drainage apparatus, house, C. W. Durham Egg beater, P. F. Carroll....
Electric circuit closer, automatic, W. H. Shuey
Elevator J. B A. Evaporating pan, H. O. Am
Evaporation of liquids, apparatus for the, O. L. F Browne...
Fan, \mathbf{C}. I'rahl.
Feather renovator, W. W. Snyder
Feather renovator, W.
Fence, Smith \& Younkin.
Fence, wire J.
Fence, Smith \& Youn
Fence, wire. J. Rees.
Fertilizer distributer.
Fertilizer distributer, J. J. \& L. F. Burne
Filter, T. Guinean
Firearm, breech-lo
Firearm, magazine, Tiesing \& Kennedy
Firearm, magazine, Tiesing \& Ken.
Fire extinguisher, B. C. Wilson....
Fire kindler, J. T. Elliott
Float trap for wash basins, etc.....................
Furnace and boiler, s. W. Unoves.
Gas burners, electric lighting attachmeent for
Gas burners,
H. Hinds.
Gleaner and binder, H. N. Johnston
Grain bin, W. Baile
Grain separator, R. z. Bushaw
Grinding grain, feed device
W. D. Gray..

Hair crimper, H.A.Gray. J
Hammock support and tent frame, K......
Harrow and cultivator tooth combined
Harrow and cultivator tooth, combined, I. H. \&
Reiner ..
Hatchway door mechanism, C. H. Mitchell...
Hog catching and holding device, O. Ewing...
Hog catching and holding device, o.
Hog scraping machine, J. Bouchard...
Hoisting apparatus for mining shafts, T.H..........
Horse rake, T. S. Brown (r)
Hose coupling, J. Kenyon.
Iub, C. H. Guard....
Hydrant. D. F. Luse
Hydrant. D. F. Luseill
Hydraulic elevator, O. E. Merril
Hydraunce elevator, O. E. Werrni..
Hydrocarbon burner, F. W. Carter
Ite making apparatus, T. L. Rankin
ce making apparatus, water tank for, T.L...........
Incubator, C. L. \& H. S. La Barg
Ink, printing, M. Connelly
Inkstank, calendar. J. R. King

insect screen. G. B. Pullinger255,81, 23
Lamp, S. s. Newton
Lamp or lantern, B. Eason
Lantern globe, T, Walton (r)....
Lantern holder, W. F. Brainard
Lantern holder, W.
Lock, J. Siruguey...
Log tripper, L. Gunter
Loom shuttle motion,
Looms, wire heddle fo A. Weber

Mail bak, J. B. Gathright

Match splint, G. Hargreaves
Mechanical movement. R
Mechanical movement. R. P. Garsed
Medical compound, A. Rippetoe.
Mining machine, F. M. Lechner (r
Motion, device for reversing, G.
Motion, device for reversing, G.
Music holder, C. W. Millspaugh.
Nail machines, apparatus for feeding, w........
yer.....................
Nut lock, J. M. Dakan.
Nut lock
Nut lock, S. S. Smith.....
Ore roasting furnace, ro
Ore roasting furnace, rotary. J. K. Pardee
Ore separator, H. Hochstrate
Ore separator, H. Hochstrate.
Packing, metallic piston rod,
Packing, piston, S. M. Brown... B. Brayton
Packing, piston, S. M. Brown.................
Packing, piston, Williams \& Matthews...
Padlock, H. H. Daniels .
Paper boxes, forming the bending lines in, J. E.
Paper boxes, manufacture of. C. P. 1 iousum........
Paper, method of and apparatus
Paper, method of and apparatus for corrugatin
M. Newton.........
Patterns, apparatus for draughting, F.J. Kellogg
Pen wiper, G. Lane sprague
Pen wiper, G. Lane.........
Pencil holder, H. C. Benson

Rheyat...
Piston connection for indicators and pressure
gauges, L. F. Lyne......

Naylor

Naylor
Plow,. . C. .ieritt
Plow carriage, J. T. M. M
Plow carriage, J. T. McNo
Plow, sulky, w. Hemme.
Plow, sulky. w. A. James (r)..............................
Pole eyes for carriages, device for making,
Pearce...........................
cold, apparatus for, L. Ribourt.
Pressure and water gauge, steam.
Pressure and water gauge, steam,
Propeller, screw, Stevens $\&$ Smith
Propeller, screw, stevens \& smith
Pulley, portable hoisting. L.' 'F. I'yott...............

for, G. H. Corliss. S. M. Allen.

Pump, G. E. Corliss.......................
Pump bractet, Adams \& Platter.
Pump for compréssing illuminating gas
J. Pintsc
Pump, force

Pump, farcee s. Seamble, Jr....
Railway signaling apparatus, H. Ely, Jr
Railway tie, S F. Seel
Railway tie, S. F. Seely....
Refrigerator. J. H. . stiflever.
Rolling mill. W. H. Glover.
Roofs, construetion of composite, J. Brokenshire
Rope making machine, F. Woods..............
Rubber with colors, ornamenting the surfaces
hard, F. A. Nickerson

	Saw mill. gang, J. M. Story Saw mill head lock, S . Wh hite
	Saw mill head block, s. white.
	Scale, pendulum, J. B. Atwater.
	Screv
	Seal
${ }^{233} \mathbf{3}, 623$	Selenium
746	treatin
	Sewing machine, H. N . KJ
${ }^{235,697}$	Sewing machine brake, C.J
	Sewing machine, butto
9,511	
. 235,622	Ship, screw steam, McCarter
235,768	shovel. tongs, and
	Peyton
	Shutter fa
	Silver fro
	Skate. r
	Smokesta
	Soap, perforate
	Spring sad
	bo
	ste
235,829	Sto
	sto
	st
	Swimming apparatus M
5,739	Telegraph wires into pipes, method of intro- ducing. D. Brooks, Jr...........................
	Telegraphy, dynamo-electric, o. Lugo...233,687 to
	o.
	${ }^{\text {den }}$
	${ }_{\text {Teleph }}^{\text {Teleph }}$
	Teleph
	Thill coupling, L. B.
	ing
	J.
	Time, instrument for computing, H. J. Richardson
	тоу
235.621	Tubetesting, appara
${ }^{235,778}$	
${ }_{225}^{235,827}$	Vehicle spring seat,
	Venicle wheel. J. A. Pesant
5.5	Veutilating attachment for funnels, G. M. Wick-
	life ..
	Wagon br
	Wagon brake. A. L. Withers
	Wash boiler trap, H. R. Robbin
	Watch, chronograph, C. H. Me
	Watering column,
	watering stock, appar
	eights.
2335.704	wells, ejector for oil. L. Stewart....................
	b.
	Windo
${ }^{235,667}$	Wire bendin
	Carpet, w. L. Jacobs......................................1206,
	Carpet, D. McNair
	Check, bank, R. Mill
	Clock stand H.J. Davies.
	Knitted fabric, C. C. . . Landen Knitted mitten, J. Collins...
	Jewelry, G. Hartje
	Oil ciotu, floor, J. Bar
	of
	Tobacen cutter, O.s. Harmon.
	RADE MARKS.
	Brooms and wisps, all kinds
	ing tobacco, Hirschl \& Ben
	Clothing. boys', A. shuma
	Remedy for catarrh and kilidre
	machines, and sad irons, S. C. Tratum \& Co.....
	se
	and similar affections, W. R. Reud.
	From December 17 to December 21.1880 , in
${ }_{23646}$	Hats, fisishing. D. M. E. Easton, Arcola. \V. J.
- 235,88	Heel burnisher
	Iron manufacture, C. M. Dupuy, Philadelp
	Printing machine, T. B. Doo
	Pulley blocks, H . L
	ne, J. Bigelow, Phila pelphta,
	${ }_{\text {Ta }}^{\text {Ta }}$

THERAPEUTICAL USE OF THE MAG of the thilliam A. Hammond, Miv. A considaration

 combined Punch and Shears
 ambertville Iron Works INDIA-RUBBER AND GUTTA PERCHA

Bookwalter Engine
 (CE-BOATS-THEIR CONSTRUCTION

AN EXPERIENCEI LEAD BURNER

 SEWAGE DISPOSAL. BY JAMES

HOW TO MAKE A TELESCOPE.-BY

 TYSON ENGINE CO., Philadelphia VENTILATION OF PUBLIC BUILD

BLACKSMITH AND WHEELWRIGHT.

ICE AND ICE HOUSES-HOW TO MAKE

ICE-HOLSE AND REFRIGERATOR-

MICROSCOPIC CRYSTALS CONTAINFD

8
ALAND'S Silent Injector,
Blower \& Exhauste

0)

WOODWORKING MACHINERY, CABINET AND PIANO MAN'PRS. WILEY \& RUSSELL M'F'G COMPANY,

 WHY DOES STEEL HARDEN ?-BY

PONY PLANER

UGAR MAKING-AN ACCOUNT 0

ELECTRIC LICHT.

TO ESTIMATE THE HORSE-POWER OF a steam Enginge.-Simple rules for estimating the horse-
op wor of
of

FOR SALE.

(PARIS FURNACE CO.

 b. F. Avery \& Sons,

50 Alt Lithouraphed Chrown Card no zalke. 10 c . UNIVERSAL GRINIEER.

- MPATENTS
 CAVEATS, GOPYRIGHIS, LABEL

Messrs. Munn \& ('o.. in connection with the publica-
ior of the ScIENTIIC AMERICAN continue to examine Improvements, and tc, act ae Solicitors of Patents for inventors.
Init this 1 i
Eears' Expe of business they have had over thirrty or the Preparact, and now have unequalec yadilue and the Prosecution of Applications for Patents in the
and United States, Canada, and Foreign Countries. Messrs. Munn \& Co. aliso attend to the preparation of Caveats,
Registration of Labels, Copyrights for Books, Labels, Registration of Labels, Copyrights for Books, Labels, Reissues, Assignments, and Reports on infringements
of Patent. All business intrusted to them is done $\underset{\text { We }}{\substack{\text { termo } \\ \hline}}$ Containing further information about Patents, and how o procure them; directions concerning Labels, Copy
tighte, Designs, Patents, Appeals, Reisues, Infringe ents, Assiguments, Rcjected Cises, Hints on the Sale tents, etc.
Foreign Patents.-We also send, free of charge, a nethod of securing patent Laws, fhowing the cost an tries of the world. American inventors should bear in mind that, as a general rule, any invention that is valu able tc the patentee, in this country is worth equally as Five patents-embracing Canadian, Engqlish, German French, and Belgian -will secure to an inventor the exHONDRED AND FITTY MIILIoNs of the most intelligent people in the world. The facilities of business and
team conmmunication are such that patients can be ob tained abroad by oar citizens almott as easily as a home. The expense to apply for an Fnglish patent is
\$75; German, \$100; French, \$100; Belgian, $\$ 100$; Canadian, 850 .
Copies of Patents.-Persons desiring any patent issued from 1836 to November 20,1866 , can be supplied with oficial copies at reasionable cost, the price de-
pending upon the extent of drawings and length of specifications.
Any patent issued since November 20, 1866, at which
time the Pareut Office conmenced printing the drawings and specifications, may be had by remitting to his office \$1.
A copy of the claims of any patent issucd since 1836 whil be furnished for $\$ 1$.
When ordering copies, please to remit for the same tion, and date of patent. United States patente, sent frec. A handsomely bound Reference Book, gilt eldees, contains 140 pages and many engravings and tables important to every pat entee and melianie, arica

MUNN \& CO
Publishery SCIENTIFIC AMERICAN,
BRANCH OF FICE-Corner of ${ }^{\prime}$, and Yth Street

THE PERFECTED STYLOGRAFIC.

READERS' AND WRITERS' ECONOMY CO.

(A new Parlor torgan.) The very best cabinet or par
lor organ for the money to l)e found in this country lor organ for the money to be found in this country.
I chalenge its equal. It centains 17 beautiful Solo
Stops, 5 full sets Golden Tongue Reeds. Sub Bass,

BAIRD'S :oous
 FOR PRACTICAL MEN.

 PAYNE'S FARM ENGINES.

 BIG PAY pies strour. Rubber rriting stamps. Same

SEND FOR THE
BEST BAND SAW BLADE
LOONDON, BERRY \& ORTON, Phila., Pa.

CIGAR BOX LUMBER.
SPECIAL PRICES to all parties or and upwards. Being Sole Manu facturers of the cele-
brated perfectly CUT AND PRRESS DRIED LUMBER,

FREEE MACHINISTS AND TTEAM FITTERS.

PIANOS \&ORGANS,

 This beatirinulpolo stop "Celestina connecter French worn.
tet of powerful reeds which is so tunct and voiced as to protuce an exact in itation of a a french horrl.
It has the grand organ right tand loft, (2 Knee Swells,)
50 ctaves, fine walnut case, beautiful french veneering, handsomely carved, handles each end, fine lam
stands, pocket for music, extra large fancy top stands, pocket fur music, extra, large fancy top.
Beatys new paltat Stop Action, the finest action
ever placed in ont organ. Height, 50 in. Depth, 2 in.
Length, 49 in . Its weight when boxed will be over ever placed in an organ. Height, 50 in. Depth, 24 in.
Length, 49 in. Its weigh when boxed will be over
400 los . It has a sliding Iid. Its pedals are covered 400 lbs. It has a sliding lid. Its pedals are covered
with metal instead of carpet. Traking all things in consideration, it is the finest organ
ever built. Agents (Mononpolist pri
instrument the I will box and deliver
the above organ on board
carshere Pack with it a fine
stool, book \& music for only stool, book \& music for only the enormous My increase in the saleso of selves of them, Therelly extend theorfer antil the the
30 day of April, 1\$81. Please write your let unt
 to $\$ 1,000,2$ to 32 Stops. Small Organs as low as $\$ 15$. For the Holidiay season. Prices of Organsfrom $\$ \$ 30$ Aemand for the new style No. 5000"، the London", at \$65. is without a parallel. It is by far the finest
organ ever placed in the market, as thousand will tes iff. I am obliged to work my men overtime in RTV Thatest Illustrated Catalogue with beautiful steel plate Engraving, sent free. Those Address or call on DANIEL F. BEATTY, Washington, New Jersey.
 DUC'S ELEVATOR BUCKET

NEW YORK BELTING AND PACKING COMP'Y.
 $\mathbf{E M E R Y W H E E L S}$ All other kinds Imitations and Inferior.
standard BELTING, PACK ING, and HOSE. John h. Calreserve, Trear.

COẄ YORK.

"BLAKE'S CHALLENGE" ROCK BREAKER.

 TOHN R.WHITTLEXY \& CO

SURFACE FILE HOLDERS.

 langdon Nitre Boz Con, Langlon andi New

Pond's Tools, DAVID W. POND, Worcester, Mass.

 ${ }^{3}$ safety hoistive
Machinery

PFREITINE
High Presssure Engine and Boiler Ett.
 limited. of London. in thin country. All compmuni-
cationsaddressed to him onthis subject will receive
attention.

Heavy Punches, Shears, boller shop rolls,
RADIAL DRILLS Etc.
HILLES \& JONES,
E
 TIFIo Americav will be isent for one copy of of The Scien- numbers-
postageprepaid, to any subscriber in the United States or Canada, on receint of three dollars and anenty
cents by the publishers; six months, $\$ 1.60$; three cents by the
months, $\$ 1.00$.
Clubs.-One extra copy of The Scientific Amfri-
CAN will be supplied gratis f orevery club of fivesubscribers at $\$ 3.20$ each; additional copies at same proportionate
rate.
One copy of The scievtific Amprican and one cony of The Scievtific aminican supplement will be sent
for one year, postage prepaid, to any subscriber in the United States or Canada, on receipt of seven dollurs by the publishers.
The safest way to remit is by Fostal Order, Draft, or
Express. Money carefully placed inside of envelopes. Express. Money carefully placed inside of en velopes,
securely sealed, and correctly addressed, seldom poes
astray, but is at the sender's risk. Address all letters securely seale
astray, but is at the sender's risk. Address all letters and make all orders, drafts, etc., payable to
MUNN \& CO.,
Park Row New,

To Foreign Subscribers.-Under the facilities of the Postal nion, the
by post tirect from New York, witn regularity, to subscrib-
ere in Great Britain. India, Australia, and all otiner British colonies; to France, Austria. Belgium, Germany Russia, and all other European States; Japan, Lirazil!
Mexico, and all States of Central and South America. Terms, when sent to foreign countries, Canada excepted,
 postal order or draft to order of Munn $\&$ Co., 37 Pars Row, New York.

Machines Making

ICE AND COLD AIR.

 ROOFINC. MillStones and Corn Mills
 THE BAKER BLOWER.

PYrometers, $\begin{gathered}\text { For showink heat } \\ \text { Orent Hot }\end{gathered}$
 ROCK DRILLS, COMPRESSORS, FUSE,
BATTERIE

- WDOE R

Mile 00 P 2

The Cameron Steam Pump, DESIGNED FOR USEIN MIIMTES,
ALSO FOR GENERAL MANUFACTEURING AND EIEIE PTUMEPS.
Pump furnished with Movable Linings in Iron, Composition, or Phosphor-Bronze
address THE A. S. CAMERON STEAM PUMP WORKS, FOOT EAST 23d STREET, NEW YORK CITY.

NEW PULSOMETER
saye over Fifty per cent. in Fuel with greater iuty than
Nother Steam Pump in the marker also more Simple. urabie, and Compact. Specially dianted to Mining and Gas Works, Tanneries, Hreweries,
Sucar Refineries, and other manufactures. For Draining Quarries, Cellars, Plantations, and
arious other purpose. For Contractors use it has
NO ¿ Cond for book giving full description, reduced prices, and many letters
me wation from leading manufacturers and others throughout the country wh
that rULSOMETER STEAM PUMP CO., p. 0. . oox Xo . 1033.

HARTFORD
STEAM BOILER
Inspection \& Insurance
COMPANY
 f. forerce, Sec'y.
 I RETENT SLIPPING. The andsomest, as well as the safest
anriagestepmad. Forged rom best
ann
and ron, and formed witha sunken panel,
in which is secured a plating of richly
moulded rubber.
Durability war. moulded rubber. Burabnty
ranted. Send for illustrated circular.
Rubber Stop M'f's Co., Beston, Yass.

THE TANITE CO.

1881 .

PROMPT DELIVERY STANDARD GOODS.

301
 New York. STEAM PUMP COMPANY,

MECHANICAL BOOK:

 chinists and EEmineers.Di. VAN NQS'IRAND, 23 Murray it., New Yo WATER TUBE STEAM BOILER BABCOCK \& WILCOX, Engineers.
30 Courtlaud St., $\quad-\quad-\quad$ New Yo
 Builders, Contractors need them. $\$ 24.00$ doz.
Address A. B. CUIIU, 197 Water St., New Yol BRADLEY'S CUSHIONED HAMME
 Esterbrook Steel Pen Wiorks, Camden, N. J. $\quad 25$ Joinin St. New Yo: celebrated "red strip" beltin RIBBER belting, packing, Anv hosk.

VALVES AND FIRE HYDRANTS.
THELDDLOW VALVE M, F'G Co

 Mason \& Hamlin's Cabinet Organ

AIR ENGINES AND ELEVATOR:
 GUNS, PISTOLS, AMMUNITION, \& E. REMNGAGN EONS,

Rock Drills and Air Compressor:
 Emery Wheels and Grinding Machiner alehigh valiey every wheel co.
FILES, DRILLS, CHUCKS, VISE TAPS, REANERS, STHE TOOIS, \&c., \&c.
coodnow $\&$ wiemtMan, boston, Ma $\frac{\text { goodnow \& wieituans, Boston, Mas }}{\text { Metaline and Star Roller Bush Tackile Blocks, } 8}$ BAGNALL \& LLODD,
Boston, Mass., and 33 South Street, New Yor Establ'd EACLE ANVILS. 184 Solid CAsT STEEL Face and Horn. Are Fully W_{t} ranted. Retail Price, 10 ets. per lb. HOWARD TRON WORKS, CISTERN, WELL, AND FORCE PUMPS 93 Libertyst., New Corki, and Seneca Falls, \mathbf{N} Brass Cocks, Valves, and Fittings

 Stram Heating Apparatus.
50 Federal st., Boston, Mass. so Federal St., Boston, Mass. MINER'S PAT. SQUIBS for BLASTING mfd. by Miner's Supply Co., St. Clair, Selill Coo., P: MILES BRO. \& CO., Manufacturer BRUSHES of every descriptio The Greatest Rock Breaker on Earth

Plans and estimates furnished for any capacity of
SAW MILL MACHINERY.
 PRINTING INKS

