under the water another pair betake themselves tothe water 'Professor Comes, and this confirms the opinion of Fraas. Own saiting, the salters hire the pens and make no charge to upon the same side of the rush. In this case the upper The author has classed the plantsin alphabetical order, and the slaughterers, but receive the hoofs of all the animals pair turn to the opposite side of the stalk, and thus they devoted to each one an article 10 which he recalls the prin-
carry on their work unhindered. At the approach of an observerthey fly away, apparently disturbed in their work, but when they are under water they can only be disquieted to a certain degree. If they are touched they clasp the stalk more firmly, and if still further disturbed they creep up the stalk more quickly than usual in order to fly a way, The pierced places in the stalk spread out into a brown spot under the water. The larva emerge from the pointed end of the egg.
Nearly all dragon flies are brilliantly colored, but the colors fade with their life, and in a few hours after death the most brilliant dragon fly will have faded to a blackish brown.-Brehm's Animal Life.

NATURAL HISTORY NOTES

The Seventeen-Year Locust.-Professor C. V. Riley states in the American Naturalist that the present year will be marked by a quite extended appearance of this interesting insect, both a seventeen and a thirteen year brood simulta neously appearing. These two locusts agree in every respect except in the time required for their full development. The last simultaneous appearance of the two broods was in 1860, and their appearance the present year will doubtless give entomologists a chance to perfect their knowledge as to the geographical range of the insects. Pupæ have already been reported either near or upon the surface of the ground in several loc:alities. The thirteen-year brood is by far the more extended, and occurs very generally throughout the Southern States, both east and west of the Mississippi.
Electrical Insects.-Entomologists inform us that a few insects are known which have the power, like the electrical eel (Gymnotus), of giving slight electrical shocks to those who handle them. Kirby and Spence, in their Entomology, describe one of these insects, the Reduvius serratus, known in the West Indies as the "whecl bug," and state it can communicate a shock to the person whose flesh it touches. Two instauces of effects upon the human system resembling electric shocks, produced by insects, have been communi cated to the Entomological Society by Mr. Yarrell: one mentioned in a letter from Ladyde Grey, of Grobz, in which the
shock was caused by a beetle, one of the Elateridee, and shock was caused by a beetle, one of the Elateride, and
extended from the hand to the elbow on suddenly touching extended from the hand to the elbow on suddenly touching
the insect; the other caused by a large hairy lepidopterous the insect; the other caused by a large hairy lepidopterou ney, R.N., who felt on touching it a sensation extending up his arm similar to an electric shock of such force that he lost the use of his arm for a time, and his life was even considered in danger by his medical attendant.
Grooth of Plants in Oil.-M. Van Tieghem has quit recently discovered, and communicated to the Bulletin of the Botanical Society of France, the curious fact that many of the lower plants (\mathbf{A} scom y cetes, Mucorini, etc.) can live and sometimes fruit very well when they develop in oil alone and far removed from all contact with the atmosphere Unpurified oils are sown with a quantity of spores, and then if a slightly moist substance be immersed in the oil, it becomes covered with vegetation. The common mould, Penicillium glaucum, among others, develops in oil and fructi fies very well in the midst of the liquil, but to make the spores germinate requires the introduction of a small quan tity of water at first. These plants germinate owing to the oxygen dissolved in the oil, and they possess the property of forming water at the expense of the clements of the oil. A species of yeast cultivated under such conditions has the property of extensively saponifying the oil in which develops, without the disengagement of gases.
The Flora of Pompeii.-In 1851, the botanist Schouw pub lished in his book, " Dic Erde, dic Pflanzen und der Mensch," some facts relating to the plants represented on the frescoes of Pompcii. In a recently published work by Professor Horace Comes, "Iliustrazione delle Piante rappresentate nei dipinti Pompciani," the author has passed in review no les than fifty species which are represented on the frescoes, and which he was cnalled to identify, and twenty concerning which he is in doubt. Among the identified species are several that have never been mentioned by other writers on the subject; for example: Althea rosea (holly hock), Chrysanthemum coronurium, Lagenaria vulgaris (calabash), and enough known by the ancients to have a place on their cnough known by the ancients to have a place on their
frescoes, may well have been the "arborescent mallow" of frescoes, may well have been the "arborescent mallow" of
which Theophrastus speaks, and which has been referred to Lavatera arboren, although its full growth is attained in a few months, according to the Greek author. Narcissu: pseudb-narcissus corresponds in its emetic properties with the
"Narcissus genus alterum herbaceum" of Pliny. The edible fungus, Lactarius deliciosus, is easily recognizable on the frescoes, and it is to this species, and not to a Boletus nor to Russula integra, that Pliny refers in the passage " ${ }^{23}$ Fu
It appears from the frescoes that in the time of Pliny the naturalist, the Romans possessed through acclimatization, or at all events knew with certainty, plants foreign to Italy Among these are the Lagenaria, cited above, the peach tree Acacia nilotica, Platanus orientalis (plane tree), Tamarix in dica, etc. Onc of the pictures represents the Papyrus and Nelumbrum speciosum, along with the hippopotamus. Morus nigra (black mulberry) is among the plants recognized by
cipal passages of the authors and commentators who have referred to it. He believes the huakindos of Homer to have been Gladiolus segetum, and the hyacinthus of Pliny, lris

A New American Fern.-The many lovers and collectors of ferns will be interested to know that another new species has recently been added to the list of the Pacific Coast forms. This time it is a Cheilanthes-a very beautiful species-and it has been named by Mr. G. E. Davenport (who describes and gives a very beautiful figure of it in the June number of the Torrey Botanical Bulletin), C. Parishia in honor of its discoverer, Mr. W. F. Parish, of San Ber nardino, Cal. It was detected in the crevices of rocks on hill in San Diego county. Nothing definite is as yet known of its abundance, but Mr. Parish thinks that it is probably carce, as he could find but two or three plants.

agricultural inventions

An improved sack or flexible receptacle for cotton, wool, and other substances, has been patented by Mr. अilledge B. Wever, of Jolunston's Depot, S. C. The sack is attached to and envelops a jointed extensible frame that may be so adjusted as to distend it and support it in upright position, thus enabling it to be filled quickly and easily.
An improved stalk and weed roller and cutter has been patented by Mr. Henry II. Spencer, of Mound City, Ill. This machine is so constructed that the knives are at rest or have no reciprocating movement until, in the revolution of made, by cam-and-gear mechanism, to mike a quick stroke, thus instantly severing the stalks or weeds upon which the whole weight of the machine is at that moment imposed The knives are instantly retracted after such stroke by means of springs suitably arranged for the purpose.
Mr. Lewis Shepard, of Mace, Ind, has patented an im proved harrow that can be conveniently adjusted to adapt it for various kinds of work. The harrow is made in two parts, each of which is made in the shape of what is known An harrow.
An improved hopple or device for confining the legs of horses or other grazing quadrupeds, so as to lamper their motion and thus restrain their wandering, has been patente by Mr. Charles J. Gustaveson, of Salt Lake City, Utah Ter.

How Hides are Taken Off and Salted.

In the abattoirs of this city the flayers of cattle use in taking off the hides a knife with a straight back and a keen edge, broad at the haft, but tapering up almost into a point at the end. The hoofs are first taken off at the first joint, a piece of the loose flesh at the throat cut out, an incision made in the neck, and the knife run down through the mid dle of the belly and the center of the lower side of the hair tail. The animal, which, up to this time, has been lying on its back, is inclined a little to one side, being supported in quarter carefully along until the hide is taken nearly off the side which is uppermost, then the animal is rolled over on that side and propped up as at the beginning, and the same flayng operation is repeated on the part which was downward tirst. Next a wooden support, about four feet long, si inches deep, and two inches wide, having a large iron hook
in the middle adapted to be fastened to a rope for hoisting in the middle adapted to be fastened to a rope for hoisting above the frst joirg incisions made in the hind and the carcass lifted up by a windlass, when the projecting ends o he joist are supported by cross beams about nine feet from the floor, and the body hangs suspended therefrom. One of he workmen now grasps those portions of the hide which have been taken off the sides of the animal near the neck, and another takes a large butcher's cleaver, and using the back, not the edge of the instrument, by repeated blows free the skin from the rest of the carcass, while it is pulled of by the first workman. Great care is exercised in the proces of flaying, as the workmen are subject to a fine for each cut and score on the hide.
When freshly taken off the hide is worth about 8 cent per pound. In this state it is sold to the salters with the pates and tails on. The salters place them in beds of about 600 each. The floor of the salt room is geverally cemented and the bottom layer of the hides is laid with the hair side down; the salt is then sprinkled on the flesh side, and anothe layer is put down in like manner until the bed is complete The hides are usually left in the salt from ten days to two weeks. The salt used must be of good quality and ground rather fine, as in case a lump of even the size of an egg is left upon the flesh side it will eat into the hair of the hide placed above it and very seriously detract from its value. It takes about 180 bushels of salt, worth from 32 cents to 35 cents per bushel, to each pack of 600 hides. When the hides are taken out of salt they are well shaken and folded, first doubled lengthwise, and then wrapped up in four or five folds. In some cases salters contract their hides to tanners by the month or year, and settlements are made at the end of each month on the basis of the average ruling price dur ing that period. It is now, however, becoming customary for them to sell each lot to the tanner or dealer who will pay the highest figure at the time of delivery.
In some of the abattoirs where the butchers do not do their
killed in lieu of other compensation. In the Jersey City abattoir the salters pay $\$ 1,000$ per annum for each pen,
affording accommodation for fifteen animals at a time.-Shoe affording accommoda
and Leather Reporter.

Sugar trom Rags.

The newspapers have lately taken up the subject of making sugar from rags, and some of them seem to regard it as a new invention. This, however, is by no means the case. It has been long known to chemists that if vegetable fiber, such as that of cotton, flax, etc., be submitted to the action of sulphuric acid, it is ennverted into soluble starch or dextrine, and this is readily convertible into sugar. The ordinary process of malting is simply a conversion of the starch of the barley into sugar by the agency of a ferment called "diastase," which is for med in the barley, and is so effective that only one five-inundredth part is sufficient to set up the action by which the insoluble starch is converted into dextrine, and then into sugar. This occurs when the grain of barley is sown in the ground, and is the natural operation by which the germ is fed: the germ having neither mouth nor stomach, cannot take solid food like the original starch granules which surround it in the seed; but when that starch is converted into sugar, the baby plant can absorb it, and continues to absorb it until its rootlets and first leaf are formed. By this time the sugar is all used up, but the plant is now able to obtain its nourishment from the ground by its root, and from the carbonic acid of the air by its green leaf or leaves.
Such is the ordinary life history, not only of the barley plant, but of all others. The starch is to the plant germ what the yolk and white of the egg are to the chick germ. If the sugar were ready formed in the seed it would be dissolved away at once by the water in the soil, and the germ would perish prematurely, but by the exquisite chemistry of nature the conversion of the insoluble starch into the soluble food of the germ goes on just so fast as the germ can use it, and thus the supply is kept up till the joung plant can shift for itself. The maltster forces the natural process, and then kills the germ by roasting the seed when he has obtained the maximum amount of sugar.
Fruits also are sugar factories, in which is conducted the whole process of making sugar from rags, the fiber of the rags being represented by the fiber of the unripe fruit. Every boy who has struggled to eat an unripe apple or pear knows that the unwholesome luxury is what he calls "woody," as well as sour. The chemist describes it similarly. His technical name for the tough material is woody fiber," under which name he includes nearly all the fibrous materials of the vegetable world, for they all have fundamentally a similar chemical composition. This woody fiber is made up of carbon and the elements of water. Starch and sugar are composed of the same elements, their differences of properties being due to differences of arrangement and proportions of the constituent elements. Thus the change of insoluble starch into dextrine, and dextrine into sugar, or the change of woody fiber into dextrine and sugar, are effected by very small modifications of chemical composition
We all know that the unripe apple or pear is sour, or that it contains an acid as well as the woody matter. Now, this appears to act after the manner of the sulphuric acid that the chemist applies to the rags, but it acts more slowly and more effectively. The sweetest of pears are gathered when hard and quite unfit for eating, but by simply setting hem aside and giving this acid time enough to do its work, the hard fibrous substance becomes converted into a delicious, sweet, juicy pulp.
The natural chemistry here has a great advantage over the artificial operation, seeing that the natural acid either becomes itself converted into sugar or combines with the basic substances in the fruit, forming wholesome salts. Not so the sulphuric acid of the chemist. He must get rid of this from his rag sugar; and herein lies the difficulty of the process. The writer tried the experiment more than twenty years ago, using lime for the purpose of removing the sulphuric acid, but found that in removing the sulphate of lime he lost much of the sugar which this solid absorbed, and from which it could only be removed by great dilution, and then not completely. To do this practically would cost so much that the rag sugar would be far dearer than that which nature beneficently manufactures by similarly, but more effectively, acting upon the fibers of the sugar cane or beet root.
There is little risk of the sugar trade being disturbed, or of the paper makers being deprived of their raw material, by the rivalry of rag sugar, though the chemist may display in a show glass some crystals that he has made from one of his own worn-out shirts.-London Grocer.

Good Word for Cast Iron Stove

For some time Prof. Ira Remsen, of Johns Hopkins University, has been investigating for the National Board of Health, the alleged danger to health in apartments heated by hot air furnaces and cast iron stoves. The results of the investigation, Prof. Remsen tells the Baltimore American, cannot well be given in a few words, but in general, it may be said that there is practically not much danger from carbonic oxide involved in the use of hot air furnaces and

