sximutific gmurrian.

HSTABLISHED 1845.
MUNN \& CO., Editors and Proprietors.
NO. B'Y PARK ROW, NEW YORK.
O. D. MONN. A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN. One copy, one year postage included...
One copy, six months, postage included 1806
Qlubs.-One extra.copy of The Scientific American will be supplied grat is for every cuub of flve subscribersat $\$ 3.20$ each : additional copies at same proportionate rate. Postage prepaid.

MUNN \& CO., 37 Park Row, New York
The Scientific American Supplement
Is a distinct paper from the Scievtific American. THE SUPPIEMENT
is issued weekly. Every number contains 16 octavo pages, uniform in size is issued weekly. Every number contains 16 octavo pages, uniform in size
with Scientific American. Terms of subscription for SUPPLEMLNT, with SCIENTIFIC AMERICAN. Terms of subscription for SUPPLEMiNT,
$\$ 5.00$ a year, postage paid, to subscribers. Single copies, 10 cents. Sold by all news dealers throughout the country.
Combined Rntes. -The SCIENTIFIC AMERICAN and SUPpJ, IMmind
will be sent for one will be sent for one year postage tree. on receipt of seven dollars. Both
papers to one address or different addresses as desired. The satest way to remit is by draft postal
Address MUNN \& CO. 37 Park Row, N. \mathbf{Y}.

Scientifc American Export Edition. The Scluwtric Amprican Export Edition is a large and splendid peri-
dical, issued once a month. Eich number contains about one hundred odical, issued once a month. Each number contains about one hundred
large quarto pages, profusely illustrated, embracing: (1.) Most of the plates and pages of the four preceding weekly issues of the Sculver
An $1:$ RICAN, with its splendid engravings and valuable information: Commercial, tiade, and manufacturing announcements of leading houses. Terms for Export Edition, 85.0 C a year, sent prepaid to any part of the
world. Single copies 50 cents. Manufacturers and others who desire world. Single copies 50 cents. Manufacturers and others who desire
to secure foreign trade may have large. and handsomely displayed an nouncements published in this edition at a very moderate cost. The ScIE \backslash TIFIC AMviricAN Export Edition has a large guaranteed circu-
The ation in all commercial places tbroughout the world. Address MUNN \&
co . 3 i l'ark Row. New York.

NEW YORK, SATURDAY, MAY 14, 1881.

TABLE OF CONTENTS OF THE SCIENTIFIC AMERICAN SUPPLEMENT NO. 280,
For the Week ending May 14, 1881.
Price 10 cents. For sale by all newsdealers.
I. ENGiNEERING AND MECHANICS.-
Sunken Vessels. By Dr. W. RAydr..

Sunken Vessels. By Dr. W. RAy DT.
Preliminary Report upon the Imp
....................... Preliminary Report upon the Improvement of the Missouri
River. By Major CHAs. H. SUTER, U. S. Eng. A valuable and River. By Major CHaS. H. Suter, U. S. Eng. A valuable and
timely study of the physical conditions and peculiarities of the timely stuay of the physical.
channel of the Missour River..
The Institution of Naval
 ing. On the Almirante Brown, Argentine Steel-faced Corvette.
By J. D'A. SAMUDA.-On the Peculiarities of the Steel Plates SupBy J. D'A. SAMUDA.-On the Peculiarities of the steel Plates Sup-
plied for the Botiers of the Imperial Russian Yacht Livadia. By plied farker....
The Hydraulic Machinery Applied to Operate the Leck Gates of
the Des Moines Rapids Canal. By R. RoLSTo Jones. 10 tigures. the Des Moines Rapids Canal. By R. RoLSTON JoNeS. 10 figures,
Plan and sections of canal lock chambers, etc.- Pumping engine Plan and sections of canal lock chambers, etc.- P umping engine
and distributing valve.- Engine house.- Plan, sections, and elevaand
tion of machinery at upper recess
Expansion Sleeve Couplig. Expansion Sleeve Coupling.
A New Trap. 1 figure... A New Trap. 1 figure.
Laying and Repairing and Ampere... and filtering apparatus.-India-rubber, gutta percha, and telegraph works, Silvertown - Front and side elevation of apparatus at Edge
Hill, Livergool. - Arrangement of apparatus for 2,000 to 4,000 galHill, Liverpool. -Arrangement of apparatus for 2,000 to 4,000 gallons an hour.-The Porter-Clark process at
Arrangement of filters, etc., at Liverpool..
iII. ELECTRICITY, LiGHT, ETC.-Division of the Electric Light, Molera and Cebrian ..
Mercadier's Researc
The Dent Chronograph. 4 figures.-The Dent chronograph ${ }^{446}$ mounted.-Details enlarged.-Details of marker.-Pendulum regu\cdots
 by telegraph........ i figures.-Apparatus for sending pictures
IV. NATURAL HISTORY. ETC.-The Seaside Zoological Laboratory at Naples. 3 figures.- View of building and surroundings.-
General view of the tanks in the large laboratory. - View of the laboratory in which the fishing products are distributed The Progress of the Fur Trade.-An elaborate revied of the his-
tory and present condition of the far trade of North A merica.....
V. BIOGRAPHY, ETC.-Michel Chasles.

BIOGRAPHY, ETC.-Michel Chasles....
Sea Sickness.-Main cuses, foul air and bad food.-Remed,
proper ventilation and proper cooklng...........................

TORNADOES, HAILSTORMS, AND WATERSPOUTS.

 At this season of the year, when storms of limited a At this season of the year, when storms of limited areaand great violence are apt to occur, we are equally apt to suffer from outbreaks of newspaper meteorology which are sometimes almost as appalling as the phenomena they attempt to explain. We may be excused, therefore, for assuming that the subject is one of popular interest, and for compiling some of the more significant and certain results of observation and scientific deduction with regard to the origin, conditions, and behavior of this class of storms.
A favorable opportunity for doing this is furnished by the recent publication of the 10th appendix to the report of the Superintendent of the United States Coast and Geodetic Sur vey, for 1878, containing the second part of Mr. William Ferrel's researches on cyclones, tornadoes, and waterspouts, in which the theory of cyclones is mathematically discussed at great length, with a comparison of the results thus obtained with the facts of observation. We may safely draw from this treatise suchinformation as may seem of interest to landsmen at this time, with reasonable confidence that we shall not be misled with respect either to facts or inferences. Although largely similar to cyclones, and governed by the same general principles, tornadoes form a distinct class of
meteoric phenomena. The initial temperature conditions meteoric phenomena. The initial temperature conditions
which give rise to cyclones generally extend over large areas. The conditions of tornadoes depend rather upon vertical re lations of temperature, under which the unstable equilibrium of the atmosphere is liable to be violently disturbed by slight local changes of temperature causing the under strata of air to burst up through the overlying strata. A cyclone is usually a broad, flat, gyrating disk of atmo sphere, very many times greater in width than in altitude; a tornado may be regarded as a column of gyrating air in which the altitude is several times greater than its diameter. The enormous velocities of the ascending currents in a tornado appear to be caused by the differences between the gyratory velocities above and those very near the earth's surface. The former largely prevent the air from pressing in tofill up the partial vacuum near the center, while the smaller gyratory velocities near the earth allow it to rush in there to supply the draught. The tendency of friction is constantly to use up the energy of gyration so that the tor nado cannot continue very long. The ascending currents carry up an enormous amount of aqueous vapor into the upper regions of the air, where it is condensed and produces the heavy rains observed in connection with tornadoes. An
ascending current of 60 meters a second, which cannot be ascending current of 60 meters a second, which cannot be
unusual in tornadoes, would furnish, under extreme conditions of air saturation, four inches of rain a minute, if it were to fall directly back. With such an ascen ding velocity, however, no rain could so fall. It would be thrown outside the vortex, giving an immense though lighter fall of rain over a larger area, especially if the tornado in its irregular progressive motions should remain stationary or nearly so for several minutes. If the velocity of the ascending cur rent is not so great that the water is all carried up to where the currents are outward from the vortex, and yet great enough to prevent its falling back, there may be in the lower part of the cloud a vast accumulation of rain, pre being dispersed by the inflowing currents from all sides toward the vortex. When the sustaining energy of the tornado is exhausted by friction or by the weight of water accumulated in the cloud, the water is liable to fall in mass, causing what is called a cloud burst. This is especially liable to occur in mountainous regions, for contact with a
mountain must greatly interfere with the gyratory motion of the tornado and the inflowing currents below, and tend to break up the system at once and let the whole load of water drop suddenly.
The water in cloud bursts is generally poured down. Long before the ascending currents are reduced so as to allow the waterto fall in drops it seems to collect at certain places and force its way in a solid stream down through the ascending air. Having once made an outlet for itself the water is necessarily accelerated in velocity, so that before reaching the earth the stream may be pouring with irresistible force, cutting, when it strikes, the sharply marked and often deep chasms left by cloud bursts, especially on hillsides.
When the ascending current carries the vapor into the region of frost-which is at a lower altitude within the gyrating funnel than outside of it-the condenser vapor is converted into hail. The small hailstones may then be kep suspended near the base of the snow cloud and enlarge d by additions of freezing rain. In this way compact homogeneous bailstones of ordinary size are formed. At the beight of 7,000 yards the air has lost more than half its density, yet an ascending velocity of twenty yards a second, which must be no unusual one in tornadoes, would sustain even at that altitude hailstones of considerable size. It is not neces sary that the bailstones should remain in the freezing region a long time, or remain stationary. They may be carried from this vortex out where the ascending current is small,
and, dropping down some distance, may be carried into the and, dropping down some distance, may be carried into the
vortex by inflowing currents and again thrown up to the region of frost. The nucleus of large hailstones is usually compacted snow. A small ball of snow saturated with rain is carried higher and freezes: and being of less specific gravity than compact bail it is kept where it receives a thick coating of ice from the unfrozen water dashed against it, and afterwards falls to the earth, either at a distance
near it after the uprush has been sufficiently exhausted nometimes, as in the case of the cloud burst, an almost inSometimes, as in the case of the cloud burst, an almost in-
credible amount of accumulated hail may fall in a short credible amount of accumulated hail may fall in a s
time, when the energy of the system is suddenly spent.
The formation of large bailstones by concentric layers of clear ice and white snow, laid on like the coats of an onion, will be readily understood from the foregoing. As many as thirteen layers have been observed in large bailstones, showing that they must have made balf a dozen circuits, being successively thrown out of the froty vortex above and sucked in below by the inflowing currents, each time adding to their atings of snow and ice before their final fall to earth
When the tornado is very small in the area covered by the gyratory motion, a land spout or a water spout is formed, as it may happen to occur on land or at sea. In these the gyratory velocity rapidly diminishes with distance from the center. Their destructive effects are sudden and often great, but the area of violence is small. In the center of a waterspout, as in that of a tornado when in full force no rain falls or water descends in any form, though a heivy shower often falls in the vicinity. On land dust and light substances are carried up, and as they are being collectel from all sides by inflowing currents toward the vorte: below, they assume the form of a cone, which meets the descending spout, falling apparently from the clouds, and thus give the whole phenomenon the appearance of an hourglass.
The observed diameters of waterspouts range between two and two hundred feet or more, and their heights from thirty ofifteen hundred feet, sometimes very much more; but none of these observations can be regarded as at all exact. With a high temperature and a very low dew point Mr. Ferrel calculates that a water spout might reach a mile in height, but such conditions must occur rarely. Waterspouts are often observed to drop down from a cloud in an incredibly short space of time, and to be drawn up again in the same manner; but this is allan illusion. When the gyrations are such as to not quite reduce the tension and temperature in the center, so as to condense the aqueous vapor and make it visible, a very slight increase at once reduces the temperature sufficiently, and the spout appears from top to bottom almost instantaneously. Just the reverse of this takes place, when the spout breaks, and it seems to be drawn up instantly; it is dissolved, not lifted. Tornadoes and waterspouts originate only in an unstable state of equilib rium of the air, which requires an unusually rapid decrease of temperature with increase of altitude. This can take place only when the strata nearest the earth are unusually heated; accordingly they never occur at night, or in the winter, and but rarely in cloudy weather. If any agitation of the air, such as that arising from the discharge of cannon, tends to break up these meteors, then any considerable disturbance of the air from any cause must tend to prevent their formation. Hence they occur at sea and on the lakes only when there is little or no wind.
White squalls are invisible spouts. In such cases the dew point is so low, and the cloud when formed so high, that the gyrations are invisible. Still the gyrations and the rapidly ascending current in the central part are there, and also the rising and boiling of the sea. Over the boiling sea, high up in the air, is a patch of white cloud, formed by the condensation of the vapor when it reaches the required height. The bulls-eye squalls on the west coast of Africa are of precisely the same nature. In these cases the air is too dry to furnish the cloud necessary to make the spout, or center of the gyratory movement, visible
In hot dry climates these ascending whirls of air form sand spouts or pillars of sand. Both water spouts and sand spouts are hollow.

HEAT, LIGHT, AND POWER WITHOUT COST
One of the greatest difficulties that beset the progress of the brave men who venture upon explorations in the Arctic regions is the terrible cold and the deprivation of light, But if we may believe in the theories of Professor Gamgee, as set forth in the remarkable specification of the patent for his new thermo-dynamic engine-date of April 19, 1881the future Arctic investigator will have no trouble in keeping warm, nor will darkness trouble him, for the harder every thing freezes the faster the engine will run
Says the Professor in his patent: "I utilize heat in this system downward to 0° Centigrade, and below towards absolute zero."
Since both heat and electricity may be produced by means of a rotating wheel, in degrees proportionate to the power of the wheel, it follows that explorers to the north may hereafter make themselves entirely comfortable by taking along a few of Professor Gamgee's self-running engines. These extraordinary machines depend on cold for their mo tive power, the very article that the uortherly world supplies in the greatest abundance, and that has beretofore been regarded as a drug in the Greenland market.
If Gamgee and the Patent Office are right, then the owners of coal mines may as well shut up shop. Fuel will no longer be required to produce either motive power, heat, or light. These great factors in human welfare will in future be enjoyed by mankind without labor or cost, all the indus tries of the world will be revolutionized, and a majority of them discarded for lack of further use.
In view of these considerations we would ask the Com missioner of Patents if be considers that he bas done the fair thing in granting a patent to Gamgee, while rejecting the ap plication of poor Keely, the prior inventor?

