most observers, according to Schoene, are liable to confound the odors of ozone and hyponitric acid. It is alleged further that ozone is not produced by the electric spark in a mixture of oxygen and nitrogen, but only oxide of nitrogen, and it is probably to the latter substance and not to ozone that we must attribute the odor sometimes observed after lightning discharges and sparks from an electric machine. Ozone , however, would appear to be produced by the silent discharge of electricity; but it has been justly observed that we know too little of this form of electrical action as an atmospheric phenomenon to justify our regaräing it as a probable source of supply of ozone.
In view of all these uncertainties touching the occurrence and action of ozone in the air, it may be prudent to wait a while before admitting ozone to be quite so powerful a factor of individual or national genius, health, or social development as Dr. Linsley and others would have us believe

PUBLIC WORKS IN NEW YORK CITY.

The report of the New York Commissioner of Public Works for the last quarter of 1880 contains many facts of more than local interest.
New York now has, south of Harlem River, $3341 / 2$ miles of paved streets, classed as follows: Stone-block pavements, $2291 / 2$ miles; cobble stone, 80 miles; macadam, $241 / 2$ miles; concrete, $1 / 2$ mile. There were laid last year 244,807 squar yards of pavement, covering twelve miles of streets. During the past four years $\$ 1,100,000$ have been spent upon new pavements and in restoring old ones, 641,957 square yards of worn out and rotten pavements having been replaced by stone blocis.
An appropriation of $\$ 400,000$ will be devoted this year to the substitution of stone-block pavement for the old cobble stones, which are all to be removed as fast as they can be. Mor han nine-tenths of the streets with stone-blocks when the plan is carried out. All plan for concrete and wooden pavements have been dismissed a unadapted to the city, and the macadam roadbed is used to only a very limited extent.
The sewerage system of the island embraces $3761 / 2$ miles of sewers, with 4,573 receiving basins. Over 5 miles of ewers and culverts, with 62 receiving basins, were added last year. In the older and more densely populated parts of th eity the sewers are in anything but a suitable or desirable condition.
A large amount of work in the way of grading, curbing guttering, and flagging new streets was done during th year, and a large area of new ground was made available for building.
Over 402 miles of streets are lighted, besides $21 / 2$ miles of piers and 61 acres of parks. The number of public lamps was 23,511 , an increase of 374 . Nearly 14 miles of new gas mains were laid, the entire length of gas mains now exceed ing 874 miles. The cost of the public lamps was a little short of half a million dollars. The gas consumed was $321,583,860$ cubic feet. One mile of Broadway has been lighted by electric lamps on the Brush system, and many private electric lamps help to illuminate the streets.

THE NATIONAL ACADEMY OF SCIENCES

The annual meeting of the National Acauemy of Sciences began in Washington, April 19, the venerable President of the Academy, Professor W. B. Rogers, of Boston, in the chair. The list of papers read included: "The Domain of Physiology," T. Sterry Hunt; "The Compass Plant of the Western Prairie," B. Alvord; "The Solar Constant," S. P. Langles; "The Color of the Sun," S. P. Langley; "On Mountain Observations," S. P. Langley; "On the Relation of Soils to Health," R. Pumpelly; "Reduction to Sea Level of Barometric Observations made at Elevated Stations," Professor Abbey; "Electric Light Photometry George F. Barker; "On the Relations between Strain and mpact," and "On the Structure of the Feet of Mammals, E. D. Cope; "On the Progress of Pendulum Work," C. S Peirce; "The Production of Sound by Radiant Energy," A. G. Bell; "On the Carbon Lamp Fiber in the Thermo
Balance," G. F. Barker; "Memoir of Count S. F. de Pourtales," Alexander Agassiz; "On the Utilization of the Sun's Rays in Heating and Ventilating," E. S. Morse; " On the Later Tertiary of the Gulf of Mexico," E. W. Hilgard An
At the Executive Session of Thursday, Professor A. W Wright, of Yale College, and Professor H. A. Rowland, of Johns Hopkins University, were elected members, and th following were elected members of the council; Professo S. F. Baird, Professor W olcott Gibbs, Cambridge; Professo A. Hall, United States Navy; Professor J. E. Hilgard, Coast Survey; Professor Clarence King, Professor Fairman Rogers, Philadelphia. Professor Simon Newcomb was elected Home Secretary, a

THE DATE OF THE GLACIAL ERA IN EASTERN NORTH AMERICA.
Mr. G. F. Wright, in a paper read before the American Association for the Advancement of Science, and published in the February number of the American Journal of Science and Arts, has made an attempt to calculate approximately the date of the glacial era in Eastern North America, by studying the depth of one of the bowl-shaped depressions

These depressions are of all shapes and sizes, from symme trical "kettle holes" to ponds and lakes of no mean dimenions. It is evident that they cannot always exist, for they Fore wearing down at the top and filling up at the bottom. For the same rea
The basin chosen by Mr. Wright for his investigations was one located near Pomp's Pond, in Andover, Mass., with a diameter of 380 feet, and having an accumulation of peat 96 feet in diameter at the bottom. It is evident that sinc the first formation of the crater-like depression no material can have reached the bottom except from three sources: (1) The wash from the sides; (2) the decay of the vegetation rowing within the rim; and (3) the dust brought by quire these three agencies to fill the bottom of this bowl to a depth of 24 feet, which would be equal to a depth of only 8 feet over its present surface-the present depth (17 feet) being estimated from the angle of declivity. Mr. J. Geikie, following the lead of Mr. Croll and others, who look to astronomical data alone, supposes that the so-called glacial period, whose marks we now study in these low latitudes, earth's orbit, which closed about 80,000 years a go, and hose maximum influence must have been exerted about 200,000 or 210,000 years since. But once in 21,000 years the stronomical conditions dependent upon the precession of he equinoxes for a glaciation of the northern latitudes occur hough owing to the present low eccentricity of the earth rbit this influence is now at its minimum
The question with the crater-like depression above-men ioned is: Could this have stood with so little change for 80,000 years? or even for 40,000 years, as supposed by Prof Hitchcock? If the close of the great glacial period be so ar back as Mr. Croll and Mr. Geikie estimate, we must be ieve that detritus could accumulate, in the situation above described, over a surface of the area of the present peat bog nly at the rate of one inch in 1,000 years; while, if we put he close of this period back 10,000 , the rate of accumula ion would seem as slow as the imagination can well com-prehend-one inch in 100 years. These considerations have ed Mr. Wright to look with increasing distrust upon the stronomical calculations which are made concerning th glacial period, unless the moraines mark the limit reached at the last semi-revolution of the earth's equinoxes about $\mathbf{1 0 , 0 0 0}$ years ago. He believes it evident that the glacial heir origin.

PHOTOPHONIC AND SPECTROPHONIC DISCOVERIES

At the meeting of the National Academy of Sciences,

 April 21, Prof. A. Graham Bell read an important pape describing at great length the recent investigations made by Mr. Tainter and himself in the field so brilliantly opened by hem a year ago. After referring to their earlier observation on the production of sound by radiant energy, Prof. Bell said that at his suggestion and during his absence in Europe Mr. Tainter had pursued the investigation of the sonorous ess of matter under the influence of radiant energy, em ploying a vast number of substances inclosed in test tube n a simple empirical search for loud effects. He was thus led gradually to the discovery that cotton-wool, worsted, ilk, and fibrous materials generally, produced much louder ounds than hard rigid bodies like crystals or diaphragms uch as had hitherto been used.Mr. Tainter next collected silks and worsteds of differen olors, and speedily found that the darkest shades produced he best effects. Black worsted especially gave an extremely oud sound. As white cotton wool had proved itself equal f not superior, to any other white fibrous material before ried, he was anxious to obtain colored specimens for com parison. Not having any at hand, however, he tried the effect of darkening some cotton wool with lampblack. Such marked re-enforcement resulted that he was induced to try lampblack alone. About a teaspoonful of lampblack wa placed in a test tube and exposed to an intermittent beam of unlight. The sound produced was much louder than any eard before. Upon smoking a piece of plate glass an holding it in the intermittent beam, with the lampblack surface toward the sun, the sound produced was loud enough to be heard, with attention, in any partof the room. With the lampblack surface turned from the sun the sound was much feebler.
The experiments were repeated when Prof. Bell returned and were continued by the two gentlemen together. It was ound that when the beam was thrown into a resonator, the nterior of which had been smoked over a lamp, very curious alternations of sound and silence were observed. Th interrupting disk was set rotating at a high rate of speed and was then allowed to come gradually to rest. A extremely feeble musical tone was at first heard, whic gradually fell in pitch as the rate of interruption grew less. The loudness of the sound produced varied in an interesting manner. Minor re-enforcements were constantly occurring which became more and more marked as the true pitch of the resonator was neared. When at last the frequency of the
interruption corresponded to the frequency of the fundamental of the resonator, the sound produced was so loud that it might have been heard by an audience of hundreds of people.
The extremely loud sounds produced from lampblack
demonstrated the feasibility of using this substance in a
articulating photophone in place of the electrical receiver formerly employed. In regard to the sensitive materials that can be employed, the experiment indicated that in the case of solids the physical condition and the color are two conditions that markedly influence the intensity of the sonorous effects. The loudest sounds were produced from substances in a loose, porous, spongy condition, and from those that had he darkest or moist absorbent colors. The materials from which the best effects have been produced are cotton-wool, worsted, fibrous materials generally, cork, sponge, platinum and other metals in spongy condition, and lampblack.
The explanation suggested for the superior loudness of the sounds produced by a dark porous substance, for example, lampblack, was as follows. Said Professor Bell:"I look upon a mass of this substance as a sort of sponge, with its pores filled with air instead of water. When a with its pores filled with air instead of water. When a
beam of sunlight falls upon this mass, the particles of lampbeam of sunlight falls upon this mass, the particles of lamp-
black heated, and consequently expand, causing a conblack are heated, and consequently expand, causing a con-
traction of the air spaces or pores among them. Under traction of the air spaces or pores among them. Under
these circumstances a pulse of air should be expelled, just as we would squeeze out water from a sponge. The force with which the air is expelled must be greatly increased by the expansion of the air itself, due to contact with the heated particles of lampblack. When the light is cut off he converse process takes place; the lampblack particles cool and contract, thus enlarging the air spaces among them, ool and contact, thus enlarging the air spaces among them, cumstances a partial vacuum should be formed among the cumstances a partial vacuum should be formed among the
particles, and the outside air would then be absorbed, as particles, and the outside air would then be absorbed, as water is by a sponge when the pressure of the hand is removed. I imagine that in some such manner as this a wave of condensation is started in the atmosphere each time a beam of sunlight falls upon lampblack, and a wave of rarefaction is originated when the light is cut off. We can hus understand how it is that a substance like lampblack produces intense sonorous vibrations in the surrounding air, while at the same time it communicates a very feeble vibration to the diaphragm or solid bed upon which it rests."
As intimated above the lampblack proved to be an efficient as well as economical substitute for selenium and tellurium in the electrical receiver of the photophone.
The investigation of the influence of radiant energy upon arious substances, solid, liquid, and gaseous, placed in different parts of the solar spectrum, resulted in the production of a new instrument of physical research which has been called the spectrophone. When different substances were used as receivers it was found that the loudness of the sound varied in point of position upon the spectrum in a remarkable manner. With the lampblackreceiver a continuous increase in the loudness of the sound was observed upon moving the receiver gradually from the violet into the ultra red. The point of maximum sound lay very far out in the ultra red. Beyond this point the sound began to decrease, and then stoppedso suddenly that a very slight motion of the eceiver made all the difference between almost maximum sound and complete silence. With red worsted entirely different results were obtained. The maximum effect was produced in the green at that part where the red worsted appeared to be black. On either side of this point the sound gradually died away, becoming inaudible on the one side in the middle of the indigo, and on the other at a short distance outside the edge of the red. With green silk the maximum was found in the red, with the limits of aunition in the blue on the one hand and the ulta red on the other. Hard rubber shavings gave a maximum in yellow. Vapor of sulphuric ether produced no audible effect, until a point far out in the ultra red was reached, when suddenly a musical one became distinctly audible Vapor of iodine disclosed its maximum in green. With peroxide of nitrogen distinct sounds were obtained in all parts of the visible spectrum, but no sounds were observed in the ultra red.
The repetition of these tests $1 n$ connection with an undis orted spectrum, that is, one produced by a diffraction grat ng, will obviously be necessary before any positive conclu sions can be arrived at touching the exact relations of color or wave-length to the sonorousness of different substances. In its present form the spectrophone is a modification of the ordinary spectroscope, made by substituting for the eyepiece a sensitive substance placed at the focal point of the instrument behind an opaque diaphragm containing a slit, the sensitive substance being put in communication with the ar by means of a hearing tube. With reference to the probable utility of the spectrophone, Professor Bell said:

Of course the ear cannot for one moment compete with he eye in the examination of the visible part of the spectrum, but in the invisible part beyond the red, where the eye is useless, the ear is invaluable. In working in this region of the spectrum, lampblack alone may be used in the pectrophonic receiver. Indeed, the sounds produced by this substance in the ultra red are so well marked as to contitute our instrument a most reliable and convenicnt substitute for the thermopile. . . . I recognize the fact that the spectrophone must ever remain a mere adjunct to the spectroscope, but I anticipate that it has a wide and independent field of usefulness in the investigation of absorption spectra in the ultra red."

Hot Water Compresses in Tetanus and Trismus. Sporer has successfully treated cases of tetanus by merely applying to the nape of the neck and along the spine large pieces of flannel dipped in hot water, of a temperature just bearable to the hand ($50-55^{\circ} \mathrm{C}$.)-Allg. med.-cent. Zeit.

