Wasting Color.

In looking over the imports of aniline dyes, and comparing them with the amount of goods dyed in this country, we are astonished to see how much more color we require to produce a certain shade than in the old countries. Does our cotton and wool require more coloring than foreign goods? There is no reason why it should, but where is the cause of this large consumption? We have principally to attribute it to the indifference of our dyers. If we look in our dyehouses, especially those which are connected with large establishments, we notice an almost constant stream of colored water of all shades running into our rivers, thus actually throwing away large amounts of money, which might be saved by very little care and attention. It might be the easiest way for the dyers in large dyeworks, after they have acquired the desired strength of their color, to let the liquor which remains in the dyebath simply run away, especially if a color of the same shade should not be immediately wanted again. But could not this color be saved and worked over again and be used afterwards? We have noticed in large dyeworks a constant stream of blue water running into the river, which would surely carry with it at least one pound of dry blue every hour. This is worth saving, even if some care and trouble is needed. If these dyeworks would arrange visterns large enough to hold the remainder of one certain color, and give it time to settle or precipitate the coloring matter with some chemical agent, a large amount of money could be saved. It might look at the first glance on this matter that this idea might not be very well carried out in large dyeworks, where so many shades are produced every day. It might need too many cisterns and too much extra work to make it pay; but a trial would not cost too much, and practical experience would bring the matter into a very easy state of working.

This might be a practical idea: After every dyeing process, when the liquor of a certain color is no more needed, collect it in a barrel, and add to it the same color every time during that day. Let stand for at least two or three days or longer. if the capacity of the establishment allow of it. Then draw off the liquor through holes in the barrel into a second one, and a large amount of color, in paste form, will be found at the sides and on the bottom of the barrel. This collect carefully, and dry. The barrel is, without washing out again, used for the same color and the whole commenced in the same manner again. The dry color, although sometimes not as good and bright as in its original state, will do very well for dark shades. Many dyeworks will be able to save in this manner up to one third of the color, which is certainly inducement enough to give the matter a thorough trial.-Textile Colorist.

A New Thermograph.

Dr. A. Wellington Adams, of Colorado Springs, has invented a new form of thermograph, which is designed for measuring and recording automatically the heat of the human body for a given or indefinite length of time. It is said to be a very ingenious contrivance, and is based upon the principles advocated by Breschet. There has long been need of an apparatus which would register accurately the rise and fall of temperature during sickness, the system in use being by the fusing disk, that I think the gentlemen who furnished sadly limited by many imperfections and the very narrow range of its applications.

The thermometer proper in Dr. Adams' instrument consists of a spiral spring made of two lamellæ of brass and steel respectively, soldered together, the brass occupying the outer side. As this spring expands uniformly with equal increments of heat, the brass, the more expansible of the two metals, will, upon a rise of temperature, givea platinum knob attached to the free end of the spring a concentric twist. In this way there is produced a varying pressure upon the contents of a vulcanite tube against which the knob impinges. The vulcanite tube is filled with a powder made of finely divided plumbago, gas carbon, and silver, and these contents, at the other extremity of the tube, abut against a platinum knob attached to a hard rubber bracket. The whole is inclosed in a circular, perforated German silver case, with vounded edges. The two platinum knobs are placed in elecvrical communication by means of binding posts. When the apparatus is introduced into an electrical current the latter enters through one of the binding posts and emerges at the other, passing in its course through the substance in the vulcanite tube. Two handles are provided at the sides of the descence are phenomenal measures of molecular velocity;

ditions, a sphygmographic and a respiratory curve, thus enabling pathologists, therapeutists, physiologists, and, in fact, general practitioners to study the inter-relationship of these three cardinal symptoms under various modifying circum stances. The inventor feels confident that he shall be able to make additions that may also furnish a moisture curve.

Correspondence.

History of the New Mineral "Hiddenite" So-called. To the Editor of the Scientific American :

I have seen the various articles in your paper touching the discovery of the new mineral as above. I discovered this mineral at White Plains, Alexander County, N. C., in 1876, and collected it as a beautiful variety of diopside, associated with beryl and other minerals. Shortly after its discovery I sent a number of specimens to different mineralogists, among these Prof. N. Spang, of Etna; and some time after that, or in 1879, Prof. W. E. Hidden came to Statesville with a letter of introduction and recommendation to me. I showed him my collection, and showed him some of this mineral, which was the first he had ever seen. I then took him to White Plains, and showed him the locality where I had been collecting this green mineral. Prof. Hidden went away, and some time after that returned with another gentleman. They called to see me, and Mr. H. remarked that they were going to take a ride. He, accompanied by his companion, then went, without my knowledge or consent, to the locality which I had shown him, and leased the land.

Up to this time the mineral had been pronounced diopside, but when Prof. Hidden commenced work upon the lease he sent some specimens to Prof. J. Lawrence Smith, who examined it and found it to be a new mineral and wrote to Prof. Hidden, proposing to call it "Hiddenite." I at once, upon learning of this letter, wrote to Prof. Smith, informing him that I had discovered the mineral about three years before Prof. Hidden came to North Carolina, and asked if I, as the discoverer, did not have the right to say what it should be named (intending to call it "Mitchellite," in honor of the late Rev. Prof. Elisha Mitchell, D.D., of this State, an able and devoted scientist). Prof. Smith's reply of November, 1880, led me to believe that the mineral would have no distinctive name, but would only be called spodumene, so I let the matter rest until I saw his article in the American Journal of Science for February, describing the mineral and conferring the honor of the name upon Prof. Hidden, and so wording the article as to deprive me I. A. D. STEPHENSON. of the credit of the discovery.

Statesville, N. C., April 2, 1881.

The Fusing Disk.

To the Editor of the Scientific American :

In your paper of the 16th inst. I find a reprint (with cuts) of an article from *Engineering* (London), relating to the fusing disk. I have written Engineering that the statements made in the article are so astonishing, and the work exhibited is so radically different from any that I have ever seen produced the article and cuts and made the statements contained in the article have made a mistake, and I asked for their address that I might give them attention first.

In answer to Mr. Emerson, permit me to say that I do not feel called upon to specifically answer in detail every article published relating to the fusing disk, or the theory which I. at the urgent request of many eminent scientists, have advanced, explaining the phenomena exhibited in its operation, as the machine and theory are now being considered in all civilized countries, as my receipts of letters and scientific journals show. But I will from time to time explain my theory, and will cheerfully accept the result of its discussion, whatever that may be.

I call the machine a fusing disk because I conceive that the material operated on is changed instantly from the solid state to the fluid state. I conceive that the change of state occurs because the material disengaged from the solid bar operated on flows downward and welds into a solid mass (nine inches below the point of fusion). I consider fusion simply as a phenomenal indication of the degree of intermolecular velocity, as temperature, luminosity, and incan-

same strip of paper, at the same time and under similar con-tion separates them, and a decreased motion brings them nearer together.

> When the molecular velocity of a body is of that low degree that the molecular resultant force exceeds the force of gravity, the molecules remain in a relative local position to each other, and are said to be in the solid state. Now, when the molecular velocity is increased to that degree so as to separate the molecules to such a distance from each other that the molecular resultant force which holds them together is reduced to a less measure than the force of gravity, the molecules are no longer held in a correlative position; they become mobile, and gravitate into the fluid state. And this is what I call fusion.

> The essential requisite of fusion, therefore, is the molecular velocity of fusion, and I conceive that this is attained in the fusing disk as follows: A round bar of steel is placed in front of the disk and caused to revolve at the rate of 200 revolutions per minute. The disk is revolved at a rate equal to a peripheral velocity of 25,000 feet per minute. The atmosphere, pressing against the sides of the disk at nearly 15 pounds to the square inch, is thrown outward. The increased velocity of the air separates its molecules to a greater distance, and they abstract additional caloric from the surrounding atmosphere. This column of air, surcharged with caloric in proportion to its velocity, is carried around the periphery of the disk at the rate of five miles per minute. Now, when the revolving bar is brought into close proximity to the disk, the passage of the air is retarded, its velocity reduced, and the molecules approach nearer to each other. This unlocks the surcharged caloric, and it becomes sensible heat which enters the bar and increases its intermolecular activity to the velocity of fusion. The fused metal flows away and a fresh point of the bar is continually presented to the disk. In addition to the caloric unlocked from the air, a portion of the metal oxidizes, which furnishes additional caloric, which, with the impact of the air traveling at a velocity of five miles per minute, keeps up the velocity of fusion in front of the disk until the bar is severed in two.

> Now, gentlemen, please remember this is only a theory based on my limited knowledge of molecular physics, and in your criticisms don't be personal, but let us endeavor to increase our knowledge of the physical forces which ener-JACOB REESE. gize the universe.

Pittsburg, Pa., April, 1881.

Medical Properties of Sulphocyanide of Mercury. To the Editor of the Scientific American :

Inasmuch as many inquiries have been elicited by your publication of item regarding the medical properties of sulphocyanide of mercury in certain affections of air passages of the human body, as more fully specified in your issue of April 9, 1881, and inasmuch as your generous impulse led to a more pretentious heading to the article in question than was intended by the insertion of the word catarrh," it is hoped you may not be indisposed to add these few lines in explanation.

The prevalent idea attached to the term "catarrh" lies in an entirely different direction from the line and scope of experience indicated in the article in question. It is doubtless safe to say that nothing whatever is known as to the action of the compound under consideration in connection with "catarrh" in the popular sense of that term.

Judging from letters of inquiry from different parts of this country, it seems probable that some may endeavor to make the substance in their own way. Let not any unskilled manipulator undertake the production and preparation of this compound for his own use or that of his friends; the chances are altogether in favor of his finding something decidedly more "snaky" and poisonous than the veritable "eggs of Pharaoh's serpents." The substance for use, as suggested by experience, must be pure sulphocyanide of mercury; from the per-nitrate, not proto-nitrate, and washed until there be no acid reaction. The use of this in the manner and quantity and for the purpose indicated in your issue of April 9, 1881, will be attended with prompt and effectual relief, and without the slightest injurious results. J. DE WALDEN CHURCHILL.

Richmond, Va., April 10, 1881.

Ammonia for Preventing Petroleum Fires.

thermometer for securing it in proper position in the axilla. The salient feature of the apparatus is the changing of its electrical resistance with pressure, and the ratio of these changes, moreover, corresponding exactly with the pressure, the latter, in turn, being dependent upon and in unison with the rise and fall of temperature.

By subjecting this instrument to varying degrees of temperature the resistance of the powder varies in precise accordance with the pressure exerted by the uniform expansion the atoms together and hold them in a state of rest. The of the spiral spring under equal increments of heat, and force of caloric accompanies the atoms. It may be increased regulations. His plan is to place on each barrel of petroleum consequently a proportionate variation will be produced in or diminished; and tends to push the atoms apart into a state a large bottle of liquid ammonia, so that, at the least explosion the strength of the current. The latter possesses, therefore, all the character of heat waves, and, by its reaction through atoms composing a molecule, and the molecules composing the vapor of the liberated ammonia will form an automatic the medium of an ingenious electro-magnetic piece of mechan- a physical structure, are held at a certain distance from each mode of extinction. The author states that he speaks from ism devised by Dr. Adams, these are transferred to a movable surface, in the form of a sinuous line whose rising and

therefore, whatever increases molecular velocity tends to bring the metal nearer to the velocity of fusion.

composing a physical structure in the universe, is at any time in an absolute state of rest.

Matter per se is inert; its energy is derived from the pb ysiof activity. By virtue of the resultant force so exerted, the other and kept in a continuous state of activity.

falling inflections give a graphic representation of them. erted in an inverse ratio with the distance of its object, dangerous character. He suggests that the plan should be ex-Not only is it possible with this instrument to procure a con- hence its greatest power is exerted when the atoms and the tended to mining operations, and that easily broken vessels tinuous curve denoting the constant febrile condition of a molecules are nearest to each other, and least when they are filled with ammonia should be stored wherever there may be subject, but, with the addition of certain accessories, now furthest apart. The change of distance is the result of the a risk of accident from fire-damp explosions. Carbonic oxide in process of construction, there may be procured on the activity of the atoms and the molecules. An increased mo cannot burn in an ammoniacal atmosphere.

M. Schlumberger has communicated a note to the Société Francaise d' Hygiène on the "Automatic Extinction of Not a single atom composing a molecule, nor a molecule Petroleum Fires." Many accidents are caused, he says, chiefly by the igniting of this substance through imprudence. The druggist, for instance, in going into the cellar where the

oil is kept does not always take proper precaution, and the cal forces. The force of attraction is inherent in the atoms, result is that a disastrous explosion often takes place. He and can neither be increased nor diminished. It tends to draw proposes a method of extinction in this and similar cases which he recommends shall be made compulsory under police or on contact with the flames, the glass will be broken and practical experience, and that he has frequently been indebted

The force of attraction being inherent, its energy is ex- to ammonia for safety while conducting distillations of a