Sriontifir Ammrian.
 HSTABLISHED 1845.

MUNN \& CO., Editors and Proprietors.
pUBLISHED WEELLY AT

NO. B'Y PARK ROW, NEW YORK.

o. D. MUNN. \qquad A. е. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN

 One coppy. one year postage included.One copy, six months, postaze included

MUNN t co 37 Park Rom, Nem
The Sclentific American Supplement

NEW YORK, SATURDAY, APRIL 9, 1881

TABLE OF CONTENTS OF
the scientific american supplement
No. 275.
For the Weels ending April 9, 1851.
Price 10 cents. For sale by all newsdealers.

1. ENGI VEERING AND MECHANICS.-The Various Modes of Transmitting Power to a Distance. (Continued from No. 274.) By artici archardo of Geneva.--II. Compressed Air.-1II. Trans
mission by Pressure Water.--1V. Transmission by Electricity.General Results.
The Hotchkiss
The Hotchkiss Revolving Gun..
Floating Pontoon Dock. 2 figures.-Improved floating pontoon
TECHNOLOGY AND CHEMISTRY.- Wheat and Wheat Bread By H. Meqe Morres.-Color in bread.-Anatomical structure and chemo.-Cerealine. - Phosphate of calcium.-1 figure, section of grain of wheat, magnified.
Origin of New l'rocess Milling.-................................. bures and machinery in Minneapolis by Special Census Agent (tures and machinery in Minneapolis by special Census A Tap for Effervescing Liquids. 1 HIgure.
Lonaion Chemical Societs.-Notes-P
London Chemical Societr.-Notes.-Pentathionic acid, 4 Tivian Lewes.-Hydrocarbons from Rosin Spirit. Dr. Alcm-
Strong.-On the Determination of the Relative Weight of Single STRONG.-On the Determination of the Relative Weight of Single
Molecules. E. Voget.-On the Synthetical Production of Ammonia by the Combination of Hydrogen and Nitrogen in the Presence of lieated Spongy Platinum, G. S. Jognson.-On the Oxida-
tion of Organic Matter in Water, A. Downs.......................
Rose Oil, or Otto of Roses. By Criss. G. Wa RNFord Lock.Sources of rose oill.-History. - Where rose gardens are now cultivated for oil.- Methods of cultivation.-Processes of distillation.A New Metho
iII. AGRICULTURE, HORTICULIURE, ETC.-The Guenon Milk Mirror. 1 igure. Escutcheon of the Jersey Bull Calf, Gran Two Good Lawn Trees.
Cutting Sods for Lawns. Horticultural Notes: New apples, pears, grapes, etc..-Discussion on Grapes. Western New York Society.-
sects affecting horticulture.-Insect destroyers. Observations on the Salmon of the Pacific. By DAvid s. Jordan and Cbarles h. Gilbert. Valuable census report.
IV LIGHT, ELECTRICITY, ETC.-Relation between Electricity and Light. Dr. O. . Lo Lodge's lecture before the London Institute. 43 Interesting Ele
Dr. Hugo Miller
Telephony by Thermic Cnrrents...
pparatus foscope. By Movs. Beniece. 5 figures. A successful apparatus
electricity
V HYGIFNE, MEDICINE. ETC.-Rapid Breathing asa Pain Obtunde in Minor Surgery. Obstetrics, the General Practice of Medicine,
and of Dentistry. Dr. W. G. A. Bonwill's paper before the Phila and of Dentistry. Dr. W. G. A. Bonwill's paper before the Phila-
delphia County Medical Society. 8 Hlgures. Sphygmographic

RECENT INFRINGEMENT DECISIONS.

Attention was called some months ago by the Scientific American to the important question involved in the noted suit against Postmaster James-What remedy has an inventor when a government officer uses his invention and refuses to pay royalty? The decisions than narrated were to the effect that the postmaster was personally accountable for the profits realized in the city post office by the use he had made of the plaintiff's canceling stamp. Since then two further decisions have been rendered in the same litigation. Postmaster James applied to the court for a certificate that there was "probable cause" for his using the patented stamp. The courts are authorized to grant such a certificate when an officer of the revenue is sued for damages for an is paid out of the Treasury, and the officer goes free. The court said that such a certificate can not be granted to a postmaster, because he is not an officer of the revenue. Mr. James will need a special act of Congress to authorize the Treasury to pay the damages in his behalf. The other of the two decisions was in his favor. The owner of the patent, not being satisfied with the damages awarded-they
were, we believe, upwards of $\$ 60,000$-applied to the court to order judgment for "increased damages." The judges are allowed, when they see it to be just to do so, to increase the damages rendered against an infringer, not exceeding three times the amount of the verdict. But the not allowable where the suit is for an account of profits. Moreover, in this instance it had been greatly to the advan. Moreover, in this instance it had been greatly to owner of the patent that his invention had been used and his right established to recover the profits, which were quite sufficient.
It is a familiar general rule that a patent for a combina-
tion is not infringed by use of distinct parts; the essence of the invention being use of distinct parts; the essence of all the parts, he does not use the invention. A recent decisiou recognizes an exception to this rule, and says that if one part of a patented combination, considered by itself, is novel and useful, and is an invention for which the inventor might have taken out a separate patent, then using that part is an infringement, although the entire combination is not used. The patent wa ; for a double-acting pump. Several contrivances were combined in it, one of which was a new mode of taking out and replacing the valves. The infringer
contrived a rival pump, using the same method of removing and returning the valves, but dispensing with any imitation of some other parts of the combination. He was enjoined. The importance and difficulty of rendering the high explosives needed in modern engineering unexplosive while in transportation or in storage is well known. "Dynamite" or
"safety powder" is the name of one article which has been "safety powder" is the name of one article which has been patented and used as a safe explosive. It has been introduced and patented in England; and there it met with competition from a French article of the same general purpose named "lithofracteur." In a lawsuit in the English Court
of Chancery, the lithofracteur has been adjudged to be an infringement of the dynamite patent.
Persons exporting manufactured goods to England may be interested in another decision. The inventor of an improved process for making salicylic acid-a useful but formerly very expensive medicine-took out letters patent in England for his process, and by means of it was able to manufacture the drug at about half former cost. A subsequent inventor of a rival process formed a firm and established a factory in Germany, and lrought the acid manufactured there into England for sale. When he was sued his lawyers argued that the patent only forbade manufacturing in England; that he had a perfect right to manufacture in Germany; and that if his goods were lawfully manufactured, the patent did not forbid him from importing and selling them.
"A justice asked whether the sale in England of a product made abroad could be restrained because it was made according to a process which was the subject of an English patent, the patent being only for a new method of making a product previously well known.
" Counsel for the patentee cited two former decisions that it might be.
" Counsel for the infringer said that such a principle if carried out would lead to absurd consequences. Suppose a process to be patented for making flour by crushing wheat instead of grinding it, and suppose all the millers in France were to make flour according to that process, is the importation of flour from France to be prohibited?"
But the Court of Appeals decided in favor of the patentee. The opinion states that the judges were at first doubtful is for the process only, and that process is imitated abroad, the importation of the product from abroad and the sale of it in England is an infringement. But they reached the conclusion that the exclusive right granted by an English patent, although for a process only, includes a monopoly of the sale in England of products made according to the patente process, whether made in the realm or elsewhere. These patents expressly forbid any person directly or in a person who procures the product to be made abroad for sale in England, and imports and sells it there, is, surelv, indirectly putting in practice the invention. Any other rule indirectly putting in practice the invention. Any other rule

America it is familiar that if the patent is upon the article it forbids sales of it here, wherever made; but the same has not been generally understood as to a patent upon a

A singular controversy arose between two rival manufacurers of steam engines. Each had a patent for the kind of engine he made, and there was not, in truth, any infringement or legal interference bet ween them. But one of them, rather inappropriately named Brotherhood, made it a pracice to publish notices charging that the other engine was an infringement of his patent, and, whenever he could gain the names of persons who thought of purchasing the riral engines, he would make threats to them that if they bought them he would sue them for infringement. This course he continued for three or four years, with the effect, of course, to injure his competitor's business, yet he never in any instance brought such a suit as he threatened, and had no real ground for maintaining one. At last the competitor-Halsey by name-brought suit to enjoin him from giving any more such notices and threats. The Chancery judge decided that the suit would hold. An owner of a patent has a right, acting in good faith, to give notice of his claims as he believes them to exist, and to threaten an injunction suit against infringers. And if it should so happen that he overstates his rights, or that the infringers desist of their own accord, and so the suit threatened is never brought, he is not liable to any lawsuit. But the case stands very differently when he knows that he is, in his notices, exaggerating his rights, and has no real intention of bringing suits as threatened, but only hopes to break down his competitor's business by alarming the latter's customers. Such practices -or any unfounded or malicious assertions that a machine on sale is an infringement of a patent-are in the nature of a libel on the manufacturer of the rival machine aspersed.

SEA SICKNESS.

Much has been written about this troublesome malady and many remedies suggested, yet mal de mer remains the same bugbear it ever was. Thousands of penple inhabiting the Old World are deterred from visiting our shores by thoughts of this, and among them many of the ablest scientists and literati. Our energetic race are less inclined o yicld obedience to their fears, so that the annual tide of tourists abroad is scarcely affected by it. To many. however, the sufferings are a source of dread and leave behind unpleasant reminiscences. Each, however, seeks comfort in the assurance that it involves no risk of life, for no one ver died of sea sickness, on the contrary the after effects are usually favorable. Sea voyages are recommended to those in poor health, those exhausted by mental or physical labor, or the enforced rest brings relief unattainable on land. There is no daily mail, no newspaper, no market reports. The busy world is nothing to us there; it is comparable o the seclusion of a cloister, or the durance of a prison. Perhaps it is well that nature's claims absorb the entire personality of the victim for the first three days, else the sudden change from life to death, as it were, the terrible ennui, would drive reason from its seat.
Sea-sickness has been charged to first one organ, then another: the liver, the brain, the nervous system, the imagination, all have been attacked, but the poor stomach alone eems to be capable of expressing its dissatisfaction. Numerous remedies have been suggested by persons who discovered them just as they were about ready to recover, and hence attribute their recovery to the remedy instead of the remedy resulting from recovery. Others who have tried them at the beginning of the voyage fail to derive any benefit. One writer says that he timed his breathing to the moion of the vessel, inspiring as it went up and expiring as it went down. One tells you to keep a full stomach, another advises a fast, and we have been benefited, we think, by one on one voyage, by the opposite course on the next. One advises you to drink freely of brandy, another to be temperate; one attributes his sickness to a glass of beer, another to cham pagne. A cabin boy once told us that he had derived great benefit from a towel tightly bound around the waist, and that during several of his earlier voyages he could do no work except when tightly bandaged. This remedy has been more fully elaborated recently, and one writer, Dr. Jobart, of Brussels, states that the belt should be made with gores so as to accurately fit the body and stiffened with whalehone like a corset, and worn as tightly as it can be borne. Ladies, he says, find less inconvenience from its use than gentlemen. Not long since we met a gentleman who said that he felt satisfied that he had derived benefit from the use of a straight pair of ordinary corsets which he purchased at a ladies' fur nishing store just before sailing. The inconvenience, how ever, that a man experiences in lacing his own corsets and of concealing them while on, caused him to abandon their use. Ladies, on the other hand, who are accustomed to lace tightly on shore, usually lay aside their corsets at the first feeling of sea sickness, saying that they feel worse with them than without. If, however, they would resist the first impulse to unloosen their dress, it might prove in the end as advantageous for females as Jobart says it is for males It is well known that sailors wear a belt which is drawn much tighter than most ladies' belts are worn.
Sailors who have been at sea for years will often sicken when an unusually rough sea is encountered. Men who have just returned from a four years' whaling voyage are terribly sick on a Sound steamer.
lime water, equal parts. Hydrate of chloral is also advised, but must be administered by a physician. Nitrite of amyl is looked upon by Clapham as curative in 90 per cent of all cases treated. Three drops are inhaled from a hand kerchief held close to the nose, the patient being in bed This is, however, too powerful a remedy to be placed in the hands of the laity.
There remains one point to be considered, to which the attention of the faculty and laity should be directed, as much ignorance prevails in this respect, namely, the effect of sea sickness upon pregnant women. The nausea attend ing this condition is as difficult to control as that which belongs to sea sickness. When the one is superimposed upon the other, continuous vomiting may set in with such violence that utter prostration results, retching continues, and the strength of the patient is exhausted and a typhoid condition sets in which results in death, not from sea sickness but from exhaustion. The testimony of the stewards of ocean vessels confirm this theory. and a recent case that came to the knowledge of the writer came near resulting fatally, and the patient had to be kept under the influence of morphia, bypodermically injected. A severe illness of two or three weeks resulted after coming ashore. Through all these vi cissitudes the fetus suffered no ill effects, and at the expira tion of the usual time was delivered without accident. The danger of a sea voyage to a lady during the latter stages of pregnancy cannot be overestimated, not from the dangers of miscarrage, which has never been known to result, eve during the ninth month, but from a return of the nausea and vomiting, which quickly exhausts the strength when no nourishment can be retained and even stimulants are rejected by the outraged stomach

REPORT OF THE EXPERT

We have received from Mr. John W. Hill a copy of his report as the expert appointed to superintend the test trial of automatic cut-off s'eam engines at the Millers' Exhibition Cincinnati, O., June, 1880. It contains 90 pages, and for xcellence of arrangement and clearness with which it ex ibits the mathematical values of the performances of the ested engines, the report is a model. Fiveengines were en ered for trial, but two of these were withdrawn, and th est was therefore confined to three, namely, a Harris Corlis engine, built by William A. Harris, Providence, R. I.; Reynolds-Corliss, built by E. P. Allis \& C`., Milwaukee Wis.; and a Wheelock engine, built by Jerome Wheelock, of Worcester, Mass. The following are some of the particu ars of the several engines and their performances. as give in the report:

	ReynoldsCorliss.	HarrisCorliss.	Jerome Wheelock
Cylinder	18.02 ${ }^{\prime \prime}$	18.031	${ }^{\prime \prime}$
Stroze	$48^{\prime \prime}$	$48^{\prime \prime}$	$48^{\prime \prime}$
Flywheel	16'	16^{\prime}	16^{\prime}
Weight of engine, exclu-			
Weight of flywheel, lib. ..	14,691	11,950	12,000
Revolutions per minute ...	75.383	75.830	74.472
Factor of horse power....	$4 \cdot 6039$	$4 \cdot 6416$	4.6666
Boiler pressure	$95 \cdot 83$	9609	96.25
Indicated horse power...	162 9952	165.5781	158:3846
Friction of engine	102624	95734	7.8141
Net effective horse power.	$143 \cdot 1953$	1450766	143.9463
Coefficient of usefuleffect.	878516	876183	90.8845
Coal per ind. h. p. p.h.,			
Steam per ind. h. p.p.h ..	. 14886	13.755	13915
Lb. of water expended per			
lb. of steam. 30881	32.532	24.743
Relative economy .	0.98848	$0 \cdot 99487$	$1 \cdot 00000$

The engines were all fitted with liberating valve gear. Th
Harris" and "Reynolds" using the original "Corliss" alves and gear, with special improvements of their own and the "Wheelock" using a system of taper plug valves placed below the base of the cylinder. The "Corliss" wrist plates and valve rods are used by both Mr. Harris and Mr. Revnolds, but the latter has added a very ingenious libera ing hook, which imposes a constant load upon the regulator independent of the point of cut-off. In the "Wheelock ngine the eccentric hook engages with a stud on a small tarting bar attached to the stem, and forming the lever or he forward exhaust valve. A link, with a gab at its forward end, extends back from the lever of the forward valve to the ever of the back exhaust valve. The motions of the exhaust valves are simultaneous in time and quantity. A short crab claw or liberating hook, pivoted to the lever of each of the exhaust valves, furnishes the opening movement of the cor responding steam valve.
The steam valves of the "Reynolds" and "Harris" engines were fitted with vacuum dash pots. The "Wheeock" engine was furnished with weight dash pots. Th ut off movement of the "Harris" and "Reynolds" engine was very prompt, but with the " Wheelock" engine the clos ure of the steam port was rather tardy.
The "Reynolds" engine was fitted with a combined fly ball and mercurial regulator, which was so nicely adjusted that changes of load or steam pressure produced no material change in the motion of the engine
The "Harris" engine was fitted with a "Porter" gover nor, the performance of which was only fair
The " Wheelock" engine was furnished with a fly ball and spring governor, which, while inferior to the "Reynolds" regulator, controlled the motion of the engine, during the egulator test, much better than did the "Porter" governo n the "Harris" engine
The "Reynolds" eugine was fitted with an independent
ingle-acting air pump and jet condenser. During the con densing trial the air pump was driven by a belt from the
engine shaft; but the machine is provided with a steam cylinder, slide valve, and piston, to work independently of the engine under ordinary circumstances. The arrangement of the air pump and condenser is very compact and convenient and as demonstrated during the friction trial requires much less power to work it than the form heretofore in use wit this type of engine.
The "Harris" engine used a double acting air pump and jet condenser. The air pump was driven from the crank pin by a light shackle bar and rocker arm.
The "Wheelock" engine was furnished with a "Bulkley" condenser; as is well known this form of condenser requires no air pump, the air present in the exhaust being carrie
down the descending leg of the condenser by induction. ry induction
or a larger delivery of exhaust steam, and as no calculated isted for the contraction of the steam aud water apertures in he condenser head, to the weight of steam actually exhausted, the condenser would not show as good results as a smaller achine.
So far as the vacuum is conducted, it did not equal the je condensers of the "Harris" and "Reynolds" engines, but in economy of circulating water, it does not appear that the xcess in size of the condenser worked any injury.
The general construction of the "Reynolds" engine was rillent, all parts were heavy and well fitted, and the desig trikes the observer as being well calculated to successfully meet the natural working strains. Being entirely devoid of burnish or nickel plate, the engine had every indicatio f being built for service and not for display
The "Harris" engine was in all respects similar to the ngines furnished by this well known builder to his custom ers. The design appears lighter than the "Reynolds," with more polish and fewer details. The weights of the engines, exclusive of flywheels, do not vary greatly, with the excess in favor of the "Reynolds.
The "IFarris" engine more nearly resembles the original "Corliss" than the "Reynolds," the form of the girder, and he valves, valve chambers, and valve gear, together with he regulating mechanism, being alike in the "Harris" enine and its celebrated predecessor; while Mr. Reynolds, in his design, retains only the four steam and exhaust valves and the wrist-plate motion, with the latter materially modi fied.
Although the " Harris" engine departs less from the origi nal "Corliss" engine than the "Reynolds." Mr. Harris has added several valuable improvements of his own, chief of which are the cone bonnets, self-packing valve stems, and the Babbitt \& Harris piston packing.
The " Wheelock" engine is a type of its own, with all the alves located below the cylinder in a common plane. This engine is a marvel of compactness and simplicity, and I might say oddity, as many of the peculiarities of the builder are reproduced in his engine.
Engineers of a fastidious turn have not been disposed to recognize Mr. Wheelock as in the front rank of automatic steam engine builders. But the record made by his engine in these trials may procure for him a more respectful consideration in the future. The whole engine is extremely light; the weight, exclusive of flywheel, being but one-half that of the "Harris," and less than half of the "Reynolds" weight. But the weights of the two latter engines includ he air pump and condenser
It did not appear, however, during the trials that the re duced weight of the " Wheelock" engine rendered it less capable of resisting the load strains than either of its more celebrated competitors.
All of the engines were new, and leaked slightly through the valves, and possibly in one instance past the piston, dur ing the trials. Mr. Ellis, of the "Harris" engine, attempted to hasten the seating of the steam valves of his engine by filing, previous to the trials, with good results, as shown by the diagrams. No effort was made with either the "Reynolds" or "Wheelock" engines to seat the valves except by wear.
The foundations of the " Reynolds" and "Wheelock" en gines were excellent in every respect, but the foundation of the "Harris" was very inferior to those of its two competiors. During the operation of the engine, previous to the rials, the foundation cracked under the pedestal, and required special bracing before the condensing load was put

Each engine was belted back from a sixteen foot pulley on the main shaft to a five foot pulley on a short counter or jack shaft, mounted in suspension hangers overhead. From a pair of four foot pulleys on the jack shaft, two twelve inch, double leather belts conveyed the motion to a pair of four foot pulleys on the test trial line shaft. At the remote end of the test trial line shaft motion was taken to a pair of No Gould's rotary power pumps, mounted upon a heavy tim ber foundation, under the line shaft, by four four-ply rub er belts, with forty two inch pulleys on the line shaft, and hirty four-inch pulleys on the pump shafts.
The main belts were double, of select stock, twenty-fou nches wide, and were made for the trials by the house of E. F. Bradford \& Co., of Cincinnati.

All belts were drawn tight, and worked without binders. The "Harris" engine occupied the position nearest the at the remote end of the main steam pipe.
The report closes with a discussion of the subject of the
award which ought to be given for the first degree of merit I believed, says the expert, and not without precedent, that the engine whica upon trial would develop the highes economy condensing, would alsodevelop the highest economy non-condensing, and that no material differences would occu in the relative regulation of the engines, nor in the consump ion of condensing water, to effect a given vacuum unde given conditions. But upon the record, which I believe wa as accurate as skill and vigilance could possibly make it, it appears that while one engine develops the highest economy condensing, another engine develops the highest economy non condensing, and still a third produces a regulation unde varying load trial, hitherto unheard of
The engine which produces the best record condensing also exhibits the best economy in the use of condensing water; but the condenser used upon this engine was a ma chine of independent manufacture, and not in common use by the builder of the engine.
The positions, twelve in number, of the respectiveengines for the various economies are summarized, and they show seven points in favor of the Wheelock engine, four for the Harris-Corliss, and one for the Reynolds-Corliss. But the actual difference in the performances of the engines, in either of the positions, is extremely small, and the report is sub mitted without comment or award.
As a whole the report forms a most valuable contribution to engineering knowledge, and the author is entitled to the high est credit for the thoroughly scientific manner in which the labors pertaining to the tests were conducted and recorded.

A GIGANTIC ARTIFICIAL MOON

The colossal representation of the moon, which has been on exhibition at Steinway Hall, in this city, during the past week, does not appear to have attracted anything like the atention it deserves. On a half globe, sixteen feet in diame ter, the mountains, plains, and other characteristics of the lunar surface visible from the earth are shown in relief, with shadings and colorings faithfully representing the moon as seen through a powerful telescope. It is by far the largest, most elaborate, and expensive portrait of the moon ever made; and seeing that it was constructed for and under the immediate direction of one of the most eminent of living selenographers, Dr. Schmidt, now Director of the Observatory at Athens, Greece, we may safely accept it as a faithful porrait. It certainly gives at a glance a clearer and more comprehensive idea of the physiography of the moon than could be got by much study with any other means short of a telescope of great power. When gradually lighted from one side by a powerful lime light, the varying phases of the moon, from new to full, are shown with impressive vividness.
The shadows of the mountain ranges, the black depths of the crater pits, the changing light upon the broad plains, and other lunar phenomena pass rapidly before the eye, ena bling one to obtain in a few hours, indeed in a few moments, a more comprehensive knowledge of the lunar surface than can ever be had of the earth's surface until scme enthusiastic geographer constructs in relief a terrestrial globe on a scale of corresponding magnitude.
The "moon" has been purchased and brought to this country for exhibition by Mr. E. Riverston, and it is to be hoped that it will ultimately find a permanent abiding place in some one of our publicinstitutions. Meanwhile students of astronomy and all persons taking an interest in science will find the exbibition well worthy of attention.

A Bureau of Labor Statistics Wanted

A meeting of delegates from trades unions and provident ocieties was held in this city recently to receive the report of a special committee charged with draughting a bill to be presented in the State Legislature to establish a bureau of labor statistics, in the interests of labor organizations and provident societies. The draught as submitted by the committee was adopted. It provides for the establishment of a separate department to be known as the Bureau of Labor Statistics, with the objects of collecting, assorting, systematizing, and presenting in annual reports to the Legislature tatistical details about all branches of labor. It further requires the Governor to appoint two persons as commissioners, one of whom shall be selected by and from the labor unions and the other by and from the provident societies. The salaries of the commissioners are to be $\$ 2,000$ each per annum, and an additional $\$ 10,000$ a year is to be approprited for the current expenses of the department. The commissioners are to have the power of visiting all public institutions, factories, workshops, and mines, and to summon witnesses.
With wisely chosen commissioners, and a bureau properly organized and administered, not a litlle public good might result from the collection and publication of statistics of the sort described. Organized as proposed, on a narrow trades union and provident society basis, the wished for bureau would, we fear, be of very little use to the community as a whole, and still less to the lahoring portion of it The proper function of a government bureau is to serve the people, not any special class, however deserving.

Exporters of petroleum to Germany shor ${ }^{1 \lambda}$ not forge that the established test is $110^{\circ} \mathrm{Fah}$., and that hereafter the oil will be examined by government experts and none allowed to enter Germany which is below this standard.

