world. Forty lights are fed by it, and it requires 36 horse power. Several circuits are connected with this station, one exclusively for lighting parks and streets. Broadway, from 14th to 34th street, is lighted from there. Among buildings in this district are the Sixth Avenue Elevated Railroad, the Sturtevant House, the Gilsey House, the Standard Theater, Daly's Theater, the Bijou Theater, the Aquarium, Aberle's Theater, Koster \& Bial's, the Herald office, and many otbers. The company runs wires from this station to any point witbin a radius of two miles, putting up the light in any desired place, and renting in the same manner as is done with gas.
The street lighting is done by means of double lamps on iron posts twenty feet in height, and in plain glass globes. It is proposed to extend this materially and to use the larger lights, elevated on poles, for open spaces, as is now done in the West. This company has had much success in lighting large buildings for balls, sucb as the Academy of Music, Madison Square Garden, etc., using opal and lemon colored globes, giving a hue to the light which is approved by the air sex.
The establishment of lighting stations in cities and towns for the illumination of streets, parks, open spaces, depots, docks, stores, botels, factories, etc, is enlisting very large amounts of capital, and promises to be a busiiess as profitable and as eagerly sougit after by capitalists as gas companies bave been beretofore. Companies bave already been formed, or are about to be formed, for the establisbment of such lighting stations in the following cities and towns: New York, Pbiladelphia, Boston, Baltimore, Washington, Providence, Albany, Hartford, New Haven, Meri den, Rochester, Buffalo, Cleveland, Cincinnati, Dayton, Indianapolis, Columbus, Middletown, Detroit, Grand Rapids, Chicago, St. Louis, Denver, Salt Lake City, Ogden, Butte, San Francisco, etc.
It is only a question of a few montibs before similar companies will be formed, and similar lighting stations established in every city and town of any pretensions in the country. In all of the above places the Brush light is to be exclusively used.
The general plan of operations in all these lighting stations will be similar to the one in New York, which, briefly described, is as follows: A location is first selected as central as possible with reference to the territory to be lighted; sufficient space must be provided for engines, boilers, heater, pumps, shafting, belting, pulleys, etc.; space is also to be provided for the dynamo-electric machines with the necessary wires and connections. As the steadiness and quality of the light are dependent entirely upon the steadiness of the power, care is taken to provide for this by the use of engines of approved make, with automatic cut-offs and other modern appliances for producing steady motion. The central station baving been thus equipped, copper conducting wires are run from it on poles, on house tops, or underground, to the various points or places where light is needed.
The light is furnished and charged for in proportion to the amount used, and this is readily ascertained by noting the consumption of carbons in the lamps, which is sufficiently uniform for this purpose. When the engines in the lighting station are started the electric ligbt machines are put in motion, and the electricity passes over the wires, and produces a light in each lamp in circuit. An automatic governor or regulator is provided for each electric machine, and this is so constructed and so connected to the machine hat, without changing the speed of the machine, any num ber of ligbts from one up to the number capable of being produced by the machine may be burned without any disturbance or interference, either in the machine or in the lamps. By means of this simple and admirable contrivance any of the lamps in circuit may be turned off or turned on without increasing or diminishing the light in any of the otber lamps in the circuit. From this description it will be evident that a lighting station of this cbaracter affords practically all the facilities provided in the use of gas, for the electric lamp may be turned on and off at the lamp itself as
readily as if it were a gas burner. The ligbting of interior spaces is in this way fully provided forin a practical manner.
In the matter of lighting streets and open spaces electric light possesses many advantages not possessed by any other illuminating agent. The electric lamps can be placed on top of lamp posts of moderate beight, as in the ligbting of Broadway, New York, each electric light providing for the illumination of a space two hundred to three hundred feet in diameter; or the lamps may be placed upon towers at a considerable elevation above the ground and above adjoining buildings, as is done in Wabash, Indiana, and Akron, Ohio; each light, or group of lights, providing for a general illumination over an area a mile or more in diameter. Either of these plans is perfectly practical and successful, and both have been thoroughly tested. For the lighting of cities and towns of moderate size the latter plan is the most economical, and will, no doubt, be very largely adopted. The town of Wabash, Indiana, was the first in the world to light its streets wholly in this way, and they find that four Brush streets wholly in this way, and they find that four Brush
lights, of 3,000 candle power each, placed.on an iron flaglights, of 3,000 candle power each, placed.on and staff on the dome of their court bouse, at a heigbt of about
130 feet above the ground, are sufficient for the general il. lumination of an area from one half to three quarters of a mile in every direction. Some of the streets are, of course, much better lit than others, althougb they are not nearer to the ligbts, because the light is notintercepted by intervening buildings. It is stated, bowever, that even in the streets where no direct light falls, and where the shadows are great-
est, there is yet enough diffused light to permit of getting around without the use of other light. It is also stated tbat
even at a distance of two miles from the ligbts there is a sort even at a distance of two miles from the ligbts there is a sort
of general illumination produced which is of considerable value.
By placing a sufficient number of powerful electric ligbts upon towers high enough it is no doubt possible to produce an amount of light that would be practically as efficient as daylight for the lighting of all spaces within a reasonable daylight for the lighting of all spaces within a reasonable
distance of such towers. A sufficient amount of light couid distance of such towers. A sufficient amount of light couid ings sufficiently for ordinary purposes. This isthe plan that
has been proposed for the lighting of the Capitol and its sur-
oundings at Washington.
It is proposed to place upon the dome of the Capitol, and upon six towers surrounding it, at a distance of 1,000 feet from it, no less than 450 electric lights, each of 6,000 candle power, or a total light of $2,700,000$ candle power, equal to 200,000 four foot gas burners. The effect of such an enormous massing of light at such a distance above the ground and surrounding buildings would produce a surprising effect, and within a considerable area would, no doubt, be practically
equal to dayligbt. If this plan is carried out the Brusb light will be used. This subject will be brought to the attention of the next session of Congress.
The Brush Company bave not yet taken up that branch of electric illumination known as incandescent ligbting, because the voltaic arc system bas so far proved vastly more economical than any possible incandescent system for the lighting of streets and large parks, buildings, manufactories, or halls. A single example will illustrate this fact. None of the advocates of incandescent ligbting claim that their usual size of lights are any more powerful than an ordinary four or five foot gas burner; and wherever incandescent ligbts have been used at all practically, as at the Equitable Building in New York, each incandescent light bas not certainly more than replaced one gas burner. The usual claim made by those who are interested in this system of ighting is that from five to seven lights of this size can be produced by the expenditure of one borse power. Others claim that four lights per borse power is as much as can be ealized in practice. Assuming, however, that five can be produced from one horse power, it would appear that no less
than 29 borse power would be required to supply 144 incandescent lights in the place of the 144 gas burners formerly used in the dining room of the Continental Hotel in Philadelphia. It is a fact, however, that this dining-room has for a long time been lit, much better tban with gas, with two ment, requige borse power for the 16 higts used in the hotel. The Grand Pacific Hotel, in Chicago, replaces 571 gas burners with 16 Brush arc lights, requiring 16 horse power. If lit by the ncandescent light no better than by gas, 114 borse power would be required, or, according to the figures of one prominent inventor in this line-7lights per borse power-it would,
require about 82 horse power. This enormous difference in avor of the arc lights, where much light is required, will necessarily confine the small incandescent lights to small uses, where but few gas hurners or lamps are now used. We are assured that when in the opinion of the Brusb Company ncandescent lights can be profitably and economically used they will take up that branch and be prepared to supply the
The officers of the Brusb Electric Company (the home company) of Cleveland, Ohio, are as follows: General Mortimer D. Leggett, President (formerly Commissioner of Patents); George W. Stockly, Vice President, Treasurer, and Business Manager; F. K. Collins, Secretary; Nathan S. Possons, Superintendent; W. J. Possons, Assistant Superintendent. Agencies for the sale of apparatus and supplies have been established in all sections of the country. Themost important of these are: the Brush Electric Light Company of New England, who control all territory east of 77° longitude, ex cept Manhattan Island, of which company Mr. Lyman \mathbf{P} French, of Boston, is President, and Mr. Charles M. Rowley of New York, Treasurer and General Manager. Mr. Rowley has been of the greatest assistance to the bome company in the management of their Eastern business, of which be bas certainly made a very great success. The Brush Electric Illuminating Company of New York controls the territory of Manbattan Island, and is pusbing the introduction of the Brusb light in this city vigorously. Their office is at 860 Broadway, which is also the main office of the N. E. Co above mentioned. The N. E. Co. bas branches at 5 Pember ton square, Boston; 430 Walnut street, Pbiladelphia; and in Baltimore and Washington. At Pittsburg the business for that vicinity is managed by Ridall \& Ingold, 224 Liberty street. Chas. E. Stockly, at Rochester, is the agent for Western New York and Northwestern Pennsylvania. Othe agencies are the Brush Electric Light Company, of Cincinnati;W.W. Leg gett,88 Griswold street,Detroit; M. C. Bullock 84 to 90 Market street, Chicago (for the Northwest); the Brush Electric Association, 431 Olive street. St. Louis (for he Soutbwest); Colorado Electric Company, of Denver Colorado; Salt Lake Powèr Light and Heating Company of Salt Lake City; California Electric Light Company, of San Francisco, and others.
We publisb in SUPPlement 274, April 2, a monograph by Mr. Brusb, giving a full scientific description of his apparatus and its mode of operation, illustrated with cuts and diagrams; also profusely illustrated articles from foreign journals on the same subject.

agricultural inventions

Certain improvements in that class of sulky plows baving the plow beam supported by adjustable hangers arranged on a suitable frame extending back of the seat, and provided with vertical adjustment for raising and lowering the plow, bave been patented by Messrs. Samuel M. Robertson and Augustus A. Hamilton, of Lynnville, Iowa.
Mr. Owen Davis, of Sulli van, Ind., bas patented a separator for grain, etc., so constructed as to drive off the chaff and straw, separate the larger and smaller kernels of wheat, separate the split kernels of wheat, and the cockle and cheat from the grain, separate red clover seed, timothy seed, and red top seed from the grain and from each other, and to separate the larger kernels of oats from the smaller kernels. Mr. Fred Aldred, of Glencoe, Ontario, Canada, bas patented a swinging cburn, having supporting springs, made in S shape, and attached to the ends of the churn above the central line; by this means the churn body is supported and allowed to vibrate.
An improved method of raising tobacco plants has been patented by Mr. James M. Dunkum, of New Canton, Va. The object of this invention is to protect the plants from the ravages of the tobacco fly or bug. The invention consists in protecting tobacco plants from the tobacco fly by surroundang the bed with logs, covering the bed with brush, and ap plying to the logs a mixture of whisky or alcohol, gum camphor, oil of peppermint, and linseed oil.
Mr. Lorenzo P. Teed, of Erie, Pa., has patented an improved ladder, designed especially for use in picking fruit from trees, but which may be used to advantage for any of be purposes for which ladders are required.
Mr. Philip H. Long, of Newark, N. J., bas patented a separable button so constructed that the bead and foot can be readily connected and disconnected, tbat the buttons will not turn in the button holes, and in which the fastening mechanism is connected with the foot, so that any kind of heads can be used.

Treatment of Carbuncle by Carbolic Acld.

In the Toledo Medical and Surgical Journal, December, 1880, Dr. J. T. Woods writes:
It is now about two and a balf years since a patient pre. sented with two carbuncles, one on the back of the bead, the other below it, on the neck. They were of moderate size only, the upper one open in three places, while in the lowest the skin was unbroken.
Having considered the various known properties of the carbolic acid, I determined to use it vigorously instead of inserting it in meager quantity. I loaded my hypodermic syringe, and passing the point through the openings and into the sloughing mass in every direction, I completely saturated it with the pure acid and awaited results. In a minute the smarting disappeared and with it all pain and all sense of oreness.
By this result emboldened, I again charged $m y$ instrument, and thrusting it tbrough the skin over the other carbuncle, in a variety of places, I soaked the whole carbunculous mass beneath the skin, enough of necessity escaping to fully bathe the borders, modify inflammation, and destroy any septic elements then developed. I waited, not without concern, and was delighted to learu in a few moments that all the pain and soreness was gone in this also. 'The skin over the mass became quickly white, hard, and dead, and in a few days detached, iu the form of a slough, the interior mass also becoming rapidy loosened, only requiring the cutting of a few shreds to remove it, when the cavity was found to present a satisfactory appearance and rapidly filled up, leaving an exceedingly small cicatrice. The remarkable feature in this case was that after the complete saturation of the carbunculous mass no pain occurred, my patient going about bis ordinary labor without discomfort. It is now one year ince I treated a very painful case the same method bring ing about similar results, the party suffering no pain or even soren
tion.
In making this suggestion, which, so faras I know, is new, I am conscious of the insufficiency of my cases, but I am so sure of its efficacy that I sball at once resort to it when case and occasion offer, and advise others to do so, at least until the value of the measure is determined.
In conclusion, I would advise the use of the pure acid only, and to complete saturation. Dilution would increase, if not create, danger of absorption of the acid, converting a very simple procedure into a condition of great danger, and insufficient quantity defeat the purpose for which it is used.

The Tides of Electricity.

Mr. Alex. Adams, one of the officers of the British Post Office Telegraph Department, bas discovered the existence of electric tides in telegraph circuits. By long continued and careful observations he bas determined distinct variations of strengtb in tbose earth currents, which are invariably present on all telegraphic wires, following the different diurna ositions of the moon with respect to the earth.

The Geological Survey.

Mr. Clarence King has resigned the directorship of the Geological Survey. The reasons given for the step are twoThe administration of the office left him no time to pursue bis investigations, and he believed that be could be of greater service to geology if unencumbered by executive duties and responsibilities. Major J. W. Powell is named l as the probable successor of Mr. King.

Collodion Films

According to M. E. Gripon, if a layer of collodion, sucb as is used by photographers and surgeons, be poured upon a plate of very clean glass, it will be found, after the layer bas dried, that an extremely thin and transparent film is formed, which, with a certain amount of care, can be separated from the glass, and may then be stretched upon a frame. This film, so placed, is seen to have some curious physical properties, which the autbor just named describes as follows: In the first place he finds that this delicate thin membrane reflects light exactly as glass does, and polarizes it both by reflection and by transmission of the rays of light through its substance.
M. Gripon has also found that films obtained in this manner may. be procured as thin as 0.01 of a millimeter, and that when no thicker than this they transmit a very large proportion of radiant heat. Polarizing piles, he tells us, may be formed of tl ese layers of collodion film, which are much more transparent than the piles of mica usually employed 'by physicists for this purpose, and necessary in studying the properties of heat; and although they are, of course, much mere fragile, and require more careful handling than mica pites, they are also more easily replaced than the latter when destroyed.

NEW HANDLE FOR SOLDERITG IRONS

In ordinary soldering irons and like tools it is well known that the wood which surrounds the shank is liable to become loose on account of the shrinkage and expansion of the contiguous wood and metal, and to keep the handle tight in its place it has frequently to be driven on to the sbank. This results in spliting the wood and the speedy destruction of the handle. Mr. A. A. Park, of Gill, Mass., bas patented a handle which obviates this difficulty and renders the handle as durable as otber parts of the tool. This handle is sbown in longitudinal section in the annexed engraving. The shank of the iron is made of small gas pipe threaded at its

PARK'S HANDLE FOR SOLDERING IRONS.
free end and fitted to a perforated tube supported in the middle of the handle, which is hollow. This construction admits of a free circulation of air, which keeps the handle cool.
This handle may be fitted to an iron having an ordinary solid shank.

Comparative Health statistics.

The cities of the United States which made weeklysanitary reports to the National Board of Heaith last year numbered sixty eight. The Bulletin of the Board for February 19, contains in tabular form the aggregate results of reports so re celved, from which table it appears that Vallejo, California, was the healthiest place reported in 1880, and Norfolk, Va., the unhealthiest. The average life in Vailejo was 83 5years, and only one person in 1,000 of population died of consumption, while in Norfolk the average life was only 279 years, and one person in 241 of population died of consumption. The aggregate population of the sixty-eight cities is $7,059,937$, the average duration of life in them was 44.5 years, and there was one death from consumption for every 326 of population, and one death from acute disease of the lungs for every 429 of population. In other words, of every 100 deaths 24.4 were from lung diseases, and of these 14 were from consumption and 10.4 from acute diseases of the lungs. Four of the best cities for health were Yonkers, N. Y., average life, 70 years; Omaha, Neb., average 68 years; Utica, N. Y., $67 \cdot 5$ years; Keokuk, Iowa, $67 \cdot 1$ years; and four of the worst eities were Jacksonville, Fla., 35 years; Vicksburg, Miss, , 34.8 years; Charleston, S. C., $31 \cdot 3$ years; ann Savannab, Ga., $30 \cdot 6$ years. In Boston the average life was 42.5 years, deaths by consumption one in 246, by acute lung dis ease one in 336 of population; in New York average life 37 years, death by consumption one in 254 , and in acute lung disease one in 260 ; in Pbiladelphia, life 47.8 years, consumption one in 314 , acute disease one in 844 ; in Cincinnati, life $47 \cdot 8$, consumption 346, acute disease 494; Louisville, life $47 \cdot 6$, consumption 300 , acute disease 410 ; Indianapolis, life $47 \cdot 8$, consumption 447 , acute disease 381 ; Chicago, life 48 , consumption 593, acute disease 453; St. Paul, life 58.5, consumption 561, acute disease 715; San Francisco, life 51.8 , consumption 295, arute disea*e 459; New Orleans, life 413 , consumption 256. acute disease 584; St. Louis, life 52, consumpion 447, acute disease 580 . The difference between New York and Pbiladelphia in the general death rate and in that from consumption is great; in that from acute lung dis. ease it is striking. Next to lung diseases diarrheal disorders cause the greater number of deaths. In every 100 deaths from all causes in the sixty-eight cities, 10 are from diarrheal disturbances, and there is one death from this source is every 436 inhabitants.

RECENT DECISIONS RELATING TO PATENTs. United States Circuit Court.-District of Massachusetts.

ald $e t$. vs. merriam et al.-Patent presser foot for
shoe sewing machines.

1. Where the thing shown and described in the original patent and in the reissue is the same, but in the original has been claimed with all its featuresin combination, the patentee can in the reissue modify or divide his claim so as to embrace severally the distinct features of the thing invented.
2. The case of The Giant Powder Company vs. The Cali. fornia Vigorit Powder Company et al. (18 O. G., 1,339) considered and commented upon.
3. The most natural construction of the law relating to re issues (Rev. Stats., sec. 4,916) would perhaps be that, if a patent should be inoperative by reason of a defective specification or invalid for claiming too much, the defect might be supplied or the excessive claim be reduced by reissue.
4. But the courts have given a very different interpretaion, much wider in most respects and narrower in only one. They do not permit a defective specification to be supplied excepting from the drawings or model; but they do permit the claim to be varied, provided the same invention is described in both patents.
5. The law is extremely liberal, perhaps too much so, and has been much abused; but if we change it suddenly we shall make a destruction of titles which it is impossible to contemplate without dismay.
6. As to the mere question of the necessity for a reissue, supposing the new patent itself to be unobjectionable, the decision of the Commissioner has always been held to be final, and this for an unanswerable reason that no patentee, however honest or careful, can be safe in obtaining a reissue if he is to be informed when he gets intocourtthat the judge is unable to see why be should have surrendered his first patent. The slighter and more obviously unobjectionable the change the stronger will be the argument that there was no occasion to make it, so that honestand careful patentees will be the most likely to suffer.
7. A mistake by the Commissioner as to the necessity of issuing a new patent is not an excess of jurisdiction, but a mistake in a matter clearly within his jurisdiction, and the real question is whether it is one which the courts will correct by destroying a new patent after the old one has been surrendered.
8. Urgent reasons of justice require that, upon the mere question whetber the paper called a reissue sball be given, the finding of the Commissioner should be, as it bas hitherto always been beld to be, conclusive
9. If it be found that the claims the original patent were valid, and that the reissue for the same invention states the claim or claims in a different way, the law is well settled that the cbange cloes not of itself vitiate the new pateut, but that, on the contrary, the original claims are conclusively presumed to have been made as they were through inadvertence, accident, or mistake.
10. It bas been brought out a little more decidedly by the later cases that the invention must be the same; but it has never been held in the Supreme Court or any circuit court that the Commissioner's decision is not final as to the propriety of a reissue as distinguished from its validity upon whatmay be called its merits, or that the claims may not be varied to express the real invention.
11. The claim is part of the specification, and if defective may be amended.
12. The Reissue No. 7,558, to Daniel A. Sutherland, March 13,1877 , for "improvement in presser-feet for sewing machines," was granted in order to enable the patentee to claim the actual operations of his tool in detail, which is a perfectly legitimate reason for a reissue until the law is changed by Congress or the Supreme Court.
Patent sustained.

MECHANICAL INVENTIONS.

Messrs. Francis W. Ashton, of Hyde, county of Cbester, and William Mather, of Salford, county of Lancaster, England, have patented machinery for washing fabrics, which consists in certain combinations of machinery, whereby the fabrics in a distended state are continuously lifted out of and immersed in the water, soap liquor, or other liquid, while passing tbrough the machine, so as to obtain a dashing actinn, which will effectually cleanse the piece while extended to its full width and without undue tension, thus obviating the necessity of washing pieces that are printed with color in the form of a rope, as at present.
An improved glove-sewing machine bas been patented by Mr. Claude M. Boland, of New York city. This invention relates to that class of machines for sewing gloves and furs in which are employed two parallel feed disks, a reciprocating needle, and an oscillating looper; and it consists in an arrangement of parts which cannot be clearly described without engravings.
Experimental Researcies on Magnetic Coercitive Force.-(D. Kulp.)-The author magnetizes iron and steel rods in spirals, which he opens before taking out the rods. On percussion, the permanent magnetism of the rods is As a series of induced currents arise in the rods on opening the spiral they bave been exposed to magnetizing forces in alternating directions, whereby their bebavior is explained.

IMPROVEMENT IN TELEPHONE AND TELEGRAPH LINES.
We give an engraving of an elevated support for telephone and telegraph wires invented by Mr. T. G. Ellsworth, manager of the John St. office of the Metropolitan Telephone and Telegraph Company, New York city. Many useful and improved appliances are combined in this inven. tion, making the whole structure an ornament rather than a blemish to the streets. In the larger cities telegraph wires are becoming objectionable to the public on account of the space they occupy, on account of the unsightliness of the poles and fixtures; and the great expense and trouble of constructing and maintaining the lines on house tops and in streets, is becoming a burden on the different companies.
The number of wires in many localities bas become very large since the telephone has been so universally adopted. In many instances the breaking of a single wire has interrupted communication on twenty or thirty other wires, suggesting the necessity of some ketter means to carry the wires from point to point. The great value of telegraphic and telephonic communication lies in uninterrupted service, and any means that will insure this will undoubtedly prove valuable. The particular tube shown in the engraving bas been selected from many desirable forms to illustrate this invention. Inside the tube, are arranged a number of sbelves for supporting the cables, which are marked at suitable distances along the route in the covering. At each

street crossing is located an electric light, its support being a part of the structure. At proper distances are located letter boxes arranged for the attachment of a pneumatic tube for ccllecting the letters, or they may be collected in the usual way by carriers. Electric clocks are located at desired points. Police time detecters form a part of this sys-
tem, each policeman to signal to station while on his beat. tem, each policeman to signal to station while on his beat.
By this arrangement it may be known where the men are at stated times. Fire-alarm boxes are placed at suitable distances, and ambilance boxes are provided for calling ambulances. Drin'ing fountains are distributed at different points. Tbese attachments constitute some of the uses which can be made of the structure. The columns being hollow admit of cables passing unseen underground to offices wherever desired, or special tubes can be arranged for conveyance above ground.

Birch for Cabinet work

The small value of birch wood for fuel, and its lack of toughness and strength, except in the smaller twigs, haveled to its general neglect in the arts. Our more enterprising builders of railway cars, however, have discovered that its light weight, close grain, and rich finish make it admirably suited for certain applications where fine finish and bright effects are desired. The contrasts presented when white birch and light colored ash are relieved by the red of the cherry birch, are said to be peculiar but very pleasing.

Simple Mode of Toughening Glass.

A Leipsic jou nal gives a method which it asserts will prevent lamp chimneys from cracking. The treatment will not only render lamp chimneys, tumblers, and like articles more durable, but may be applied with advantage to crockery, stoneware, porcelain, etc. The chimneys, tumblers, eto., are put into a pot filled with cold water, to which some common table salt has been added. The water is well bolled over a fire, and then allowed to cool slowly. When the articles are taken out and washed, they will be found to resist afterward any sudden changes of temperature.
The Disappearance of a River.-The labors of a number of miners have been successfulin filling up the large chasm caused by the river Bradford breaking through the roof of a disused mine at Alport, in Derbyshire. The stream, however, still flows through the mass of rock aud timber thrown into the opening, and finds its way to the Derwent underground. It is impossible to divert the stream by reason of the conformation of the ground. A large number of persons have visited the spot.

