Stitutific बmmericall.

HSTABLISHED 1845.
MUNN \& CO., Editors and Proprietors.
PUBLISHED WEEKLY AT
NO. B'Y PARK ROW, NEW YORK.
O. D. MUNN.

TERMS FOR THE SCIENTIFIC AMERICAN. One copp. one year wostaye included...
One copy, six months, postage included
Cinbs.-One extra copy of The Sciestific Am erican will be supplied
gratis for every ciub of five subscribers at $\$ 3.20$ each : additional copies at same proportionate rate. Postage prepaid.
Remit by postal order. Add
HUNN \& CO., 37 Park Row, New York.
The Scientific American Supplement Is a distinct paper from the Sclentrivic American. The SUPPlement
is issued weekly. Every number contains 16 octavo pages, uniform in size With ScIENTIFIC AMERICAN. Terms of subscription for Supplemvat, all news dealers throughout the country.

Scientific American Export Edition.

NEW YORK, SATURDAY, MARCH 19, 1881.

TABLE OF CONTENTS OF the scientific american supplement No. 272.

For the week ending March 19, 1881

Price 10 cents. For sale by all newsdealers.

1. ENGINEERING AND MFCHANICS.-Calvert Street Bridge, Balti- PAA
mors:
detsils

II. MEDICLNE AND YGGIENE.-Arsenical Wall Paper and Arti

V. PHISICS-Action of an Internittent Beam of Hadiant Heat

the zodiacal light

On almost any clear moonless night now this phenomeno may be noticed in the western sky. In the early part of such an evening, after the twilight has disappeared, a trian gle of faint light will be seen extending up into the sky. Its base will be found about the place on the horizon where the sun disappeared, and may be of considerable, though of varying and somewhat indefinite width. It will taper up. ward and gradually fade out about half way from the hori zon to the zenith, although it has been observed extending through ninety degrees, and even entirely across the sky. Its edges are so indefinite that no two observers will agree as oo just what its limits are. It is not generally noticed, because it looks so much like an extension of twilight that it is when for that. But, as has been said, it is to be see When the twilight has entirely disappeared, and its shape is so different that any one can distinguish it. It is found to lie along the ecliptic, that is, the sun's path in the heavens The ecliptic is more nearly perpendicular to the horizon dur ng the evening now than during the evenings of any other part of the year. A glance at any celestial globe, or at a terrestial globe having the eclipticmarked upon it, will make his perfectly clear.
If such a globe be set for the 1st of March and for a northern latitude, then turned over toward the west, it will be noticed at about eight o'clock that the ecliptic is nearly per pendicular to the horizon, and passes close by the zenith, the poiut in the sky directly overhead. As the zodiacal light always lies along the ecliptic, and is close to the sun, it is clear that about the 1st of March affords the most favorable evenings for its observation; it then extends farthest up into the sky. In the latitude of the north United States its path does iot run directly toward the zenith, for the ecliptic never runs through our zenith, but to a point a little way south of
that. In fact it extends up toward the noonday position of the sun in the longest summer days. The globe will also show that at an bour or more before sunrise the ecliptic is nearly perpendicular to the horizon, and bence rises bighest in October. The zodiacal light is thus seen best in the early morning in October. Except at these seasons it stretches along the sky so near to the borizon that it is generally unnoticed. The present is, then, the most favorable time of year for evening observation of this curious phenomenon, and for several weeks any one may find it. It will not do to expect too close a resemblance to the cuts of the light usually given in our text books. They make it more distinct and with sharper outlines than it π ill be found to bave in the sky, as well as too narrow for its ordinary shape. The cause of the zodiacal light is still uncertain. From its nearness to the sun, and its position along the ecliptic, its origin must be sought for about the sun. Kepler ascribed it to an atmosphere about the sun, and this view was generally held until Laplace showed that its observed limits were far beyond the point where centrifugal force would balance the force of the sun's gravity, and that it could not be an atmosphere belonging to and revolving with the sun in any such sense as our atmosphere belongs to the earth. Prof. Wright, of $\mathrm{Y}_{\mathrm{a}} \mathrm{e}$ College, has shown by means of the spectroscope that the
zodiacallight is reflecied sunlight. But this does not determine the nature of the refiecting substance. It may be a cloud of gaseous matter, or possibly of small particles of solid mat ter, surrounding the sun and extending out upon all sides tow ard the earth's orbit. More probably it is due toimmense
swarms of meteoroids surrounding the sun, and thus reflectswarms of meteoroids surrounding the sun, and thus reflec
ing its light to the eye.
G. M. P.

WHOSE BOILERS EXPLODE.

The records kept by the Hartford Steam Boiler Inspection and Insurance Company show that 170 steam boilers exploded in the United States last year, killing 259 persons and wound ing 555 . The greatest number of explosions in any month was 25 , in December. The number for January is 19, Sep was 25 , in December. The number for January is 19 , Sep
tember and November, 16 each; the other months ranged tember and November, 16 each; the other mo
from 10 to 14, the lowest number being in June.
The classified list shows the largest number of explosions in any class to bave been 47, in sawing, planing, and wood working mills. The other principal classes were in order Paper, flouring, pulp and grist mills, and elevators, 19; rail road locomotives and fire engines, 18; steamboats, tugboats yachts, steam barges, dredges, and dry docks, 15; portable engincs, hoisters, thrashers, pile-drivers, and cotton gins, 13; iron works, rolling mills, furnaces, foundries, machine and boiler shops, 13 ; distilleries, breweries, malt and sugar bouses, soap, and chemical works, 10
It would be an interesting thing to have a statement of 341 relative frequency of explosion-the number, that is. to each thousand boilers in use in each given class of steam-using esta hlishments.

STORM WARNINGS IN COURT

On the night of March 24, 1877, the hull of the steamboat Rockaway, built at Norfolk, Va., was taken by the steamhis As Af the Old Dom Fon Lise, 10 be the tion of the captain of the Wyanoke was called to the Government Storm Signals, hut they were disregarded by bim. Subsequently the storm became violent, and the Rockaway was wrecked.
The owner of the Rockaway brought suit against the Old Dominion Steamship Company to recover damages to the the captain of the Wyanole in disregarding the storm signals, failed to exercise due diligevee and preaution for
the protection of the property in his care. The case was recently decided, the jury returning a verdict for the plaintiff, giving him $\$ 35,018.37$, with five per cent. allow ance.

air and water

The two substances everywhere met with on the surface of this globe which receive the least popular atiention are air and water. The latter especially is one of the most re markable substances in nature, and exceeds in its pervasive ness even ibe air. Go where we will, on the most arid desert, the mountain top, the frozen pole, in the deepest cavern, we meet with water in some or all of its forms. The coldest, hottest, or driest air found in nature contains aque ous vapor. Water forms a large portion of many minerals, in which by the giant power of chemical atfinity it is di rectly combined or is locked up as water of crystallization. To adequately discuss all the natural phenomena in which some form of water is a factor, would require a volume; to enumerate and describe all its industrial applications would equire a number of volumes.
Bothair and water are essential to the existence of all known life. Our bodily health can only be supported by our taking quantities of both at short intervals. Both may and often do become the vehicles of deadly poisons, whic in densely populated countries and towns are liable to contaminate them. It is of essential importance that supplies of each needed for the support of animal life should be pure. Air and water are the great nalural distributers of heat and cold. The climates of different parts of the world are very materially affected by the hot or cold currents of air which flow over them, and by the analogous currents of water established by the action of heat in the great seas. Proximity to large bodies of water also has a very import ant effect upon climate. Water slowly absorbs the sum mer heat in very large quantity, and slowly gives it off again to the colder air of winter, thus tempering what would therwise be cold and freezing winds, and rctarding frost.
Air and water are the great natural distributers of mechanical energy. The currents of rivers represent a portion of the mechanical equivalent of solar heat expended in raising the masses of water that flow through their channels to the clouds. The winds that propel our ships and wind motorsare the product of solar energy also. The chief and most economical means by which the heat generated in the combustion of fuel can be converted into mechanical energy for the propulsinn of machinery is water, which this heat onverts into steam
The envelope of aqueous vapor which surrounds the globe, and forms a notable part of its atmosphere, is, as las been well shown by Tyndall, the great conservator of terrestrial heat. Sbould this aqueous envelope be removed by any cause the heat of the earth's surface would so rapidly radiate into space that every living thing would shortly perish.
The ice cover which forms upon the surfaces of lakes and it it nol for this provision of nature these water deposits would ecome solid masses, in which all their teeming life would vably imprisoned.
The snowblankets which lave spread this year over a large portion of our land perform a similar service for the vegetable life which lies dormant below. Without this protection the ground would be too decply frozen, the frost would be too late in leaving the earth in the spring, the growing season would be shortened, and many of the plants that now thrive in the temperate zones would cease to exist in latiudes where they now abound.
Air and water vapor are the great diffusers of light. Were it not for our atmosphere no solar light could penetrate our houses where the sun's rays do not directly enter, except such as might be reflected from solid objects. Everything not directly illuminated by the sun would lie in deep shadow. In the midday many of our apartments would require artificial illumination. Out of the direct sunshine only the lowest forms of life could exist. But the enormous diffusing, transmitting, and reflecting power of our atmosphere compensates almost wholly for disadvantages of position, caus. ing light to penetrate almost as universally as the air itself.
Thus is illustrated the wonderful claracter of these common substances-air and water-so important to all animaled existence, yet so heedlessly regarded by the mass of mankind.

THE INDUSTRIAL CONDITION OF CANADA

A couple of years ago our Canadian neighbors, tired of industrial stagnation, adopted a protective tariff in the hope of developing home industries. A return to a free trade policy is strenuously insisted upon by many Canadians, whose idea of national economy never rises above the sophistry of "buying in the cheapest market."
In an argument for the policy now under trial the Indus. trial World of Montreal describes a very hopeful state of things as its frst fruits, and points out the obvious conditions of the new prosperity:
"Suppose, for instance, a factory is opened in Montreal, giving employment to 1,000 hands. what does this mean ? One thousand factory employes will represent a population of at least 2,500 . What would the closing of this factory and consequent expatriation of these craftsmen mean? A loss of 1,000 to 2,500 ? Much more. These artisans require boot, shoes, hats, caps, meat, bread, roots, vegetables, medi-

