keepang in view the object of insect life, he found a clew to shows that all the placers must have sprung from the degraoner reason for the existence of the clothes-moth. The cater-
pillar of the clothes-moth, fed on wool, which is hair, pillar of the clothes-moth, fed on wool, which is hair; and bair, by the ordinary agencies of nature, is imperishable. In wir-a lady's wir--which is as brilliant and as fresh as when came from the hands of its maker 3000 years ago. Woo hair and hair is wool. The clothes-moth never touch is hair, and hair is wool. The clothes-moth never touches
loth garments while they are in use, and never while the wool was on the back of the sheep that furnished the cloth, Every sheep sheds its wool once a year, scratching it against trees. If the wool were not removed from the trees it would kill the trees, for they would not be able to breathe. The clothes moth and its insect allies set to work when the wool was done with, and enabled the trees to shoot and grow. It was a curious but a positive fact that if it were not for the clothes-moth and its allies there would not be a tree on the earth, and no human creature could exist on it. So the insect was intended to render the world better for being higher than itself. His most excellent and respected friend the cockroach, was not appreciated. People did not like it. He did not know why, for it could not sting or bite. Some people objected to it on the ground that it had a disagree able smell. The insect was not aware of that fact. Then probably, human beings had a disagreeable smell to animals. A deer could smell a person a mile off, and as the deer got away as quickly as it could, it evidently thought the person had a disagreeable smell. It was all i matter of taste. As to the cockroach it was often called a black beetle. It was not a beetle, and it was not black. Its color was a ruddy, chestnut brown, which was now becoming quite a fashion able color. They would notice there were two very distinct shapes of the cockroach. There were the male and the fe male, and there was no possibility of doubting which wal which, for they followed the universal law that the male was twice as handsome as the femalle. It was a fiction of poetry to state the reverse. Cockroaches were always found where there was wasted food. They were never found where food was not wasted, and belonged more to civilized than to avage life. They were never found in the wigwam of he sarage. He went on to observe that the cock oach was capable of being tamed. Its use was that of a cavenger. There was one particular use in which it was directly beneficial. Cockroaches were considered noxious insects, but there were others quite as noxious. They were quite as flat, but happily not so large. A person historically inciined might spealk of them as " Norfolk Howards," while a musician might designate them as " B flats." The cockrach consumed these insects. The lecturer went on to treat of the earwig, the lace-wing fly, and the gnat, all of which he described and illustrated by sketches. Speaking of the nat, he said it consumed in its life, in an aquatic state, ce ain animal and vegetable matter which, if not so consumed would, with the warmin of the sun, produce gases produc ive of ague and asthma. The grand object of insect life was to eat, and render the earth fit for higher creatures nhabit.

A Kentucky Robin Roost

According to the Times, of Glasgow, Kentucky, there has been near that place the past month a robins' roost that quals the pigeon roost of olden times.

A cedar thicket of about sixty acres furnishes the birds lodging place A bout sundown every e vening constant treams from every direction pour into the grove, and almos obscure the heavens in their flight. Night finds almost every bush in the thicket bending with its ret-breasted load. For the past few weeks lovers of sport for miles around have visited the place, and every night the thicket is illuminated with the torches of men with clubs and sacks gathering the feathery harvest. Mr. Smith has killed over 2,(100), and hundreds are carried away every night, but they don't seem to decrease; there are millions of them. Large quantities of them have been sold in town. They are very fat and make when well cooked, a dish good enough for anybody.
Seeing that the robin is one of our most efficient destroy ers of insect pests - a young robin requiring daily a bulk of such food equal to its own weight - it is probable that every bird killed at the "rcost" will cost the country a dollar, per haps ten times as much. In any case one of these birds "in the bush" is worth"a score or more "in the hand" or in the frying pan.

The Gold Gravels of Cal tornia.
Mr. W. S. Keyes, mining engineer, reviews at great length, in the San Francisco Bulletin, the advance sheets of an im port ant work on the " Auriferous Gravels of the Sierra Ne vada." by Professor Whiney, formerly State Geologist of California:
The gravels of California are of economic importance, be cause of the gold which they contain, and becau-e they are so situated that they can be washed with profit. They present phenomena almost identical with those of Ausiralia, and have the advantage of the latter in being hetter supplied with water and dumping ground. Professor Whitney reviews cursorily the few localities of gold-bearing gravel of the coast ranges in the northwestern part of the State, and then proceeds to consider the gravel region proper. This extends from Mariposa to Plumas, and is very nearly coterminus with the limits of the gold-bearing slates. The hy draulic interest increases in importance as we go north from uolumne to Amador county, and reaches its culmination
dation of pre-existing quartz veins, which were probabl richer than those we now see. He devotes considerable sace to a description of the various mechanical appliances used for saving the gold, and credits Ed. E. Matteson, of Stirling, Connecticut, with the invention of the hydraulic method. The physical conditions necessary for an economical washing of the gravels are particularly favorable along the western flank of the Sierra. Water with a sufficient head is plentiful, and there is a gradual and easy slope from the mountains for a distance of about 70 miles, with a grade of about 100 feet to the mile. This sloping plateau is cut by deep gorges or cañons through which flow the present rivers, and into them the vast accumulation of tailings is dumped The great depth of erosion may be inferred from a single ex ample, viz. : at Spanish Peak, where the Pliocene gravel beds occur 3,800 above American Valley. The gravels vary in thickness up to two or three hundred feet. Usually, but not always, the lowest portions are the richest. They are found in channels of varying width up to 4,000 feet. Upen gravels in many localities we find a capping of basalt or volcanic ash. The thickness of this cap, other conditions being equal, determines the method of working, whether by piping off" or by "drifting.
The fossils of the gravels are divided into three classes Microscopic organisms, plants, and animal remains. Pro fessor Whitney devotes considerable space to the specimens of human handiwork, mortars, pestles, etc., found in several ocalities, and relates in detail all the facts attainable touch ing the fossil human skull found in a deep shaft in the Cala veras gravel measures. He gives two lithographic views of the skull. The finding of this fossil-for fossil it undoubt edly is, because the phosphate of lime has been changed to carbonate-has aroused much controversy, but in view of es mas. And in so doing we acknowledge the existence of mankind contemporarily with the depositions of the gravels. Professor Whitney is of the opinion that there was no rive or system of rivers running parallel with the present crest of he range. He believes that the whole mass of the chain was originally much higher than it now is. He attributes the formation of the gravel beds to running streams which, during the tertiary age, carried far more water than the presen rivers. He denies the possibility of their marine origin, o that they were due to glacial action.
Contemporancously with and subsequently to their deposition great outpourings of lava and volcanic ashes took place, whereby large areas of the gold regions were covered p. Through these formations the present rivers have cut heir way and have formed the deep gorges which we now

Discussing the complicated questions touching the ec homical working of the gravels Prof. Whitney gives an ex umple where a yield of 26 cents per cubic yard barely cov ered expenses. He concludes, however, that under favor able circumstances, a yield of 4.75 cents per cubic yard ma be considered the mean minimum necessary for profit. H shows that about 20 cubic feet of water is, on the average equired to move one cubic foot of gravel. He closes with he opinion that bydraulic mining will continue for very meny yon the der great to be endured. "And," he says, impressively, "ther is no part of the world where scientitic oversight and ju dicious legislative interference is more desirable for the futur wefare of the community than in the Sierra Nevada of Cal formia."

The Mineral Belts of the Great West.

The Tribume, of Denver, Colorado, is anxious that National Mining Exposition shall be organized at that place In an article setting forth the advantages of such an exhibi ion, it says: "There have already been ascertained to be four well detined longitudinal belts of silver mines between he eastern base of the Rocky Mountains and the shores of the Pacific. First, the Colorado and New Mexico belt; econd, the Utah and New Mexico belt; third, the Nevada and Arizona belt; and fourth, the California and Old Mexico belt. According to Professor Rossiter W. Raymond, this atter belt extends along the east base of the Sierra. There are many transverse sections all through the mountain regions, but these great belts of mineral are sufficiently well detined. The attention of the floating capital of the country is attracted to the districts traversed by these mineral de posits.
'Railroad lines are penetrating into and through the mountains. Colorado is already bandsomely provided for, and the great Southwest will be gridironed at no distant day by lines already projected. With these transportation facilities Denver will become, if she is not already, the center of the great mining industry, and an exhibition of the ores of he royal metals alone. and appliances for mining them, would be warranted. But aside from these, there are coal fields in Gunnison county, New Mexico, and the Soutbwest, whose importance will not be long in attracting attention, and such minerals as antimony, gypsum, quicksilver, zinc, graphite, and even cinnabar, exist in our mountains. The mining of all these mineral substances is important, and heir display would have a growing interest in this comminty. Even such coarse material as slate, limestone, and building stone of all kinds would command no small attenion among practical men, while the various crystals and fos featur rare petrifactions would prove an attractive artistic

Cturespandurs.

Hearing Noises in the Sun.

To the Wilitor of the Scientific American
For a couple of months past there have appeared in all the papers accounts of certain efforts on the part of Professor Bell to reproduce, by means of the photophone, the noises which accompany the solar disturbances. But I have looked in vain for any statement of the error in the assumptions on which these experiments are founded.
If we have a beam of light of varying intensity falling on the seleniuru cell of the photophone, the instrument will give out sound; but it by no means follows that this sound is a reproduction of any previously existing sound
Suppose the light of a lamp to be thrown on the cell, and screen be made to pass rapidly back and forth across the path of the rays. The alternate light and darkness thins produced would certainly give a sound in the instrument, yct he lamp may burn and the screen may move absolutely without noise.
It is only when the variations in the light are originally produced by the action of the pulses in the sound medium that the sound given out will be areproduction of a previous one.
Furthermore, the intensity and character of the sounds in the photophone depend upon the dcgree and rapidity of the variations in the light
Now, in the case of the sun we have no assurance that the requisite conditions exist to enable us either to reproduce the solar noises, on a small scale, or to orisinally produce anything similar to them. We certainly cannot say that the variations in its light come from the rays having been modified by sound waves in the solar atmosphere; nor is there any reason to believe that they are at all naturally proportional to any accompanying sound; aud until one or the other of these conditions is shown to be a fact, it seems to me that the results of Prof. Bell's experiments will continue to be, as hitherto, "not wholly satisfactory."
W. V. Brown.

Cambridge, Mass., February 19, 1881.

W. V. Bran.

Sun Storms.

It is pitiful to witness the condition of the sun. The great ire-ball is in intense commotion. His surface is seamed and scarred in every direction, with black spots that indicate the disturbing elements at work in his chaotic mass. Occasion ally, for a day or two, the blemishes disappear, and the glo rious king of day shows a face like a shield of glowing gold. But the aspect quickly changes; spots come rushing in all directions and assuming all forms. They appearsingly and in pairs, and again in groups and rows. Immense groups break up into small ones, and small ones unite to form great chasms, into which half a dozen worlds might be dropped and there would still be room for more. Sometimes the spots are visible to the naked eye, and at that time a gond opera glass or a spy glass will make them easily perceptible. Hundreds of observers all over the world watch the sun's face every clear day, and keep a record of the number of spots, their size, and the direction in which they move, for as the sun turns on his axis they turn with him, some of them remaining for months without much chatge, some taking on new forms and some disappearing entirely. Very little is known of this mysterious sun or the spots that are visible more than ninety millions of miles away.
Once in about eleven years the sun takes on his present sun-spot phase, and we are approaching the maximum of disturbance. No one knows the cause. Some believe that it is planetary attraction, some that it is the fall of great masses of meteoric matter, and some that it is the result of internal commotion and the rush upward of gaseous explosions in comparison with which our fiercest volcanic eruptions are but the flicker of a flame. Besides the sun-spot agitation, the gaseous outbursts are marked and vivid. The tongues of flame or rosy protuberances are darting forth in all directions and bearing their testimony to the solar commotion. Mr. Trouvelot, of Cambridge, who makes daily observation of the sun's chromosphere, gives a graphic de scription of a remarkable solar protuberance that he wit nessed on the 16th of November. When first seen it was large and complicated, extending upward from the sun about a hundred thousand miles. Three or four hours after it had developed into huge proportions, extending far out iuto space, and vanishing gradually to regienswhere it could not be perceived. As nearly as it could be measured, it reached a height of over a quarter of the sun's diameter, or about two hundred and thirty-tive thousand miles. Sucha protuberance hurled upward from the earth would almost reach the moon! Two hours after, the whole structure had collapsed, and was only about eight cen thousand miles high. Observations like this give an idea of the mighty forces at work in the solar orb, and make observers long for the time when a satisfactory solution may be found for this mysterious periodical solar disturbance, so intimately connected with the meteorological condition of the earth.-Providence

THE Wheeler wood filler patents, after a long controversy, have been fully sustained at final bearing, and injunction is ordered to issue. This filler is manufactured by the Bridgeport Wood Finishing Company, of Bridgeport, Conn andis acknowledged to be the best article in the market for the purpose. Mr. D. E. Breining, 40 Bleecker street, New Yorl; city, is agent.

Tea Curing and Packing in Foochow

The following quaintly-worded, yet very graphic description of the work done in a large Chinese tea packing house, is given by the Foochow Herald, at the close of a season's below operations:
A large tea packing house presents a very different scene from that two months ago. Theu, at the door one found lines of fifteen catty boxes and waiting to be soldered up. Now, none. Next, one found fat bags stacked up eight or tex feet, bursting with Pebling tea that escaped here and there through holes temporarily stopped with bamboo leaves; the bottom of the bags mostly stained from contact with wet flights of mountain stairs upon which the exhausted cooly had set them down on the passage.
Now, one finds but empty chests, hundreds in number, square, deep, and oblong, used for handling the tea in the factory. Ordinary tea chests would not stand the rough usage.
Farther on, one came to the dozen long double row of sifters facing each other, forty in a row, the mesh of some taking a pencil-that of others refusing a pencil point-sifting tea leaf rough and bold, that after a persuasive grasp or two in the hand broke, and consented, after a few shakes in the sieve, to be stripped of some of the sappy leaf edges and to appear below, the even and uniform leaf which tea the drinkerinsists he must have (plus the dust due to the persuading). The transformation in a rough leaf on passing the meshes of a coarse sieve, with a gentle crush from the sifter's hands, enhances a rough, bold tea much in value.
In place of the rows of men then seen, tilting and jerking their sieves in a monotony only broken by the Cantonese taskmaker's roll-call twice a day before the general meal of
fish and rice, there is now to be seen only the bare floor of hardened earth, piles of empty benches stacked in a corner, and the sieves of the twelve different sizes used, each in its division in the three-story stands.
The dozen or score of fanning mills are still now. The trained hands are gone that turned the cranks with a uniform motion, sending the heavy tea, light tea, and flaky dust each down its respective spout separated, never again to meet, unless haphazard, mixed in a Whitechapel grocer's window
The tea leaf separated in these fanning mills has been parted with at the smart loss of Tis, 8,000 on 3,500 piculs to the foreign buyer, and has been let go by the latter to the London dealer or auction room habitue. The mills now stand still. The tea growers in the hills who waited through June aud July for their money have now been paic!. The losses to the packers here, however, have been so smart that there is little third crop tea now being packed in Foochow, and the mills will rest until another May shall bring the pysical courage bred of bot blood back to the pale and di pirited native teamen. There are stacked up in this huge go-down a few hundred packages of a native maker's brick tea wrapped in plaited bamboo strips, bound in half bamboo and triply rattanned. Aside here, the Chinese upper millstone is being turned upon the nether by a Chinese who is grinding the seeds left by the fanning mill.
In these sycee boxes sharp spades are falling upon the tea stems, chopping them fine enough to go into the stemmy dust mixture to which the seed dust gives the strength while the chonped stems vouch for it being tea
In the firing bouse, four Chinese rice kettles, two feet across the mouth, set obliquely across the edge, turn the tea back in a shower over the hand of the stirrer, a wood fire
being kept up in the brickwork underneath. Fire holes, scores in number, follow in rows the walls of the firing house; in each an iron pan is placed, now filled and rounded with charcoal ready to be lit. Placed over each of these fires is a huge bour-glass-shaped-basket-hood or muffler that shuts in all heat of each fire to but one outlet-that

In these baskets is dried off the tea that comes in from the iills wet or flat from constant down-pours and from th first fermentation of the leaf. These fires are out and all is stiil.
Here too, on the floor above, the benches are empty where girls and women came-some too often-to throw out the stems from the leaf, getting balf a cent for removing those from the two catties of tea given them in wound bamboowoven trays.
The floor is now bare where we saw the Ningteh tea brought to a uviform shade, by shaking in bags with a few spoonfuls of lampblack; then balked upon the floor, only to be strewn white as a grave in spring with the pure muhil blossoms; theu blossoms, in turn, buried under another avalanche of funeral tea, and this again with blossoms, life upon death; then both were rudely mingled together and put away in boxes for a night till the fragrance should have been robbed by the dead tea, and the faded flowers b thrown aside, spent and worthless.
Our round finishes at the shed where Chinese lads, out of long sheets of lead, are glibly making lead cases by moulding them, batter-like, upon a box, and then running he soldering iron along the edges. Here Chinamen in their natal costume, beside this huge four-hogshead vat of hot water, are washing off the dust and sweat of the day. Here are piles of wood for the hot tea coppers, crates of up-river
hardwond charcoal for the firing pans and firing baskets. bardwond cbarcollthout the sight we then had of the mad dervish dance of two Clinese, who given a dozen pound f te stems under their sandals in a tray performed about the interior periphery a double shuffle, twist and grind of
the enemy under the heel, that is cooler for the spectator, the thermometer in the nineties, than for the performers, below.
The box factory is elsewhere. We enter on our homeward way. It is another old disused tea hong occupied by foreigners in the days when money was made, tumbledown now and abandoned to Chinese. Inside, a few Chinese youth eating a dollar's worth of rice per month, are rapidly gluing and dovetailing together, by rougb wholesale strokes, boxes by the score. Few nails are used, for these are handmade and cannot be afforded. What a bungling " mending" the merchant will pay for when these frail cases reach the land of rough usage and coarse nails!
Here you see a bit of thin tea-wood, there a bit of paper gaudily daubed with cardinal colors, a stroke or two, side marries end, the gaudy paper cover hides all joints, and the catty boxes, gay with bird, butterfly, dragou, and phœenix, are en route to be stared at in a provincial grocer's window.
The only foreign devices we have noted in those busy tablishments, where in the season 500 men and women are busy from daylight to dark, are a Fairbanks scales and a Cantou-made fire engine. Two red tapers stuck in the earth at the door burn for good luck, and good luck we must wish he patient set who work here.
Nearly 2,000 piculs this season bave passed the sieves, one might almost say, a leaf at a time. And so this year, of hundreds of packing houses, some in hamlets in the hills, some, as in Foochow, in cities ten to fifteen miles from the hills. Women have carried, each her picul, up and down he mountain pathways, twenty-five miles a day, not complaining of the bent backs, nor once rudely jostled or insulted by "foreigu coolies" from outside districts who come starving their way toward the work offering, their only food a double handful of salt in their girdle to bite at before they drink along the road. Boatmen at river marts have fought pitched battles for the tea, upon the transport of which depended their livelihood.
Probably all the tea leaving Foochow has been lifted up and down as most as if it had been carried up one side of he great Pyramid and down the other a score of times Plenty of men bave been ready to fight for the privilege of carrying it; plenty of women, too, under their loads behind their new hushands.

IMPROVED COFFEE POT.

The annexed engraving shows an improved coffee pot which isclaimed to be a very superior article, and capable of making coffee of a uniformly good quality, where a good properly roasted and
ground berry is used. The coffee, C, is placed in the wire cloth sack, S , suspended from the flange, R, at the top of the pot. A trap, T, covers the inner end of the spout and prevents the escape of apor.

The construction and ma-
nagement of the pot are very simple, and it has the indorsement of a large number of persons who have used it.
Further information may be obtained by addressing the Ideal Coffee Pot Company, 622 Filbert street, Philadelphia Pa .

The New mill of the Willimantic Company.
The new thread mill of the Willimantic Linen Company is said to be the largest and finest structure in the world devoted to the manufacture of spool cotton, and also
pacious cotton mill anywhere on a single floor.
The main building is 820 feet by 174, with two porches at he ends 30×40 feet each, and two wings 80×60 feet, three stories high. The first girders are supported by 707 columns, 12 inches in diameter, while 352 columns on the main floor support the roof. The wallsare chiefly glass resting on brick piers. The roof is also largely of glass, the dark part being covered with felt overlaid with asphalt and gravel.
Internally the mill is divided into five sections, each complete in itself and driven by a separate Porter-Allen engine f 250 horse power, making 350 revolutions. The power is distributed by steel shafting runniug the entire length of the building, that of each section being coupled directly with its engine. No beiting over $2 \frac{1}{2}$ inches wide is employed.
The boiler house is 80 feet square, and covers two batterie of eight boilers, each boiler of 80 horse power. The chimney is 16 feet at the base and 152 feet high.
The mill is lighted throughout by Brush electric lamps. The generators are in the center of the building on the base ment floor. One supplies 18 lamps of 2,000 candle power the other is a 40 -light machine.
Ring-frame spinning is employed throughout, the yarn anging from No. 50 up to No. 120. The entire process of thread-making is completed on the main floor, which is 820 feet by 175 feet.
The architectural design and finisk of the mill are elaborate. In all the windows are ample boxes for window gardening. In the three towers are large water tanks of 30,000 gallons capacity each, to supply the closets and for other uses. The four entrance porches are neatly fitted up and supplied with wardrobes, each operative being given a numbered compartment. The spacious main entrance leads
to the inspecting room, 60×80 feet, tastefully finished open ing upon the main room. Here, says a reporter of the Econo mist, to whom we owe these particulars, "a view, grander than was ever seen in any mill, either in the Old W orld or in the New, is afforded. The wide sweep of perspective, brond and ample, the long rows of windows bordered with stained glass above, and fringed with the bloom of plants and flowers below, the solid floor shining as clean as if waxed for the occasion, the whirl of spinning frames, the long white rows of bobbins and spools, the numerous lines of contented but busy operatives in their clean attire, white and neat, as the color of the skein so deftly shaped into thread for spools, all tend to form a busy, changing, stirring scene not to be forgotten."
In one of the wings is the dining-room provided for the operatives. The room is light and cheerful, and fitted up with the appliances needed for serving hot lunches.
The mill is located on the north bank of the Willimantic River, and from its high elevation commands an extended view of the surrounding country. Someidea may be formed of the skill and energy displayed in its completion, when it is stated that the site it occupies was a pine forest up to the first of March, 1880. During the first week of that month the excavations for foundations were commenced, and dur ing the second week the timber was cleared away. In the short space of ten months the most beautiful and complete thread works of the country, or of the world, were erected, and thousands of spindles set running in the manufacture of six-cord spool cotton.

Glass Eyes.

A reporter of the Chicago Inter Ocean has been investigating the trade in glass eyes. From the leading dealer in the West, a firm which has sold glass eyes for many years, be learned that there were as many as a thousand wearers of them in that city, and that from 600 to 800 eyes are sold there every year. The best eyes are made at Uri, in Germany, the manufacture centering at that place on account of the occurrence there of fine silicates and other minerals needed in the business. The German eyes withstand the corrosive action of tears and other secretions better than those made France.
At Uri are made also vast quantities of eyes used by taxidermists in mounting birds, animals, and other natural history specimens, besides a superior quality of glass marbles, known to boys as agates.
The artificial eye is a delicate shell or case, very light and thin, and concave so as to fit over what is left of the eyeball. The shell is cut from a hollow ball or bubble of glass, the iris is blown in, and then the whole is delicately recoated. The trade in Cbicago has undergone a curious change. Twenty years ago there were sold very many more dark eyes Twenty years ago there were sold very many more dark eyes
than light, but from that period on the sale of dark eyes bas been perceptibly dying out. Now nearly all are light eyes, say twenty light to one dark. In Boston the percentage is even larger, about thirty-five blue or light eyes to one brown; while on the other hand, in New Orleans fifty brown or dark eyes are sold to one light. Regarding the change of color in Chicago of course fashion has nothing to do with it. No one has yet decreed that party-colored optics shall be the rage. The change simply shows that the influx of population has een from the East principally and from northern Europe.
Surgical operations are performed much more skillfully han formerly. Time was when it was deemed necessary to take out the eye entirely. Then the artificial eye became a fixed, glassy, staring object. Now amputation of portions of the eye can be performed in very many instances, and the glass eye fitted on the stump, which moves quite naturally. Sometimes those who have lost an eye will keep two or three artificial substitutes. They will use one for the day. light with a small pupil, and another for night time with a large pupil to offset the dilatation.

Flexible shafiting for Tower Clocks.

Philadelphia has recently adopted a time ball similar to that used in this city. The automatic apparatus for dropping the ball at noon was devised by the builder of the clock, Mr. G. W. Russel, the city time keeper. To a delicate hair trigger the armature of a magnet is attached, so that when the electric current is passed through the magnet he movement of the armature sets off the trigger and lets the all drop.
The current is sent to the magnet in a very simple manner. In the clock are three wheels, one of which revolves but once in twenty-four hours. the other once in one hour, and the other once in a minute. In each of the three wheels is a notch, and, of course, these three notches cim be in the same straight line but once in twenty-four hours. This occurs on the completion of the last second before noon, and then a lever attached to the escapement drops into the notches, completes the electric circuit, and sets off the hair trigger.
The time ball is placed above the clock tower of the Union Insurance Company's new building at Third and Walnut streets, and is visible from a long distance.
Owing to lack of space it was found inexpedient to put the machinery of the clock in the tower, so it was placed in a separate loft and connected with the dial by flexible shafting. This avoids obscuring the skeleton dial by the boxing that would have been necessary with the usual right angle connection. Mr. Russel claims that this is the first application of flexible shafting to tower clocks, and that the result has been satisfactory. The time is taken daily from Washington.

