PINKING MACHINE.

The annexed engraving represents a simple machine for pinkıng the edges of cloth, silk, velvet, leather, etc., and is designed to replace the punch used at present. The invention consists essentiaily of two rollers, one of which has the design in relief, the other having it cut in, the two rollers being in contact. They are made of hardened steel, and are mounted on parallel shafts, one of which is provided with a hand wheel for rotating it. The other shaft is rotated by means of a pair of gear wheels mounted on the shafts. The upper shaft can be raised or lowered according to the thickness of the material by means of an adjusting screw.
The relief of the pattern roller is not sharp, and does not really cut the fibers, but crushes them. As the various pattern rolls are not of the same diameter, the upper shaft is made adjustable in beight, and can be locked in any position by meuns of a screw passing through the side of the passing through the side of the
frame. Tbis machine is the invenframe. This machine is the inven-
tion of H. Schmidt, Berlin.tion of H. Schmidt, Be
Deutsche Industrie Zeitung.

New Use for Sawdunt.
The Lumberman says: We have been shown a model of a car wheel consisting of an iron rim of seven inches outward diameter by one-half inch thick, fitted witha well proportioned hub, the space between the hub and rim filled with pine sawdust, pressed in so solidly that we are ready to believe the assertion that resting the iron rim upon bearings, a pressure equal to 23 tons applied to the hub failed to develop any signs of weakness. We hesitate in these days of progress to assert that anything is impossible, and we begin to think that even sawdust possesses elements of value hitherto unsuspected, and that the day may come when the filled grounds adjacent to all sawmills may be seen to have a great value in the mechanical development and utili- \mid the head by means of quarter-inch machine screws. zation of the now useless débris placed upon them to get it out of the way. Sawdust car wheels, sawdust brick, sawdust fence posts, railroad ties, and even sawdust window and door frames, wainscoting and mouldings, begin to appeir among the possibilities of the immediate future.

AMATEUR MECHANICS

WOOD-WORKING.

It is not the intention of the writer to enter largely into the subject of wood-working, but simply to suggest a few handy attachments to the foot lathe which will greatly facilitate the operations of the amateur wood-worker and will he found very useful by almost any one working in wood. It is not an easy matter to split even thin lumber into strips of uniform width by means of a handsaw, but by using the circular saw attachment, shown in Fig. 1, the operation becomes rapid and easy, and the stuff may be sawed or slit at comes rapid and easy, and the stuff may be sawed or slit or bevel. The attachment consists of saw mandrel of the saw mandrel of the
usual form, and a wooden table supported by a right angled piece, A, of round iron fitted to the tool post and clamped by a wooden cleat, B, which is secured to the under ide of the table, plit ide of the table, split rom the aperture to one end, and provided with a thumb-screw for drawing the parts together. By means of this arrangement the table may be inclined to a limited angle in either direction, the lot through which the lot throug wich the aw projects being en arged below to adm of this adjustment. The backof the table is steadied by a screw which rests upon the back end of the tool rest support, and enters a block attached to the under side of the table Ther side of the table. hegabe top o he table is used inslit ing and for other pur poses which will be presently mentioned, and it is adjusted by aid of lines made across the table parallel with the saw.
For the purpose of
cross-cutting or cutting on a bevel a thin sliding table is fitted to slide upon the main table, and is provided with a
gauge which is capable of being adjusted at any desired angle. For cutting slots for panels, etc., thick saws may be used, or the saw may be made to wabble by placing it between two beveled washers, as shown in Fig. 2.
The saw table has an inserted portion, \mathbf{C}, held in place by two screws, which may be removed when it is desired to use the saw mandrel for carrying a sticker head for planing small strips of moulding or reeding. The head for holding the moulding knives is best made of good tough brass or steam metal. The knives can be made of good saw steel about oneeighth inch thick. They may be filed into shape and afterward is not absolutely necessary to use two knives, but when the head in ploved a counterbalance should be fastened beading, tonguing, and grooving may be done with this attachment, the gauge being used to guide the edge of the stuff. If the boards are too thin to support themselve against the action of the knives they must be backed up by against the action of the knives they must be backed up by a thick strip of wond planed true. The speed for this cutter Fig. 5 shows an attachment
he cutter or irre carryigular flutes on turned work. It consists of a bar, D, arm, the purpose of the latter being to adapt the device to work of different lengths. The arm projecting from the center of the bar D supports an arbor having at one end socker of D, supports an arbor having at one end a socket for receiving the twisted iron bar, E , and at the other end a center and a short finger or pin. A metal disk hav-
 Figs. 6 and 7 show a convenient and easily made attach tempered. They are slotted and held to their places on ment for moulding the edges of irregular work, such as brackets, frames, parts of patterns, etc. It consists of a brass frame, F, supporting a small mandrel turning at the top in a conical bearing in the frame, and at the bottom upon a conical screw. A very small grooved pulley is fastened to the mandrel and surrounded by a rubber ring which bears against the face plate of the lathe, as shown in the engraving. The frame, F, is let into a wooden table supported by an iron rod which is received by the tool rest holder of the lathe. 'The cutter, G, is made by turning upon a piece of steel the reverse of the required moulding, and slotting it transversely to form cutting edges. The shank of the cutter is fitted to a hole in the mandrel and secured in place by a small set screw. The cdge of the work is permitted to bear against the shank of the cutter. Should the face plate of the lathe be too small to give the required speed, a wooden disk may be attached to it by means of screws and turned off.
Figs. 8, 9, and 10 represent a cheaply and easily made scroll saw the head by means of quarter-inch machine screws. It \mid attachment for the fort lathe. It is made entirely of wood an enlarged view showing the.construction of clamp.
The relation of the spring, K, to the board, H , and to the other part is shown in Fig. 9. It is attached to the side of the board and is pressed upward by an adjusting screw near its fixed end.
The saw is driven by a wooden eccentric placed on the saw mandrel shown in Figs. 1 and 2 , and the spring, K , always pressed upward against the eccentric by its own elasticity, and it is also drawn in an upward direction by the upper spring. This arrangement insures a conment insures a continuous contact be tween the spring, K and the eccentric, and consequently avoids noise. The friction surfaces of the eccentric and spring may be lubricated with tallow and plumbago. The eccentric may with eccentric may, with advantage, be made of
metal. The
The tension of the upper spring may be

