Srientific gmantan.

MUNN \& CO., Editors and Proprietors.

NO. B'Y PARK ROW, NEW YORK.
O. D. MUNN.
A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN One copy, one year postage included...
One copy, six months, postage included \qquad
Clubs.-One extra copy of The Scientific American will be supplied gratis for every club of five subscribers at $\$ 3.20$ each : additional copiey same proportionate rate. Postage prepaid.
Remit by postal order. Address \quad MUNN \& CO., 37 Park Row, New York
The Scientific American Supplement Isa distinct paper from the Scievtific anfrican. The SUPPLEMENT
is issued weekly. Every number contains 16 octavo pages wish ScIENTIFIC AMERICAN. Terms of subscription for SuppIEm sint, 55.00 a year, postage paid, to subscribers. Single copi 10 cents. Sold by

NEW YORK, SATURDAY, MARCH 5, 1881.

TABLE OF CONTENTS OF
the scientific american supplement

No. 270

For the Week onding March 5, 1881 . Price 10 cents. For sale by all newsdealers.

1. ENGIVE

II. TE TETNOLOGY AND CHEMISTRY.-1'yrogallol for Dry plat

HLECTRICITY, LIGHT, ETC. -The Electrical Photometer.

VI. ART, ARCHITECTURE. ETG.-Count Ferdnand de Lesseps and

 soiling Stock the running of wires in some systematic manner, the dam ages to be assessed and met in the usual way. Under such legal privileges, restraints, and regulations, most of the con${ }^{4300}$. fusion, misplacing, imperfect supporting, and other fault of aerial lines, could be corrected and the way left clear at 7 the same time to extend our systems of electric communication unlimitedly.

ANOTHER IMPORTANT REISSUE DECISION BY THE SUPREME COURT.

The tendency of recent decisions of the Supreme Court of the United States, with regard to reissued patents, lately commented upon in this paper, received another illustration in the decision delivered by Mr. Justice Swain in the case of Densmore et al. vs. Scofield et al. (December 20, 1880), appealed from the United States Circuit Court for the Northern 4304
4305 :
43

It would appear that the complainants had patented a method of attaching to ordinary flat cars over the trucks two 301 large wooden tanks for holding petrolk instead of in ba rels or other commercial vessels. Sulsequently, after the well known iron tank car had come into general use, the patent was reissued. The specifications of the reissued patent were was reissued. The specifications of the reissued patent were
the method of attaching them to the car, but " their equiva lent when constructed and operated in combination with an ordinary railway car"-that is to say, any form of tank car.
Suit being brought for infringement, the answer set up, among other defenses, that the reissued patent was too broad and was therefore void.
The court saw fit to disregard this plea, deeming it proper to dispose of the case upon a more radical and comprehensive objection. After citing the unimpeached and uncontradicted testimony of witnesses called by the appellees, to the effect that the complainants' wooden tanks had been discarded for reasons given, and that the use of return casks placed and fastened as described in the patent had been practiced for tweuty years or more, the court said:
'This testimony leaves nothing of the substance of the plaintiffs' alleged invention. . . . But, irrespective of this testimony and of any testimony, upon looking this reissue in the face and examining its several claims by their own light, we find nothing that brings any of them within the sphere of what is patentable. There is no novelty and no utility." On this ground the Supreme Court pronounced the entirety and all the particulars of the claims "frivolous and nothing more."
"Patents rightfully issued," the court observed further on, "are property, and are surrouided by the same rights and sanctions which attend all other property. Patentees as a class are public benefactors, and their rights should be protected; but the public has rights also. The rights of both should be upheld and enforced by an equally firm hand, whenever they come under judicial cou-idemalion."
A few more decisions of this tenor should put an end to the practice which has wrought so much injustice to the public and brought so much discredit to the patent system, we mean the extension of obscure and often trivial patents so as to make them cover, on reissue, valuable processes or products not within the scope of the original.
physical training as a means of mental health. One of the serious problems which modern science encounters is how to deal with-more particularly, how to prevent-the excessive nervous development, and throikg that the frequent mental failure or derangement characteristic of modern life. The mad poet's sarcastic remark, that brains had brought him to the asylum--a fate his interrogator ran no risk of-was bitterly true; but it is not volume of brain so much as an unbalanced development of brain that leads to insanity or a liability to that distressing malady. That the rapid, eager, restless, anxious life which the most of us lead tends to produce an increasing complexity of the nervous system, all physiologists agree. That this complexity of nervous organization lays us liable to the development ity of nervous organization lays and nervous equilibrium is of a condition of unstable mental and nervous equinbrions. only too clearly proved by the statistics of our asylums.
What are we to do? We cannot radically change o
What are we to do? We cannot radically charge our
style of living to that of our slow-going ancestors; on the style of living to that of our slow-going ancestors; on the contrary, the indications are that our children's children will, by contrast with their more active life, look back upon our age as measurably serene. It is remotely possible that a new order of invention may reverse the tendency of the race and relieve the future of much of the mental and nervous strain which we have to endure; but it does not look that way now. The immediate future, at anyrate, is pretty sure to intensify the conditions which so many break down under to-day. Must the mental breaking down increase in frequency in proportion? Or can we pitch upon some means whereby the rising generation can be fitted to endure the strain which will come to them, better than the men and women of to-day bear the burden of to-day?
A generation ago the popular theory was that mental discipline, with the brain development which early and longcontinued schooling gives, would furnish the capacity for mental work and mental endurance which would best fit the meming man for the work he would have to do.
The result bas been to increase the work to be done, and he speed of doing it, without materially mereasing man's capacity for toil. In many instances the course of education pursued seems rather to have lessened the endurance of our people, and to have hastened the mental collapse of many of our brain workers.
And the school children of to-day have more to do that their fathers and mothers had, and have to bear no inconsiderable portion of the evils of modern life besides; that is, if constant excitement, baste, and worry are to be accounted obstacles to healthy mental and nervous development. That they cannot fairly be considered beneficial is sufficiently evident
Speaking of the nervous excitements and theirresults, due to our modern education and the rate and manner of our living, an eminent English physician (Dr. Browne, editor of the British Medical Journal) says: "The cerebral tissue becomes more and more highly organized, convolutions obtain secondary gyri, and with each differentiation in structure, new possibilities of disturbances are introduced; while the very differentiation in question produces in turn new mechanical devices, which again introduce a more complicated mode of life with which the nervous sjstem must keep pace."
If there were no possible corrective to this tendency to ncrease the nervous strain of life mere rapidly than the nertable organism can acquire power to endure it, the iner. something near 1 t. But there is promise of such a correc.
tive. The late Dr. Seguin demonstrated many years ago, that : height around the aperture. From this we may get an idea
the undeveloped brains of the feeble minded could be stimu: of the alleged lunar volcanoes, which are diametrically the lated to healthy growth by patient and systematic training opposite of those that exist on the earth. The craters of of the muscles and the organs of sense. Dr. Browne looks: our terrestrial volcanoes, that of Vesuvius particularly, are to a corresponding physical culture of those of normal brain endowment to give them the increased brain capacity which will fit them for the severer needs of our increasingly active intellectual life, and at the same time make them better able to resist the inroads of mental disease.
"Muscular exercise," he says," has been hitherto thought oo expand the lungs, quicken the circulation, and brace the nerves; but to this must now be added the pregnant idea that it also contributes to the brain growth and mental evolution. As a large part of the brain is compose, of motor centers, we may, in the nascent state of the organ, powerfully act on the brain, by putting into methodical exercise the muscles which we know to be directed by its varius parts; and especially the centers goveruing the movements of the hand ouglt to be brought into training by careful drill of manual movements, so that, in due time, a cunning right hand may be the servant of every man to some mechanical art, and of every woman to some technical work."
And not only is it possible, as Dr. Browne suggests, to fortify the young against the inroads of mental and nervous disorders by the development of brain capacity, stability, and symmetry, through manual training, but there is gained also, by means of such training, the additional safeguards, which come from much dealing with realities, from having always at hand the means of healthful recreation, and from the conscious ability to do, if necessity compels, something hat will win support.
Industrial education thus takes on an importance far greater than has hitherto been accorded it. It becomes necessity, not merely to those who are likely to spend their lives as artisans, but even more to those who may never carn a day's wages at the bench-men of independent fortune, professional men, business men and women in all the walks of life, to whom physical training may mean no bread and butter, but mental health.

Steam engines for electric light machinery.
A field for the manufacture of steam engines speciall dapted to the propulsion of dynamo electric machines has been opened by the recent extensive and rapid development of the electric light.
lt is the aim of inventors and manufacturers of electric lamps to provide automatic adjustments which will secure the greatest possible uniformity in the light, and these adjusting devices are called upon not only to compensate for unequal combustion of the carbons, but also for the irreguarities of the propelling power, every variation of which produces a corresponding variation in the strength of the electric current. This effect is more strikingly illustrated in electric lamps of the incandescent variety, by whose regular fluctuations the strokes of the engine may be sometimes
counted. The highest measure of success in electric illumicounted. The highest measure of success in electric illumination demands the employment of high speed engines run ang with great uniformity.
It requires but little reflection to perceive that as the elec tric light is the continuous product of mechanical energy, it must be of primary importance to uniformity in the product hat the supply of energy should be uniform
Sir J. W. Bazalgette, in his report upon the electric lights which have proved so successful on the Thames Embankment in London, states that the success reached is in grea measure due to the remarkable steadiness and regularity of
movement in the $20 \mathrm{H} . \mathrm{P}$. steam engine which supplies the movement in the $20 \mathrm{H} . \mathrm{P}$. steam engine which supplies the lights, and which was built by the Messrs. Ransomes and fitted with their patent automatic expansion gear. This en gine, during a period of twelve days, running at an averag peed of $142 \cdot 36$ revolutions per minute, has been found to vary not more that one-twelfth of a revolution under sud denly varying loads.
In view of the progress which this kind of illumination is making in this country, together with the great variety of automatic governing valve gear of great excellence in use, i would pay some of our best engine builders to give attention to this special class of work. The field is large and con tantly growing, and offers rich promise to enterprise.

NEW THEORY IN REGARD TO LUNAR VOLCANOES.
M. Faye, according to the thronique Industrielle, recently delivered a lecture at the Sorbonne, in which he criticised the prevalent belief that volcanoes exist on the moon, and offered a theory of his own to account for the objects that have been taken as craters due to volcanic action. Water said he, is the sole cause of volcanic cruptions. Now, on the moon there is no atmosphere; this is a fact recognized by every one, and it is absolutely confirmed by observation of occultations. Since there is no atmosphere there, of course there can be no water, for the latter would instantly evapo rate under such conditions, even did it exist. So, since there is no water in the moon, it follows that there can be no volcanic action and consequently no volcanoes. But there are circular cavities on the moon, nevertheless. What are they, then, and how have they been formed? To ac count for these, M. Faye asked his auditors to imagine a river frozen over from shore to shore. Such being the case, the tides will exert a pressure on the under surface of the ce, and of a hole exist in the latter the water will quickly issue up through it and congeal around its edges. And so each successive ontfiow will freeze over its predecessors until the successive layers form a marginal ring of some

Abstract

at the top of high mountains; the craters of the so-called

 unar volcanoes are, on the contrary, in the center of low hills. The bottom of terrestrial volcanoes is greatly elevated above the mean level of the surrounding land; that of the alleged lunar ones is deep down beneath the surrounding ground. Terrestrial volcanoes are conical mountains thousands of feet in height, having at their summit a crater some bundreds of feet in depth, while the circular cavities on the moon are wells several thousands of feet deep and surrounded by a sort of curb some hundreds of feet in height. The circular hollow called Copernicus, for instance, is 11,000 feet deep, while its marginal hill is only about 2,600 feet in height. These circular cavities, then, are veritable wells, and they were formed, according to M. Faye, as follows: Ab the epoch whin the moon, olid layer, took less than a month to accomplish its revolu tion around the earth, tides were created on its surface by the latter. Theincandescent and liquid mass, covered by a thin coating that might be well compared to an egg shell, was attracted by our planet and thereby caused to dash up against this solid layer. Now, if we suppose that small ori fices were accidentally created in various parts of the still thin crust, the waves formed by the tide would cause some f the molten mass to issue through these apertures, while he surrounding crust would everywhere else resist it. This iquid would fiow over the edges of these well holes, and being unprotected against the cold of space would at once solidify. And, as we have just seen in the case of the frozenover river, at every tide the margin would increase in height by the superposition of new outfiows. Finally a moment would come in which the bottom would itself solidify. But this being situated at a great depth, and being protected against external infiuences, would remain for a short timein a pasty condition. If at such a moment a new flux should take place, the middle of the pasty bottom would be thrust up, and in solidifying would remain considerably elevated in comparison with the surrounding portions of the bottom Thus may be explained the existence of the peaks which ar biserved in a large number of these lunar cavities.Such is an outline of M. Faye's new theory.
the author, "I am asked by what considerations I am led to make known the results of my observations and researches I answer that I am seeking, first, to banish from science rross error by proving that these lunar cavities are not vol canoes, for no explosion can take place where there is no explosive material. Then, again, from a geological point of iew, 1 have wished to study in the formation of the moon hose phases of the past which may give us an idea of the phases to come. Although the geology of the moon differs completely from that of the earth, this very opposite natur is a valuable element of discussion. It will serve to banish vain theories and to put in a clearer light the phenomena of which the earth has been the theater."

WHITE ANTS IN COURT

An intimation of the mischief done in regions infested with white ants, by the wood destroying habits of these in sects, is furnished by a recent law suit in New South Wales. The plaintiff, a contractor, had received from the defendant instructions to repair a house which bad been damaged by white ants. As the work proceeded the plaintiff found that he house was almost eaten away by the white ants, and that a considerably increased expenditure would be required to put the bouse into thorough repair, and be informed defen dant of the fact. The bill for the work done was disputed excessive.
A considerable amount of evidence was taken on both sides s to the work performed, and it was stated that an estimate could not be given of the contract price of work, as the white ants operate during darkness, and the extent of their ravages could only be seen as the work progressed. One witness described the house as being so seriously injured that new material would be required throughout, and the best way to have dealt with it would have been "to put a fire stick under it." The estimated cost of the repairs before the work was begun was about $\$ 1,150$. The defendant had paid $\$$

THE HUMANE ASSOCIATION'S CATTLE CAR COMPETITION

The first result of the American Humane Association' ffer of an award of $\$ 5,000$ for an improved stock car, capa ble of carrying live animals long distances without suffering or having to be unloaded to be fed and watered, appears to be an accumulation of business not at all anticipated by the officers of the association, and not altogether in harmony with objects for which the society was organized.
The judges' circular, No. 2, dated Feb. 1, acknowledges he receipt of 420 models and about 200 plans and sketches and (since Jan. 1, the limit set to the receipt of plans and models) they have been overwhelmed with correspondence asking why the award is not made or the models, etc., re-
turned In other words, the office of the association has urned In other words, the office of the association has been turned into a sort of local patent office, for the work of which it was ill prepared. The judges suggest that, even if hey neglect their own business and devote their entire time parison of thation of the models, plans, etc., and be
for stock cars, several months must elapse before a decision can be arrived at. Indeed it is likely that months will have to be devoted to clerical and expert work before the special competitive examination by the judges can begin. When made, the result will be announced to the association, as specified in the circular of July 12, 1880.
Obviously the competitors will have to be patient; and if any one feels bimself slighted by the silence of the association be should first make sure that bis model has been received or was intelligibly marked, since thirteen of the models received had no names or addresses on them, and it is probable that others are lying unclaimed in express offices for lack of prepayment of charges.

A TELEPHONE REISSUE

The Patent Office, after carefir liearing, bas granted to Mr. E. Berliner, a reissue of his original telephone patent, of January 15, 1878, with several new claims, among which is one that virtually a wards to the above author the priority of invention and use of the local battery in conjunction with telephone instruments.
Prior to the invention of Mr. Berliner it was necessary to yell very loud in order to make anybody hear at any considerable distance through the telephone, and even then the speaker's voice was heard quite faintly.
But now, with this improvement added, the telephone is rendered so sensitive that conversation in whispers may be readlly carried on, and the ordinary tones of conversation are delivered by the instrument in the most perfect and admirable manner. Mr. Berliner is entitled to the highest honor for his remarkable invention, which is now used in all parts of the world. The patent is held by the National Bell Telephone Company, of Boston, Mass.

Spontaneous Combustion of Dyed Goods and Yarn
The beaviest loss that bas occurred in 1880, within the line of muttual insurance, has again been caused by the spontaneous combustion of dyed cotton yarn of various colors; and while this particular fire opens some entirely new questions that are now under investigation, it gives us reason, says Mr. Edward Atkinson, President of the Boston Manufacturers' Insurance Company, to renew our warning against a danger which has been the cause of thirty per cent of the losses that we have incurred since January 1, 1878, a period of two years and nine months.
Blacks, browns, slates, and Turkey red goods, dyed with cutch, gambier, aniline, iron liquor, and chromic acid, appear to be most liable to oxidation, if rolled hot or warm from the dry cans or piled hot from the dyeing kettles. In almost all the premises insured by us, complete arrange-
ments have been made for thoroughly cooling cloth and ments bave been made for thoroughly cooling cloth and
garn as it comes from the cans or kettles, or special fire yarn as it comes from the cans or kettles, or special fir loth from the dry cans over night. Yet, within the first month, hot rolls of cloth bave been found by one of our inspectors in one of our risks.
This last fire discloses the fact that old yarn, some of it imported five years since, and some made two years since, that had been softened with a mixture or emulsion of olive oil and soda to prepare it for knitting, took fire spontaneously when stored in the attic of an old-fashioned mill where the heat was doubtless excessive
Whether the combustion ensued from the emulsion or rom the dyestuffs is the point now under investigation, bu t is evident that care should be taken not to expose some of these colors to excessive heat, whether the goods are freshly dyed or old.
The present indications are that the combustion in this ease occurred from the oxidation of the dyes used in the black yarn, combined with the olive oil used in the emulsion, as we have succeeded in promoting spontaneous combustion with this color, but not with any other of those that have been prepared for our trial, precisely like those stored in the attic of the mill burned.

American and French Silks Contrasted

Foreign correspondents complain very much of the mise rable quality of the silks and satins from the Lyons looms that, as they scarcely outlast half a dozen wearings, plush, brocade, and Sicilienne take their place. This emanate from France, but the English have for several years previ ously acknowledged the superiority of the American silks, brocades, damasses, and armures, as well as gros-grains, which are free from all injurious matter, and will neither crack nor fray, but outwear several French silks. Another reat defect in black silk is " wearing shiny," which come from the action of the soap and alkali developing a greas under friction. Cracking arises from the strain of the deli cate silk to carry the heavy load of iron, potash, logwood, oda, oil, soap, and other chemicals used in foreign treat ment. Raveling a thread from the silk, passing it through, and straning it over the fingers, is a good test. In heavily dyed silks the thread will feel rough and lumpy, and if small quantity be burned it will simply smoulder, leaving a ellow, greasy look, while if pure it will immediately be consumed to a crisp, leaving only a pure charcoal. A new feature in silk trade has been the importation of raw silk rom Asia through the Suez Canal and the Mediterranea direct to New York, though the greater part of the Asiatic mportation of silk comes across the Pacific Ocean, and is brought here by rail. $-N$. Y. Tribune.

