Mr. Johannes A. Osenbrück, of Hemelingen, near Bremen, Germany, has patented a new bearing, which is simple in construction, and which can carry great weights without the friction which acts so.destructively upon the bearings in use at present and renders them useless. The bearing is provided with one or more disks for distributing the lubricating material; these disks are below the spindle in case the same is vertical, and are rotated by the spindle by means of intermediate gearing in such a manner that the disks rotate in the same direction as the spindle, but their rapidity decreases in arithmetical progression from the end of the spindle.

One of the principal defects in an ordinary brake is that the shoe is fastened to the clog by bolts or keys that in a short time become loose, thereby causing a disagreeable rattling and increased expense and labor for repair, and the clog, in time, also works loose on the brake bar, because of the shrinking of the latter; and in ordinary brakes the brake guide ordinarily consists of a straight piece of iron fastened to the end of a brake bar itself, and consequently the guide does not always operate effectively. Messrs. Charles F. Wohlfarth and Clovis W. Wakefield, of Nor wich, Conn., have patented a car brake intended to obviate these difficulties.

THE BERLIN FISHERIES EXHIBITION.

by frederic a. lucas.
The Fisheries Exhibition, which opened at Berlin on the 20th of April, is very wide in its scope, including, besides
a half long, and pointing backwards, so that whatever the animal starts to swallow must go down. The great size of this turtle-it weighs from 300 to 1,500 pounds-would render it a prize indeed were it not that the flesh is poisonous, and causes severe illness to any onerash enough to partake of it. Its home is the tropical Atlantic and the Mediterranean but it is probably a mere straggler in the latter sea.
The beautifully mottled plates which cover the back of the hawk's-bill turtle (Eretmochelys imbricata) form the well known "tortoise shell" of commerce, and cause it to be much sought after. Thus its very means of protection be comes its greatest source of danger. The plates, when soft ened by heat, can be united in a homogeneous mass and worked to any required shape. The peculiar color and markings are now so skillfully imitated in horn that it is difficult even for an expert to recognize the difference; but as there will always be plenty of customers who want "the real article," it is not probable that the turtle will be any the less hunted. A great proportion of the sea turtles are captured by spearing them while asleep with a round pointed spear. This is technically called "pegging."
The soft-shelled turtle, of which we have several species, inhabits our Southern and Western streams. The central part of the carapace, or covering of the back, is of bone, but is covered with a smooth skin, and widely bordered by a thick but pliable leathery margin, under which all the extremities can be drawn. These turtles have extremely long necks, are remarkably quick and vigorous in their move ments, and exhibit great ferocity when captured. Still

Mississippi. The Rio Grande is perhaps its headquarters although it would seem on some accountsan ill-chosen habit ation. Running up into the warm shallows when the rive is high, the rapid fall of the waters entraps numbers of them in small pools. Then begins a veritable struggle for exist ence; the large fish prey upon the smaller ones, and in thei turn fall victims to starvation or are killed by the evaporation of the little pond. This fish attains a length of four or five feet, sometimes six, and very rarely eight feet; but thi last is exceptional. The common gar pike (L. osseus) is a much smaller and more slender fish, not often exceeding three and a half feet in length, and quite abundant in the great lakes and Western and Southwestern streams.

NATURAL HISTORY NOTES.

Origin of Flovers through Selection by Insents-Dr. Herman Mueller has, not long since, published a work in which he seeks to explain the existing variations in the forms of flowers on the principle of selection. His supposition is that insects of different tastes bred peculiar flowers, just as men breed peculiar races of cattle. Carrion-loving insects bred their kind of flowers, and long-tongued insects the tubular kinds, and many other classes of insects have, each class, bred the flowers they love best. Dr. Mueller has a note in .Vature, of July 8, in which he points out that Saxi fraga umbrosa has been adorned with brilliant colors through selection by dipterous insects of the family Syrphidæ. He says: Among diptera the most assiduous visitors of flowers are certain Syrphidæ, which, elegantly colored themselves,

SPECIMENS AT THE BERLIN FISHERIES EXHIBITION

fishes and the apparatus used in their capture, and examples |their food seems to consist chiefly of insects and small of the varied articles of food, oil, etc.. prepared from them,
almost all aquatic animals, such as seals, whales, turtles, and \quad The paddle-fish (Pulyodon folium) is a curious resident of batrachians, down to shell fish and sea urchins. The United States National Museum, in conjunction with the Fish Commission, secured a space of 500 square meters, and sent a large and interesting collection, which was arranged under the supervision of Mr. G. Brown Goode. Among private individuals, Prof. H. A. Ward, of Rochester sent a very creditable series of specimens, a few of which are shown on this page. Noteworthy among these is the lyre turtle (Sphargis coriacea), the largest of existing species, and par excellence a sea turtle. Until quite recently specimens of this were extremely rare; but during the past few years at least six have been taken between Newport and Cape Cod, having followed northward the warm waters of the Gulf Stream. Instead of the usual bony shield, this turtle iscovered with small plates about the size of a ten cent piece, embedded in a thick leathery skin, from whence comes its popular appellation of leather turtle. The name of lyre turtle was bestowed upon it from its fancied resemblance to that musical instrument, the five dorsal ridges representing the strings. The paddles are nailless and covered with black skin a little suggestive of Indiarubber. The animal figured was about seven feet long, and as much in width from tip to tip of the front flippers. The throat is lined with sharply-tipped spines, about an inch and
the Ohio and its tributaries. It is said, and the statement seems plausible, to stir up the bottom for insects and cray fish, and pick them up in its capacious mouth. As it is also accused of a predilection for offal it is not used as food, although the flesh looks firm and palatable. Still its per sonal appearance is somewhat against it, for many people have strong prejudices against anything that seems at all uncanny. Some refuse to eat eels because "they look just like snakes," and the skate is held in abhorrence simply because it isn't a pretty fish.

The gars, one might almost say, are living fossils, for they are among the few existing representatives of the hosts of mail-clad fishes that swam the Devonian and Oolitic seas and carried terror and destruction among their weaker brethren. Compactly built, clad in silvery armor, and equipped with a goodly supply of wicked-looking teeth, they are true fresh water tyrants. Numbers of them are taken in seines, to the disgust of fishermen whose nets are torn by their teeth. The common gar is found west of the Hudson, and ranges from the great lakes to Florida and in the Mississippi and its tributaries. The alligator gar (Lepidosteus platystomus), so called from his short, broad muzzle, is a more Southern fish, and dwells from Florida to Texas, running some distance up the
fond of splendid flower colors, and, before eating polle or sucking nectar, like to stop awhile, hovering free in the air, in front of their favorites, apparently fascinated, or a least delighted, by the brilliancy of their colors. Thus, I have repeatedly observed Syrphus balteatus hovering before the flowers of Verbascum nigrum, and often before Melano stoma mellina; Ascia podagrica before Veronaca chamadrys; in the Alps, the lank Sphegina clu"ipes before Saxifraga rotun difolia; and, in my garden, Ascia podagrica before Saxifraga umbroso. Of Verbuscum nigrum, the main fertilizers are humble bees, diptera co operating only in a subordinate degree; in the case of the three other species, on the contrary, the above named Syrphidæ are such frequent visitors and cross-fertilizers that we may safely conclude that it is by their selection of elegantly colored varicties that these flowers have acquired their beautiful peculiarity. Hence, in order to estimate the color sense of these Syrphidæ, it is worth while to consider what color combinations they have been able to produce by their selection. Saxifraga umbrosa being, as far as hitherto known, their finest masterpiece, we may, in the first place, look at the variegated decoration of this species. Its snow-white petals are adorned with ool ored spots, which, in size and intensity of light, gradually decrease from the base of the petals toward their extremity. Indeed, nearest to their base, within the first third of their length, there is a large irregular spot of an intense yellow
about the middle of their length there follows a narrower cross band of red color, vermilion toward the base, intensely pink toward the outside, not reaching the margins of the petals, sometimes dissolved into several separate spots; lastly, beyond the middle of the length of the petals there are three to eight smaller roundish spots of paler violet pink color. The flowers of Veronica chamodrys prove that also gay blue colors are perceived and selected by Ascia.
Bees and Flowers.-Mr. Thomas Meehan, in a note in the Bulletin of the Torrey Botanical Club, says: I find that the behavior of bees is governed by circumstances. When flowers are abundant they visit those only which they pre-
fer; at other times they examine anything which comes in their way. At the time I am writing, May 18, there is a dearth of garden flowers. Those of the early spring are gone, and the later ones are not well formed. But Colum bines in many species are in bloom. The humble bee bores the ends of the nectaries and sucks the honey stored there and the honey bee follows and sucks from the same hole what may be left, or what may be afterward generated from the honey gland. I have often watched closely to learn whether the honey bee bored for honey. Its quick motions are unfavorable to correct observation. I thought once I had caught it boring lilac flowers, but I afterward counted all the flowers that had been bored by the humble bee, and then watched the work of the honey bee on the cluster, and there were no more bored afterward than before. The Col-
umbines (Aquilegig), with curved nectaries, such as A. vulumbines (Aquilegis), with curved nectaries, such as A. vul-
garis and A. olympica, are very favorable for observation, as garis and A. olympica, are very favorable for observation, as
the slit is made on the upper side of the curve, and the the slit is made on the upper side of the curve, and the
honey bee can be easily seen following after the crumbs that have been left on the strong one's table. I have no doubt, however, that it would bore for itself if it had the power, and perhaps it sometimes does. The humble bee and the honey bee are evidently not the insects for which the Columbine had this beautifully contrived nectar cup provided to induce cross fertilization; and what particular insect wa designed to be the favored one, so that it, and no other could turn its tongue around these twisted spurs to get a the honey in the end, I think no student has yet disco
vered.

A Fresh Water Jelly Fish.-In the Botanical Gardens, at Regent's Park, London, a new jelly fish, about half an inch in diameter, was discovered on June 10, by Mr. W. Sower by, and has created no small stir among the zoological celeb rities of the metropolis. It has already received two names, one from Prof. Allman and the other from Prof. Ray Lankester, and has formed the subject of two papers, one at the Royal and the other at the Linnæan Society: Hitherto no jeily fish has been found in fresh water, and therefore the discovery of this species is the more remarkable. Prof. Lan kester concludes that it is a tropical species, as it is active only at a temperature of $90^{\circ} \mathrm{F}$., becoming sluggish at $60^{\circ} \mathrm{F}$. It comes nearest to a Brazilian species, and one might there fore suspect that it came originally with the Victoria regia As the tank is cleared out every year, and this water lily has been grewn several years from seeds ripened at the gardens, it seems singular that the animal should not have been observed before if such were its source. Professor Lan kester thinks it may have been introduced from the West Indies.

Natural Spread of the Apple Tree in South America.-It is surprising how quickly the vegetation of many countries settled by Europeans has been modified. A writer in Petermann's Mittheilungen on the flora of Chili south of the Val divia River, states that the scenery between the Rio Bueno and its winding affluents reminds one very much of home. In the park like prairies, associated with Fagus obliqua, a deciduous beech, are numerous scattered apple trees, originally introduced from Europe. The apple tree has spread from Valdivia to Osorno, and even crossed the Andes into Northwestern Patagonia, and thence eastward. Indeed, it has become so widely spread, and so general, that the Indians from the distant regions of the Argentine rivers Rio Negro and Rio Colorado, are called manzaneros, or apple Indians. As a matter of fact, they and their kin in the pro vinces of Valdivia and Osorno live far more on the fruit of the apple tree than any European people, for it affords them both food and wine.
lrritability in Leaves of Robinia.-M. Phipson read a note at the recent session of the Academie des Sciences on development of sensitiveness in the common locust (Robinia pseudacacia). In his first experiment, tried last September on an afternoon when the sun was shining brightly, he found that by giving the terminal leaflet a series of ten to twenty smart raps with his finger he was able to cause al the leaflets to close up, just as those of the sensitive plant do under like circumstances. On a second experiment he obtained the same results, and found that it took two or three hours sunshine to cause the leaflets to unfold again
and resume their horizontal position. Heat applied to th terminal leaflet had no effect on the lateral ones, as it does in the sensitive plant, hence \mathbf{M}. Phipson is led to conclude that the sap moves more slowly in the locust than it does in the latter plant. M. Phipson believes that these experiments add another proof of the truth of an opinion enun ciated by him in 1876 , to the effect that sensitiveness or irritability in the sensitive plant should not be regarded as a property peculiar to that plant, but rather as the highest
manifestation of a phenomenon the traces of which are to manifestation of a phenomenon the traces of which are to dom.

THE AILANTUS TREE

Not long since the well known authority on arboriculture, Prof. C. F. Sargent, urged the claims of the ailantus as a timber tree. Among other valuable properties, it was said
to possess greater tenacity or ability to resist a strain than even the elm and the oak. Some experiments made in the French dockyard at Toulon showed that the ailantus, on an average of seven trials, broke with a weight of 72,186 pounds, while the elm yielded to 54,707 pound
Such under a pressure of 43,434 pounds
rowth of the tree, ought certainly to mak the rapi worthy of culture for industrial purposes were it also durable when grown in exposed situations. The latter point however, being one that has not as yet been ascertained, we are able to judge of the durability only from specimens seen in cultivation, and these would seem to give an answer in the negative. It is a well known fact that during the progress of the wind storms, which occasionally rise suddenly in this latitude during summer and sweep with terrific velocity through our streets, the very first tree to give way in the majority of cases, before the brief fury of the storm is the ailantus. This was notably the case in the hurricane
of Sunday afternoon, June 13, when, out of the large number of trees blown down in various parts of our city, nearly every one was a to-all-appearances healthy specimen of this
same Chinese "Tree of Heaven." All of the trees examined ame Chinese "Tree of Heaven." All of the trees examined by us had snapped off close to the ground. In nearly ever ase the base of the trunk, althounh it gave no outward sig of the fact, had rotted away internally to a depth of two wise seemingly sound tree. The reason of this decay was wise seemingl.
In an ailantus which was blown down in Fifth Avenue last June during a similar storm of wind, the trunk broke off about two feet above the ground. This tree, to all external appearances, was extremely healthy and in vigorous growth, the bark being perfectly sound and the tree in full flower; but an examination showed that the interior was a mere mass of corruption from base to apex. The inner surface was literally alive with the large white fleshy grubs of some tree-boring beetle, which had riddled the heart wood to such
an extent as to convert it into sawdust, and to leave nothing but a mere external shell of bark and sapwood not more than two and a half inches thick-a were skeleton, certainly not well calculated to resist much wind pressure. Here, then, in this insect we have one hidden enemy at least that may prove disastrous to the culture of the tree for its timber, one that may even now be committing its ravages unobserved in trees still living, and one that may have been the cause of death of those trees whose trunks are allowed to stand here and there along our streets.

Two years ago the city was sued by the family of a lady who was killed by the fall of an ailantus tree in Eleventh street. It was proven by the plaintiffs that the tree was not in foliage during the year previous, and that it was hence rotten, and should consequently have been removed by the authorities. However derelict the authorities may have been in this instance, it is quite probable that this dead tree was no more dangerous than a large number of those that are now living, and filling the atmosphere with the unsavory odor of their blossoms.

A question of prime importance, therefore, for the lives of our citizens would appear to be this: How many of the ailantuses standing along the edge of our sidewalks are in the condition of the one above mentioned-all soundness and beauty without, but all rottenness and corruption within, and liable to topple over on the passer-by without warning on the occasion of the least gust of wind? The ascertaining of so important a fact probably comes within the scope of the duties of the Board of Health. From these statements, based on our own observation, it will be seen that, however great a future there may be for this malodorous tree as a timber producer, the ailantus can scarcely be recommended as a safe shade tree for the streets of a populous city like New York; and, moreover, that it would be prudent to giv a wide berth whenever the wind rises to more than ordi nary velocity.

The Oreosote Plant

According to a note in a recent botanical journal, the esinous substance found on the branches of Larrea Mexi cana has been proposed as a substitute for lac in the pre paration of lac dye. The plant, which belongs to the natural order Zygophyllece, is a shrub from four to six feet high, growing in dense scrub-like masses in Mexico, espe cially on the borders of the Colorado desert, where its luxuriant growth forms an impenetrable mass of vegetation, effectuany preventing the inroads of the drifting sand. The presence of this plant is said to be a sure indication of a sterile soil, little else being found where it flourishes, though the bright green of the foliage imparts a freshness to the surrounding scenery. The common name is derived from the fact that the plant has a strong creosote-like odor, which
is so powerful that no animal will touch it. The resinous matter to which the smell is due is abundant in all parts of the plant, the branches being frequently covered with it, in the same manner as true lac. The resin itself is of a light ruby color. It is used by the natives in the treatment of
rheumatism; it is also used by the Indians for fixing their arrow heads to tbe shafts, and for forming into balls, which they kick before them as they journey from point to point of their trail.

Bacteria in the Air.
By a certain process M. Miquel has succeeded in seizing and numbering the spores or eggs of bacteria, and while con firming M. Pasteur's observation, that they are always pres ent in the air, shows that their number presents incessan variations. Very small in winter, it increases in spring, is very high in summer and autumn, then sinks rapidly when frost sets in. This law also applies to spores of champignons; but while the spores of moulds are abundant in wet periods the number of aerial bacteria then becomes very small, and it only rises again when drought pervades the soil, a tim it only rises again when drought pervades the soil, a time
when the spores of moulds become rare. Thus, to the maxina of moulds correspond the minima of bacteria, and recip rocally. In summer and autumn, at Montsouris, one find frequently 1,000 germs of bacteria in a cubic meter of air In winter the number not uncommonly descends to 4 and 5 and on some days the dust from 200 liters of air proves in capable of causing infection of liquors the most alterable In the interior of houses, and in absence of mechanical movements raising dust from the surface of objects, the air becomes fertilizing only in a volume of 30 to 50 liters. In M. Miquel's laboratory the dust of 5 liters usually serves to ffect the alteration of neutral bouillon. In the Paris sewers infection of the same liquor is produced by particles in liter of the air.
These results differ considerably, it is pointed out, from hose published by Tyndall, who says a few cubic centimeters of air will, in most cases, bring infection into the most diverse infusions. M Miquel compared the number of deaths from contagious and epidemic diseases in Paris with the number of bacteria in the air during the period from December, 1879, to June, 1880, and, certainly, each recru descence of the aerial bacteria was followed at about eigh descence of the aerial bacteria was followed at about eigh
days' interval by an increase of the deaths in question. Un willing to say positively that this is more than a mere coin cidence, he projects further observations regarding it. M Miquel further finds (contrary to some authors) that the water vapor which rises from the ground, from rivers, from masses in full putrefaction, is always micrographically pure, that gases from buried matterincourse of decomposition are always exempt from bacteria, and that even impure air sent through putrefied meat, far from being charged with microbes, is entirely purified provided only the putrid filte in a state of moisture comparable to that of earth at 0.30 meter from the surface of the ground

Bees and Sugar Refineries

The Council of Hygiene, of Paris, says La Nature, was recently called on to pronounce upon quite a singular ques tion. There are in Paris, especially in the Thirteenth, Nineteenth, and Twentieth wards, depots of bee-hives, which, of little importance at the start, have finally become quite extensive establishments. Certain of these depots contain no less than from 120 to 150 hives. Now, as each hive contains upward of 40,000 workers, there are several millions of bees in each depot. At first sight it might seem surprising that a honey-producing industry should be carried on in the heart of a great city, where there are no flowers that the bees can visit to obtain nectar; but on investigation it has been found hat these establishments have either through accident or design (undoubtedly the latter) located themselves in the vicinity of the large sugar refineries. The consequence is that the latter are constantly visited by the bees in immense numbers, to the serious annoyance of the workmen. In short space of time the sirup pans are completely filled with bees, and the loss occasioned by this amounts, in one refin ery alone, to about $\$ 5,000$ a year
Various means of extermination have been devised, but thus far to no purpose. One refiner, M. Say, destroys the insects by means of fly-traps placed near the windows. There are about 60 of these traps in his refinery, and the number of bees captured per diem in each one of them amounts to about a quarter of a bushel. But in spite of all this the works continue to be infested. The sugar refiners have asked for damages, but at present the Prefect of Police has at his disposition no ordinance which will permit him to allow them. The refiners will be obliged to suffer the loss and inconvenience till the Council makes some ruling on the subject.

AGRICULTURAL INVENTIONS.

Mr. John L. Brinly, of Louisville, Ky., has patented an improvement in plows, the object of which is to prevent the plow from being broken should the front bolt that secures the plow to the beam break, and to facilitate the renewal of he land side when worn
An improvement in plows has been patented by Mr. Zea dock R. Percefull, of Port Smith, Ark. This invention relates to a combined mould board or turn plow and sub soiler; and it consists in a vertical standard blade, having a mould board adjustably fixed thereto on its side, and carrying at its bottom a point in advance of the mould board, and just in rear of this a share and heel piece, by which arrangement the furrow is turned by the mould board, the earth pierced in advance of the mould board by the subsoil point, and then broken by the share in the rear, the adjust able connection of the mould board affording means for regulating the relative depth of the furrow and subsoil track.
Mr.
Mr. Perry R. Weatherford, of Waverly, Ky., has patented a combined rotary and drag harrow, so constructed that it can be adjusted to work at any desired depth in the ground
and can be readily raised from and lowered to the ground

