The average duration of vitality in seeds of some of our cultivated plants is as follows: Arichoke, five years broad bean, six: beet root, five; cabbage, five; carrot, four broad bean, six: beet root, five; cabbage, five; carrot, four;
cucumber, five; lettuce, five; maize, two; melon, five; onion, two; parsnip, two; peas, four or five; radish, five spinach, five; tomato, five; turnip, five; egg plant, seven endive, nine; parsley, three; strawberry, three. An analysis of these figures shows a general agreement in the constitution of the seeds of different plants of the same families, wit exceptions which can be accounted for in the way already explained. Exalbuminous seeds, and those with very little albumen, retain their vegetative power longer than seeds with a minute embryo and a relatively large quantity of with a minute embryo and a relatively large quantity of
albumen. Taking a broader survey, the rule holds good that the more highly developed embryo, whether small in itself or large, will lie longer dormant without losing life than the large or small embryo of albuminous seeds. Sir Joseph Hooker has stated that the seed of Nelumbium speciosum, taken from a herbarium known to be upwards of one hundred years old, germinated. This seed has an exceed ingly dense testa.

FORMATION OF american coal.

The base of our coal measures is a rock, called the great conglomerate, which is chiefly composed of white, water worn pebbles. Its composition proves it to have been the bed of an ancient sea; and that a great sea existed in the eastern half of our continent is a fact well known to geolo ists,' who have traced it from the Rocky Mountains to the Blue Ridge. In this wide expanse of water the coal deposits of our country were formed beyond a doubt. It was a wise provisio of ntture to lay for their base the thick and strong conglomerate rock, as the violence of volcanic action in that early poriod was so great
that a weaker barrier would have been broken, that a weaker barrier would bave been broken,
and the coal would have been destroyed by de and the coal would have been destroyed by de nudation. The 200,000 square miles of Ame rican coal are divided, by Prof. Rogers, into five cludes the of which the first, oundland Nora Scotia, Cape Breton, and New Brunswick. The Scotia, Cape Breton, and New Brunswick. The
second, or Alleghany coal field, is the largest, and second, or Aleghany coal feid, is the largest, ant
extends from Pennsylvania and Ohio, south westward, into Georgia, and includes the anthra cite fields of eastern Pennsylvania. The thir is a small field, known as the northern, occupy ing the central part of Michigan; and the fourth is the central field, including parts of Illinois, Indiana, and Kentucky. The fifth or western field, lies west of the Mississippi, principally in Iowa and Missouri, but extends into Arkansas.
Besides these well defined fields, we have, fur Besides these well defined fields, we bave, flar
ther west, the uncertain deposits of the Black ther west, the uncertain deposits American coal
Hills; but as the thickness of the Amer measures regularly decreases from east to west, the seams that may be found on the eastern slop of the Rocky Mountains must be very thin and scarcely workable. In the east, where the coal formation is thickest, there are in all about fifty seams, but not balf of them are of sufticient thickness to be worked. In Nova Scotia only five are of workable dimensions, and these pro duce about twenty-five feet of coal. In the anthracite region, the number of productive seams is about twenty five, and they average in some sixty feet of coal, but their maximum yield is somewhat over a hundred feet. The largest of the anthracite veins is the "Mammoth," which is thirty feet thick. In the Alle ghany region the average thickness of workable seams is about half that of the anthracite fields; and in the western fields it is only about ten feet. Thus the number of seams, and the quantity of coal, decrease from east to west; as also
the thickness of the intervening strata of rock. The greatthe thickness of the intervening strata of cock. est depth
3,000 feet.
It is supposed that coal was formed during the carboniferous era, when the earth and the atmosphere were in a condition to produce an unlimited and gigantic growth of vegetation.
That the coal beds had their origin during this vast vegetable growth, is a well attested fact; but the process by which the carbon and bitumen of that rank vegetation were concentrated and solidified, is a point on which scientists differ. The fact that there is no sign of vegetation in pure coal, indicates that the component parts have been expelled
by heat or pressure, in the form of oil. If accumulated by heat or pressure, in the form of oil. If accumulated
vegetation or woody fiber had formed coal, it would doubtless be fossiliferous. It seems natural, therefore, that the enormous oil deposits of the carboniferous era, resulting not only from resinous vegetation, but also from the countless myriads of marine animals, when accumulated in localities having the requisite conditions, formed beds of coal. Great quantities of this oil were evidently sealed between rocky strata, and thus kept from solidifying, for want of exposure; and from these reservoirs issue the numerous oil springs of the present day. Herodotus, more than two thousand
years ago, referred to a spring on one of the Ionian Islands, years ago, referred to a spring on one of the Ionian Islands,
which is still flowing. The Chinese Hotsin,g, or wells of fire, are gaseous petroleuin siprings, and are made of much practical service in evaporating salt water. There is a similar spring in Fredonia, New York, south of Lake Erie, the gas
of which is used for lighting the town. Genoa and Parma, in the north of Italy, are similarly lighted. In Cuba petroleum springs are very numerous; and between the fissures of ocks it has consolidated in the form of bitumen, which is used for fuel. When petroleum is thus solidified by expo sure to a moderate heat, it bears a strong resemblance to bituminous coal; but under a higher temperature, the bydro yen and oxygenare evaporated, leaving a comparatively pure carbon, resembling anthracite; and when subjected to an intense heat, the carbon is also vaporized, leaving orly th impurities.
The best anthracite coal contains about ninety per cent of carbon, which is rendered gaseous by the ordinary proces of combustion. From these facts we may infer that the various kinds of coal are due to different degrees of heat to which they were exposed during formation. The oily can nel coal was evidently formed with little heat, the ordinary bituminous with more, while the hard anthracite was sub jected to such a degree of heat as left it nearly a pure car on.
Oil being lighter than water, it readily accumulates on the surface of lakes, and on long exposure it forms a sheet o bitumen, or pitch, which in winter is hard, so that a man can walk on it with safety. There is such a lake on the
island of Trinidad, one of the West Indies; and similar lakes are known to exist in other volcanic regions. Hence during the periods of vegetable and animal oils, and of ex-
traordinary volcanic activity, producing, no doubt, an abunraordinary volcanic activity, producing, no doubt, an abun
dance of oil directly from mineral sources it is reasonale

PLANTS OF THE CARBONIFEROUS PERIOD.
from France for the sole purpose of converting into parasol handles. At a recent meeting of the Linnæan Society specimens of a newly introduced cane were exhibited both in the rough and finished states. These canes were at first thought to be derived from a species of bambo-Bumbusa nanaand hence received the trade name of "Nana"; but it was afterwards discovered that they were from the Cyprus reed (Arundo donax). The peculiarity which has caused them to be taken up for the purpose to which they are now applied lies in the irregular and fantastic forms of the rhizomes, and especially in the ring-like ridges which encircle these hizomes at regular intervals. Owing to the combined form, urface markings, and natural yellow tint, which barmonizes so well with the coverings used, a more unique handle for a parasol could hardly be produced. These articles have now become quite the rage, and may be seen in large numbers in the show windows of fashionable stores. The Cyprus reed is a robust grass, growing fifteen feet or more in height with abundant leaves and very large terminal panicles of a brownish-white color. It is found in southern Europe eastern Asia,and on this continent in Texas and Mexico,and is apparently the reed mentioned in Scripture. The usesto which the plant has hitherto been applied are as supports for vines, for fishing rods, etc.

Functions of the Air Bladder in Fish

In a paper read at a recent meeting of the Cotteswold Natu ralists' Field Club, by Mr. Francis Day, the autlror remarks that few among the organs in fishes have been the cause of so much discussion as the air bladder, which is single or variously divided sac, situated beneath the vertebral column and the kidneys, and placed above the center of gravity. As this organ is sometimes present or absent in species of the same genus, it is evident that it is not entirel indispensable to the fish's existence. It origi nates as an offshoot from the stomach, elongates and then enlarges at its extremity into what is termed an air bladder. In the dipnoids the air bladder communicates with the œesophagus during life, and its functions are analogous to thos of lungs. In Amia, a ganoid fish, it has also Iung-like function, but in Acipenser it is used merely for hydrostatic purposes. The air blad ders, however, are not considered as lungs in most fishes, since the blood is supplied to them from the adjacent arteries, and in many case returns as venous blood into the circulation In Lepidosiren, however, in consequence of the non-development of gills on the two inferio branchial arches, the blood is not arterialized there, but passes on to the air bladder for this purpose. The lepidosirens are doubtless the highest known form of living fishes. The chief use of the air bladder in teleostean fishes is (1) hydrostatic; (2) acoustic, it being partially or entirely employed for hearing by means of various modes of connection with the internal ear
In the Physostomi the air bladder occurs as a closed sac. In the marine forms of these orders a tubular prolongation itself passes forward to the anterior portion of the skull to establish an auditory communication, but in the fresh water species the connection is formed by a chain of auditory ossicles. In conclusion, Mr. Day says that the air bladders in fishes is the homologu of the superior vertebrate forms, and that in to suppose that immense bodies of water were thus covered some of the higher sub-classes it serves as an accessory to a great depth with plastic coal. The time of such for- respiratory organ.

Amplifying Small Motions.

At a recent meeting of the London Physical Society Mr. Ridout exhibited a device for amplifying small motions. A small barrel is slung by two threads between the prongs of a metal fork in such a manner that if the fork is bodily carried to and fro the barrels will rotate round its axis. This is simply effected by making each thread, in its passage from one ply effected by making each thread, in its passage from one
prong to the other, take a few turns round the barrel. To prong to the other, take a rew turns round the barrel. To the barrel an index is attached, and the fork is then fixed on
the body whose minute motion is to beindicated. The translation of the body shifts the fork and rotates the barrel, which in turn deflects the index round the face of a dial, and the magnifying power is expressed by the ratio of the diameter of the barrel to the length of the index. With this apparatus Mr . Ridout exhibited the lengthening of an iron core when magnetized by the passage of the current of two Grove's cells through an insulated wire coiled round it. By riveting a slip of brass to the iron the unequal expansion of brass and iron under heat was also shown, the heat being generated iron under heat was also shown, the heat
by keeping the current flowing in the coil.
Mr. D. Winstanley exhibited his new radiograph for re cording graphically the intensity of solar radiation throughout the day. It consists of a differential thermometer, with one black bulb and a circular stem. The lower part of the stem is filled with mercury; the upper branches with sulphuric acid and water. The tube is mounted on a brass wheel, so that when the black bulb is exposed to the sun's rays the differential motion of the mercury causes the wheel to turn. The wheel carries a light index or marker, which is to turn. The wheel carries a light index or marker, which is
frec to traverse a vertical cylinder covered with paper coated with lamp-black, and leaves a white track where its point has scratched off the soot. The radiogram thus produced can be fixed and preserved.

