ric acid. and the sugar determined after inversion; finally, the dextrine is determined in a third portion by precipitation with alcohol. The difference in the quantity of sugar found before and after inversion is so great as to furnish a certain method for distinguishing natural and artificial honey. He says that the quantity of dextrine will be proportional to the difference in sugar found before and after inversion, but this is not always true, as some glucose contains no dextrine, and the composition of glucose depends on the method of its manufacture.-Industrie Blaetter.

NOVEL WINDOW SCREEN

The engraving shows an extensible window screen that can be readily adapted to any window, and at the same time

JOSEPH'S WINDOW SCREEN.

is little if any more expensive tban screens of the ordinary kind. It is as strong when extended as when closed. The frame of the screen consists of end bars and side bars, the latter being made in two pieces, A B, which are tongued and grooved together, as shown in Fig. \mathfrak{g}.

A metal band surrounds the two bars, being attached to the bar, B. A screw passes through this band and enters one of several holes in the bar, A. At one end of the screen frame a roller is journaled in the side bars, B. The netting is attached to the end of the frame opposite the roller and wound on the roller, so that the frame is covered and the surplus wound on the roller.

On the ends of the roller are fixed ratchet wheels, C , which are engaged by spring pawls attached to the bars, B , hold the roller, and the frame prevented from collapsing by the strain of the netting. By this construction a strong and durable extensible screen frame is produced. The side bars are made of uniform size and equally strong throughout. They offer no obstruction to the light and are applicable to all windows.
For further information apply to Mr. John Joseph, 162 Broadway, New York city.

A NOVEL BLIND.

An entirely novel article in the way of window blinds is shown in the annexed engraving. The movable slats con sist entirely of glass, either plain pure white or colored any desired tint and cut. The slats have no staples or rods to operate them or interfere with the entrance of light. Each slat has formed on it at one end a small pulley, around wbich a cord passes which operates all of the slats simultaneously.
For inside shutters these slats are exceedingly well adapted, as they may be of glass, colored to match the carpets and upholstery. Of course curtains and shades are wholly unnecessary where this blind is used, and it admits of having any desired color of light in the room. It affords good ventilation and prevents the entrance of mosquitoes and flies. It never needs painting, it is always fresh and new, and is ornamental rather than otherwise. Considering its durability and elegance this blind is not expensive. The slats may be cut and engraved, increasing its beauty to any desired extent, and it affords an efficient protection against burglars.
It effectually excludes vision from the outside, while it offers no impediment to the entrance of light, and the light which enters is so softened and diffused as to be incapable of injuring the eyes, orof fading delicate colors

GOFF'S GLASS BLIND.

AN IMPROVED CHORN.

n carpets and furniture. The engraving sbows the face of a portion of a blind having glass slats in Fig. 1, and Fig. 2 is a vertical transverse section showing the form of the slats and the relative size of the glass pulleys.
This novelty is manufactured by the Corning Glass Blind Company, Corning, N. Y., who should be addressed for furtber information.

Liquefaction of Ozone.

At a recent meeting of the French Academy, MM. Hautefeuille andChappuis announced that they had liquefied ozone. These chemists have been able to ozonize oxygen to a greater extent than has hitherto been done, by passing the silent discharge through the oxygen at a low temperature. The tube containing oxygen was immersed in liquid methylic chloride, which boils at -23°. After being submitted to the electric discharge for fifteen minutes at this temperature, the oxygen was conducted into the capillary tube of a Cailletet's apparatus, the temperature of which was maintained at -23°.

After a few strokes of the pump the gas in the tube appeared azure blue; as pressure increased the depth of color likewise increased, until under a pressure of several atmospheres the ozonized oxygen appeared dark indigo blue. The pressure was increased to ninety-five atmospheres, and was then suddenly removed, whereupon a mist, indicating liquefaction, appeared in the capillary tube.
The stability of a mixture of oxygen and ozone rich in ozone appears to be chiefly dependent on the temperature. If such a mixture be rapidly compressed at ordinary tem peratures, a considerable amount of heat is evolved and the gas explodes.
Ozone, say MM. Hautefeuille and Chappuis, is, therefore to be placed in the category of explosive gases.
Berthelot has shown that the transformation of oxygen into ozone is attended with absorption of heat; the stability of products of endothermic reactions is, as a rule, increased by decreasing temperature.
Ozone is much more easily liquefied than oxygen; the lat ter must be compressed under 300 atmospheres at about the temperature of -29° before sudden removal of pressure succeeds in producing liquefaction.
We have thus the existence through a large range of tem perature and pressure of two allotropic forms of the same element, each with distinctly marked chemical and physical properties. We know that the molecule of oxygen has a simpler structure than that of ozone; the substance of simpler molecular structure is capable of existing through a much more extended range of temperature and pressure than that of more complex structure. Under special physical conditions it seems possible that new allotropic modifi cations of various elements might be produced.
The marked differences in color, and in temperature of liquefaction, between oxygen and ozone, furnish another illustration of the close connection which exists between the " chemical structure" and physical properties of substances; a different " linking," even of similar atoms, being evidently associated with distinctly different physical properties.
MM. Hautefeuille and Chappuis will doubtless soon be able to furnish more details of the properties of this most interesting substance, liquid ozone.-M.M. P. M., in Nature.

Crystals of Chromium Sesquichloride.

M. A. Mengeot allows hydrochloric acid to act upon potassium bichromate dissolved in water. If the solution is allowed to evaporate for about ten months the bottom of the vessel is found lined with deep violet crystals of chromium sesquichloride, but among these large violet crystals are some small green crystals of a salt of chromium. According to all authorities the green salts are only formed at 100°; they are not crystalline, and they gradually pass into the violet condition. But the production of these green crystals takes place at common temperatures, and they have remained green for more than two years.

The engraving represents an improved rotary churn hav ing a cylindrical body, whose inner surface is made con tinuous and unbroken, so that the dasher may revolve in contact, with it and clear it of adhering cream. The dasher, A, is of peculiar construction, having blades set in the end pieces, B, so that they alternate in position, and when in motion give an undulatory movement to the cream, which thoroughly agitates it without breaking the globules.
With this construction the entire body of the cream is uniformly acted upon and converted into butter without loss, and the butter produced will be of a uniform quality.
Besides the features already described the dasher has a bearing at each end provided with a cup for catching any ream that may find its way through it around the shaft.
The crank is held in place by a plate, C , which enters a groove in the shaft, and is held in place by set screws. The cylindrical body of the churn is held together by metal straps drawn together at the bottom of the churn by tangent'screws.

MORCH'S CHORN

This churn is easily taken care of, and is said to be thor oughly efficient. It is the result of a number of years' study on the part of the inventor, and it possesses points of novelty and usefulness that will be understood and appreciated by those familiar with the subject.
Further information may be obtained by addressing the patentee, Mr. Lewis W. Murch, of Kennedy, N. Y.

miscellaneous inventions

An improved grain register has been patented by Mr. William B. Richardson, of Wolf's Mill, Texas. The object of this invention is to furnish registers for recording the quantity of grain measured and sacked. It is simple in contruction and accurate in operation.
An improved hame hook has been patented by Mr. Moses C. Hargrave, of Wilmington, N. C. This invention relates to certain improvements in hame hooks designed to permit the worn end of the hook to be renewed and replaced by another without trouble or delay, and it consists in a peculiar hook formed in detachable parts.
An improvement in breech-loading firearms has been patented by Mr. Theodore D. Bartley, of Dresden Center, N. Y. The invention consists in a novel construction and arrangement of the breech-block and the hammer, whereby provision is made for depressing the breech-block by means f a spring and for elevating it by the motion of the hammer.

An improvement in the manufacture of artificial birdshas been patented by Mr. Charles H. Bodurtha, of Delaware,
Ohio. The object of this invention is to produce birds in relief covered with natural feathers, and thereby obtain a more natural and ornamental appearance than by any method heretofore practiced; and the invention consists in first forming the body from plastic material upon the prepared sheet and covering it with feathers.
Mr. Caleb W. Mitchell, of Saratoga Springs, N. Y., has patented an improved table for dispensing liquors, which is simple and convenient. It consists in combining a peculiarly constructed bottle rack with an ice box.
Messrs. Jacob S. Lowe and Jobn H. Leiter, of Shelby, Ohio, have patented a combination ruler for facilitating mechanical drawing. The invention is especially designed for schools, and is also useful to the mechanical draughtsman and otbers. It con sists of a series of rulers having uniform scales of inches and fractions of inches adjustably suspended on a horizontal rod, which is fixed in a headboard on the top of a blackboard or on a desk, said rulers being arranged in such a manner that by their use geometrically correct drawings of all kinds can be made.
Mr. Sewell S. Hepbron, of Fairlee, Md.,
has patented an improvement in the class of thill conplings everything necessary for study. Their observations were to in which the thill iron is secured to the clip bolt by means be communicated by writing to all the members. The of a spring plate fastened to the under side of the thill iron by a screw bolt.
Mr. William Langdon, of Upland, Pa., has patented a spirit level whose stock consists of an oblong bottom supporting a slotted vertical tube at each end, a transverse hori zontal slotted tube in the middle, and a superposed median horizontal slotted tube over and at right angles to the middle tube. This invention is intended to meet all of the require ments for a plumb and level indicator
Mr. John C. Isaac, of Cornwall-on-the-Hudson, N. Y., has patented a corner stone for boundary lines, consisting of a cast iron post having on four sides dovetail grooves for re ceiving blocks inscribed with lers. These blocks are held in their places by an iron cap which is secured by a rod running through the base of the post.
An improved permutation lock has been patented by Mr. Fred. E. Arnold; of Chicago, Ill. This invention consists in certain novel details of construction and arrangement of a sliding bolt, gear wheels, and setting devices, whereby provision is made for securing the bolt to prevent it from being moved without a knowledge of the arrangement of the parts with relation to each other.
An improved cultivator tooth has been patented by Mr. Levi S. Wood, of Marion, Ia. The object of this invention is to furnish cultivator teeth so constructed as to cut shallow near the plants and deeper at a little distance from the plants, which may be guided close to the plants, will not cover small plants with soil, and will leave the soil loose and level.
Messrs. Gavin Rainnie and George J. A. Robinson, of St. John, New Brunswick, Canada, have patented an ironfence post of a body made U-shaped in its cross section, and hav ing hooked lugs to receive the fence wires, the base cast hol low and solid with the body, and having holes in its top and bottom and ribs upon its inner surface to receive and bind the ground rods.
Mr. Samuel Levin, of Pittsburg, Pa., has patented an improvement in eyeglasses which are employed upon one eye at a time-such, for instance, as watchmakers', lithographers', and engravers' glasses-and which improvement is ap plicable also to goggles, eye-shades, etc. The improvement is designed to relieve the operatorfrom the effort of holding his glass by the contraction of the muscles about the eye, and to avoid the use of bandages or ligature passing entirely around the head.
Mr. Anton V. Semrad, of Chicago, Ill., has patented an improved mangle, consisting of a table supporting two roll ers, which are pressed down upon the clothes by a weighted box resting on the rollers.
An asparagus buncher, so constructed as to gange the bunches, press the stalks together, and hold them while being tied, has been patented by Mr. John Weeks and Frank H. Weeks, of Brooklyn, E. D., N. Y. The invention consists in a bed plate, an upright plate, two stationary jaws, and two movable jaws, and mechanism for operating the movable jaws.
An improved register knob has been patented by Mr . Geo. W. Lewin, of Somerset (Fall River P. O.), Mass. The invention consists of a slide having a boss in combination with register knob having a perforate shell, spring, and flanged washer, all held together by a screw and nut.
An improvement in fences has been patented by Mr. Lewis W. Berger, of Canal Winchester, Ohio. The object of this invention is to furnish fences so constructed that they can be easily and quickly set up, taken down, and moved from place to place, and which will allow any desired panel to be removed to open a passage way without disturbing the other panels.

Our Trade with Sheffid.

The report of our Consul at Sheffield, Eng., shows that a vast increase has taken place in the exports from Sheffield to the United States during the year ending with September. The exports of steel during the last quarter were valued at $£ 101,428$ as compared with $£ 5 ?, 550$ for the same quarter last year; and the cutlery exports for the same periods were respectively $£ 74,104$ and $£ 50,504$. For the year the steel exports amounted to $£ 383,889$, and the cutlery to $£ 238,605$. The total exports from Sheffield to this country for the year amounted to $£ 1,066,411$ as compared with £559,733 last year.
Mr. Vanderbilt has recently given a vers heavy order for steel rails to one of the Sheffield firms for delivery next year.

The Oldest Scientific Suclety.

The Academy of the Lyncæi, according to M. De Laveleye, is the oldest scientific society in exfstence. It was founded at the beginning of the seventeenth century by four young men, who took as their symbol the Lynx-an animal then to be found in the Apennines-with the motto, Sagacius ista. The members " were to penetrate into the interior of things in order to know the causes and operations of nature, as it is said the lynx does, which sees not only what is outside, but what is hidden within." Their dream was nothing less than the organization of modern science based on the method of observation-the church of knowledge. The A cademy was to-have in the four quarters of the globe dwellings with sufficient endowments to maintain the members, who might live there in common. These dwellings were to be provided with libraries, laboratories, museums, printing presses, and botanical gardens-in a word, with

Lyncæi were to renounce marriage as a mollis and effeminata requies, and injurious to study; nevertheless, monks were not admitted. The Academy was reorganized in 1875, and not admitted. The Academy was reorganized in 1875, and
has members of various nationalities. Among the English members are Gladstone, Freeman, Rawlinson, and Herbert Spencer.

FILTERING CISTERNS.

The charcoal for filters is probably most efficient if animal, e., bone black; but as it is not always easily obtained, that ordinarily sold by the dealers, made from hard wood, pounded up fine, is good enough. If your sand or gravel is not clean, wash it in plenty of water. Sponges are not of not clean, wash it in plenty of water. Sponges are not of cisterns is brick, laid in hydraulic cement and plastered cisterns is brick, laid in hydraulic cement and plastered
insiãe. No lime should be used for the plastering, but a insiae. No lime should be used for the plastering, but a
mortar made of equal parts of cement and good, clean, sharp sand. This is rarely found clean enough to be used without first washing it. After the plastering. is hard, it should be washed twice with a grout of cement and water, without sand, applied with a whitewash brush. If the ground is firm, and stands plumb without caving in, one layer of brick laid directly against the side of the pit is enough. In this laid directly against the side of the pit is enough. In this
case form of the pit should be carefully trimmed to a true circle, and the walls trimmed plumb. Then the brick work can be laid directly against it, filling all small cavities between the brick and ground with cement, and not witl earth. If the ground is not firm enough to stand in this way, a thicker wall will be needed, say eight inches. The earth that is filled around it should be puddled in with plenty of water, to insure a solid packing. Ramming the earth without puddling is not so good, and will not be likely to prevent the cistern from bursting when first filled with water. A very small crack will spoil it. The floor can be laid after the walls are plast ered, so as to avoid stepping on it much after laying it. The floor should be dished like a saucer, to facilitate cleaning out.
For filtering, build a partition in the cistern by which any portion, say one-fourth, of its contents can be separated from the remainder. Insert the suction pipe or pump within this chamber, and allow the inlets to discharge outside of it in the larger part of the cistern. If the partition is built of one thickness of soft, porous brick the water will soak through it; but this brick partition should be domed over against the side walls to prevent any pollution of the filtered water by dust or spatterings from above. If the water is quite foul the pores of the bricks will be choked in time, and refuse to pass more water. In that case the partition must be renewed, or holes made near the bottom in which sponges, broken charcoal, or sand can be placed to do the work; and these can be renewed when fonnd necessary.
If gravel and charcoal are used, they are deposited in layers, charcoal at bottom, and a few inches of gravel on top, each side the filtering wall, at A A (see cut), and confined by

FILTERING CISTERN.

dwarf walls on each side. Holes are left in the base of the filtering walls by omitting alternate bricks in the bottom course. The water is then filtered by passing down through one bed of charcoal and up through the other. The gravel is chiefly useful to put on top of the charcoal to protect it from wash
This charcoal will need frequent renewal if there is much solid matter in the water. Hence two cisterns are conve
The source of ice is often it is doubtless the safer way to cool one's water for drinking without direct contact with the ice. Any metal that is difficult to corrode, like copper, is good to put the ice in, and if made double on the outside with an air space between the plates, it will not absorb much heat from the outside air. The very best material for holding the drinking water is glass, and if made thin, it will conduct the heat fast enough for all practical purposes, being immersed in the ice for such time as is found necessary. The cooling of the water can be much hastened, but the melting of the ice is also hastened, by putting a little salt in it, which makes a freczing mixture and cools off all the surrounding substances rapidly.
Lead pipe is not a desirable material inside of cisterns for drinking water. Iron is better, using gas pıpe, coaledinside with hydraulic cement. If this is carefully prepared and carefully handled while putting it together, it is nearly indestructible. It is used with success for service pipe in many New England cities, where it has been in use for many years, usually being adopted between the street mains and houses.

HYDRAOLIC CEMENT.

by н. с. ноver.
It is well known that common mortar hardens by drying, and that under water it gradually softens till it is dissolved away. To facilitate its setting, as well as to cheapen its cost, sand is mixed with lime, in the proportion of three to one, with just enough water to make a paste. When this yielding substance is properly used in masonry it becomes hard and adhesive, filling the joints completely and uniting the bricks or stones into a compact mass that may endure for centuries. • Hydraulic mortar, that will "set" under water, is made by the admixture of ingredients that will in some way protect the lime from chemical aqueous action. The oldest recipe for its manufacture is given by Vitruviius, the Roman architect, and many have been given since, until the making of artificial cements has become a subject of very great importance. It is claimed by antiquarians that the art, indeed, dates back to the Neolithic age; and that ancient pottery, instead of being hardened by exposure to heat, was made from a mixture resembling Portland cement, and hardening without being baked. Prof. E. T. Cox has carefully analyzed Indian pottery found in Western mounds, showing the material to be a skillful admixture of calcareous, silicious, and aluminous earths, in proportions varying but little from the modern cements in familiar nse.
This communication, however, chiefly relates to what are known as natural cements, whose commercial value has been largely developed in this country during the past ten years, and is capable of much greater development.
It is, no doubt, quite mysterious to those who have not given the subject particular attention, that there should be a class of stones that, having first been calcined and then reduced to powder, can be used as a mortar without being mixed with other mineral ingredients; and that this mortar, instead of crumbling or dissolving under water, is actually hardened by that very means until it is as firm as the rocks it binds together. This fact is said to have been discovered by a Mr. Parker, who took out a patent about sixty years ago for what he called Roman cement, though made from septaria found on the Isle of Sheppey. Medina cement is produced from similar argillo-calcareous nodules found on the Isle of Wight. Satisfactory experiments with septaria were also made in France and Russia. The Portland cement is an artificial imitation of these natural ones, by mixing masses of chalk and clay in certain proportions, drying the substance, and then treating it by a process like that to which the natural nodules had been subjected.
It, is now known that many limestones, heretofore rejected as poor, if not worthless, contain naturally the very impurities, so to speak, most desirable to form a mortar capable of hardening under water. The true proportion to form a silicate of lime and alumina is according to the following formula: Silicic acid, 20.00 ; lime, $41 \cdot 40$; alumina, 38.60 . The combining ratio is 100 of silicic acid to 398 of the earthy bases. But it is a curious fact that water limestones, widely differing from each other in the proportion of their chemical constituents, often seem to have for practical purposes nearly equal hydraulic properties. The explanation is that the combining ratio varies with the relative quantities of effective substances. For instance, if lime and magnesia form the base, instead of lime and alumina, the ratio of silicic acid to this base should be as 100 to 277 ; and if lime alone, as 100 to 200 . The presence of iron, sulphur, soda, or other ingredients, will, of course, cause a further variation of the ratio.
The reader may be interested in an account of one or two of the chief cement works in this country that may be regarded as specimens of all, for there is no great divergence in the process of manufacture. I had an opportunity a few weeks ago to visit the Howe's Cave Lime and Cement Works, in Schoharie Co., N. Y. This interest has been developed since 1870, although something had been done in a small way prior to that date. The credit of the enterprise is largely due to Hon. J. H. Ramsey, of Albany. The kilns and mill are situated about 500 yards from the mouth of Howe's Cave, and at the font of a bluff from 100 to 200 feet in height. Into the face of this bluff a tunnel has been cut, about 8 feet from floor to roof, and extending in for 8:10 feet, the rock on either side being honeycombed by lateral branches. The whole bluff is limestone, the upper strata belonging to the Pentamerus and Delthyris groups, abounding in crinoids, shells, and corallines. Excellent lime is made from this material in the usual way. The lower strata of water limestone at the foot of the bluff, and profit. able for working up into cement, are three in number, and altogether but $51 / 2$ feet thick.
Pipes from an engine in the mill convey the power into the tunnel to drive two steel drills, each one inch and a half in diameter, by compressed air. Two men are required to manage a drill. After a quantity of stone is dislodged by blasting it is carted out over a tramway. From 75 to 100 tons is regarded as a good day's work. A kiln burner takes the loads, that have already been assorted in the mine, and deposits the material in four kilns, two of which are always in use, and both together able to burn 200 barrels a day. The kilns are 30 feet deep, each rigged with w hat is called a "kettle," through the bottom of which the calcined stone is drawn out and taken by an incline up into the mill. There it first goes into a "cracker," where it is crushed into pieces about the size of walnuts. Next it is pulverized between millstones into a light brown powder. This falls nto barrels that stand on what are termed "packers," which jump them up and down by steam power, causing

