Cautchoue may be utterly ruiued by the use of impure! ply of water, more urive would be secceted, the loss made solvents, and those experimenting with ïndia-rubber solutions should in cases where it is desirable to regenerate the caututhoue, be allowing the soiven to evaporate, take the atmost eare mot to emplloy any solvents which contain atity or greasy matere.
Weat or diluted acids latee little or no action on cabul cloue in the majority of casis, but strong sulphuric acid sluwly acts on it, the aetion becoming rapid if heat be ap plied. Strong uitrie acid acts on it with yome emergy, cans inte ity entire destruction, and in a similar rumuner it is cle troyed by the prolonged action of chloritu, bromine, of iodine; although these reagents, when their aetion is kept under control, have a vulcauizing or strengthening action

A Peculiar Steamboat

A propeller of novel construction has just been finished in San Francisco, Cålifornia, to ply between that city and the Eel River Valley. The condition of the route required staunch sea boat, which should also be of light draugh o be able to cross the bar at the mouth of Eel River.
The vessel is 152 feet in length, 140 feet length of keel, 26 eet beam, 9 feet depth of hold, and will register 250 tons When loaded with 300 tons of freight she will draw only feet of water. She is flat-bottomed, but has a tapering bow and stern, and her lines are as beautiful and graceful as those of a yacht. The peculiarity of the boat consists in the arrangement of the two propellers. Instead of project ing from either quarter on either side of a single rudder there will be two rudders, and each propeller will be ar ranged with respect to its corresponding rudder, just the same as it would be if there were a single propeller. Ther re in reality three keels, the center one curving up at the tern, following the line of the vessel. Those on either side however, are 13 or 15 feet apart, and run straight out be neath the stern, where there are two stern posts and two rudders. The spaces between the keels and the hull proper are filled in solidly with knees, strongly bolted in every direc ion. There is left between the two keels a wide space, which will give free access to water, so that each propeller will act as well as if it were the only one used to draw the boat. The propellers are $61 / 2$ feet in diameter, of the Hirsch patent, and the pitch of the blades is set opposite, so that in going ahead both will turn to the center. They will be driven by twin compound engines, set $91 / 2$ feet between centers, with a sur-
face condenser between. The condenser will contain 753 in-plated brass tubes, $5 / 8 \mathrm{inch}$ in diameter, secured in end plates with a wooden ferrule, and affording 618 feet of cooling surface. The condenser will be operated by a Blake com pound air circulating pump, throwing 300 gallons per min ute. The engines will have highand low pressure cylinders, the high pressure being 11 inches in diameter and low pressur 20 inches, with a 15 -inch stroke. The steam will be supplied by a tubular boiler, with 3 -inch return tubes. The engine ill be so arranged that the engineer will face the bow, and will regulate his propellers by levers on either hand-pushing them forward when the bell signals "Go ahead," and bring ing them back when he is signaled to back the vessel. The arrangement of the propellers is such that one may be backed while the other moves ahead, and the boat can thus be turned nher own length. This is of especial importance, on account of the narrow and cruoked channel across the Eel River bar, where boats often ground because of their inability to urn quickly enough. The two keels under the stern wil serve to protect the propellers if the boat grounds.

Water as a Prophylactic and a Remedy

At the recent meeting of the American Neurological Society in this city, a paper was read by Dr. S. G. Webber, o Boston, upon this subject, from which we abstract the fol lowing:
Many people had a notion that it was injurious to drink meals, but a moderatequantity of fluid taken at meal time was rather beneficial than otherwise. A large class of patients were affected with symptoms of an indefinite char-acter-a vague unrest, showing itself by discomfort or even
pain, sometimes in one place, sometimes in another. They ain, sometimes in one place, sometimes in another. They hue of the skin. They were frequently classed as hypochondriacal or hysterical. There was no well defined disease. These patients usually drank too little water. The waste of the tissue changes in the system must pass into the blood, and could only leave the system in a state of soluion. During comparatively good health, the amount of blood was maintained at nearly the same figure, and only so nuch water would be parted with through the skin, lungs, and kidneys as could berestored from other sources. If too ittle water was ingested, the perspiration would be slight, the elimination of urine would be diminished, and the excretion of waste material would be lessened The blood would be continually saturated, or nearly so, with the results of disassimilation. The removal of the waste of tissue changes was not accomplished with sufficient reguarity, and the tissues became clogged with used up material and nutrition was interfered with. The balance each day against health was very slight; but after a time there was uch an accumulation that unpleasant symptoms were devel oped. If the person continued to eat heartily, either the surplus food passed off by the intestines, or was deposited in the shape of fat, the nitrogenized portions assisting to oad the urine with urea and the urates. Let such a person drink a large amount, and the blood, having a sufficient sup-
food to the blood by absorption, and a larger amount of wiste products would be taken u_{j} to be cliruiuated; raore area nr phosphoric and sulphuric ac:ds passed off by the rime, which was increased in amount, and there wats more divintegration of the tissues. This last way made up by new material, yo mutrition was inereased. The docto ernuegh

Dr. Beard remarked that he bad found thinst a prominen bympon of neurashenic patients. He had been asing Summit water with gool resulte. He used the bromides al-
ternadely with tonies and a free supply of water. The plan triadely with tonies
was very satisfactory.
Dr. Weblee said that patients who drank no more that a sint or twenty ounces of water per dity, had told him that they were mot thiesty, and were surprised when he told them to drink more water. These directions beinus complied with, the patiente, in the course of the week, fleveloped hirsi, and drank as riamy as three pints a day
nalyses of Harlicy, Hice, and Maize.
Thite following comparative amalyaes of the three grain are by Pillitz

${ }_{\text {dir }}^{\text {Bramimy }}$ Urien		hice.			Pr
aried.		${ }_{\text {driect }}$		dried.	
1383		12.51		$13 \% 9$	
.. 5419	${ }^{62} \times 65$	74.84	85.11	$62^{2} 79$	22%
asit.... ${ }^{1 \cdot 0}$	1×3	0939	04	$0: 33$	10:35
. 2f 6	3008	0.78	090	433	\%rin
776	$5 \cdot 8$	076	0.37	4-19	482
1243	$14 \% 8$	\% 4	10.01		94.
- \% 1 \% 9	167	$1 \cdot 11$	127	073	0)
官 113	$2 \cdot 71$	tracus	traces	$1: 33$	159
	205	0.41	0.46	$1 / 87$	
h, 126	$1 \cdot 4$	04	0 ¢\%	115	1332
1:50	171	$0 \cdot 11$	012	143	9ff
100\%53	100.00	100.18	10060	10006	100000

Enemies of the Tea Plant

ENGINEERING INVENTIONS

An iruprovernen in endess cable ralways hate beed pa en by Mr. Simmel A, Pettengill, of Brooklyn, N. Y mates to ralways provided with a moving endecse colbol ope, or clain, for propulsion of the cars. The object of thi vention is to furnish the cars witl means for seizing ant irraly hojding to the rope or cable without shock.
Mr. James I3. Jentinh, of Wiarem, Ill., has patented rapple for lowering pipes into wells that ray be detacled from the pipe automatically by sliding it down on the pipe ntil it comes in contact with a coupling.
An improventent in that class of railways in which mo woolentios are used, and the pot sleepers or chairs are flared to rest directly upou the ground, and are const in one and the same piece with a jaw which is perforated with holeg for the fish bolts, betwean which jelw and the fist utate the rails atre bolted, has been patented by Mr. William Rainhow, of Chaucery Late, Engiand. The improvemen consiste, mainly, in the mears for counecting the chaire so s to preserve the gauge of the road
A clock deviee to be used ou railroads to be operated by pabsing trains, whereby the time elapsing between the pas: ing of oue trin and its next soocecding one will be cor rectly indieated to the engineer of the sueceeding train, hat been palented by Mr. Alma, P. Barroargh, of Seneca Fills,

Mr. Angustus I3. Wood, of Foumtain Hill, Ark., las pat tuted a cheap aud economical oscillating engine furnished with a valve so arranged and controlied that frictiman pressure up, m the falve seat are reduced simply to the which is neecssary for preserving a steam tight joint betwee he two
An improved low-water alurm for boilers hats been pat ented by Mr. Nathan L. Adams, of Fort Collins, Col. Th ohiget of this invention is to furmish steam beiters with an infresed deviee that will indicate automatically ard give an alarm when the water in the boiler falle below the safet autila
point.
Mr.

Mr. Anton Pohl, of Baltimme, Md., has patented an im proved spark artester, in which the joint action of gravity deflection and centrifural force is euploved to sepmarate the pporks, cinders, and solid ruater from the smoke as i colapes through the slack of a locomotive, whereby th work may be effectually accomplished withir the limite pace of the stack without materially intercepting the Iranght. The inupovement consists in arranging an amula chamber around a cylindrical stack, and poviding the stace with a spiral deflector plate, which will give a rotary no fou to the smoke and canse the sold mater to be drow of against the side walls of the stack, where it is intereepted by projecting plates and conducted through openinus into a adjoining atumatar chamber and deposited at the bottoth An improved ear coupline lus beed patented by Mr Edward S. Plimpton, of Denison, La. This invention is a mprovement in the class of car couplings in which the oupling pin is provided with an arm that projects from he lead thereof and rests in a socket in the fromt top por ton of the draw head, so as to constitute a fulerum on which the pin may swiag when pushed back by the link in the operation of coupling

A Magic Lantern and Six slides for Six Cents.

A small tin lantern, about three inches high, with lamp slides, and two lenses, is actually being now sold in Londo at the abovementioned price; while a larger one of a simila character costs the somewhat more extraragant sum of fifteen cents. The small lantern is of German make, and when one considers that the manufacturer cannot get mor han four cents for the article, it is a matter of wonder how it can be produced for the price. Very little can be said a regards the artistic merits of the slides, but like the old Dutch tiles, theyat least possess the merit of being hand painted-if, indeed, tbis be a merit. The lenses, which, a regards optical work, are superior to many spectacle glasses regards in London, give, as an advertisement would put it, "a sold in London, give, as an advertisement would put it, " a
brilliant illuminated disk six inches in diameter." There is brilliant illuminated disk six inches in diameter. about the same size as the magic lantern in question. Wh knows but what the present pushing age may produce a small tin photographic camera, double slide. two dry plates, and lens for about 25 cents? It could certainly be done if he work were executed on the same scale of cheapness a in the case of the magic lantern. It is, perhaps, not gen rally known that a very passable photograph can be take with a common penny magnifying glass, if it be stopped down and a proper adjustment made for the difference ex down and a proper adjustment made for the difference existing between
graphic News.

Brilliant Tints of Californian Flowers

Under the title of "A Botanist in Southern California," Mr. J. F. James contributes to the American Naturalist som interesting sketches of the vegetation of the country in the vicinity of Los Angeles. Rain fallsthere only from Novem ber to March, and the rest of the year is hot and dry. By the middle of June or July vegetation is parched up, and the country has a very depressing aspect; but the spring is glorious. Then the plains surrounding the city, the hills, and the valleys are one mass of gorgeous, brilliant flowers They are there by thousands upon thousands, and of almost endless variety. Most conspicuous of all, both for its abun dance and its color, is the Californian poppy, Eschscholteic californica. It covers acres of ground, and the bright
golden-vellow or orange of its flowers is visible for miles When the sun is shining full upon it, it is too dazzling for the eye. In places where the ground was plowed paths of it had been left, and they seemed like tongues of fire running over the ground. Among other showy plants are Sidalcea malvaflora, with large purple flowers; Platystemon californicus, called cream cups; Dodecathon meadia; Baria gracilis, a composite with bright yellow flowers, covering acres of ground; Pcoonia brownii, in tufts, with large purple or reddish flowers; various species of Gillia, Pentstemon, or reddish flowers; various species of Grilla, Pentstemon,
Lobelia, Phacelia, Nemophila, together with Clarkia, Salvia, Lobelia, Phacelia, Nemophila, together with Clarkia, Salvia,
Castilleia, Convolvulus, and Colochortus, making up such a wealth of color as is rarely seen elsewhere.

THE CONCH FISHERIES OF THE BAHAMAS
 by w. h. weed.

Conch fishing in the Bahama Islands is quite an extensive industry. There are about 500 vessels engaged in this and the sponge and turtle fisheries. Most of these from time to time engage in conch fishing according to the demand for the shells.
The vessels employed are either sloops or small schooners, and carry from three to ten men, most of them of the , " colored persuasion." These negroes are expert divers and swimmers, being accustomed to the water from childhood. They enjoy the distinction of being perfectly fearless, even in the presence of that dreaded enemy of divers, the shark, who is found in abundance in these waters. It is a current saying in Nassau, when a stranger asks if the negroes are not afraid of sharks, that " a shark will not attack a nigger." The men usually work on shares, and their reward being thus dependent upon their own exertion, each one spurs the others at their work; they all labor with more energy than is usually characteristic of their race in this climate. The conch, which is like an enormous snail, is found in the shallow waters of this vicinity, the sea bottom of the numerous shoals being a favorite place for them. The larger crews
work in parties of two, three, or four, in separate boats and independent of each other.
In order to locate the position of the fish they use what is In order to locate the position of the fish they use what is
called a "water glass." This is a rectangular water-tight called a "water glass." This is a rectangular water-tight
box about thirty inches long, with one end a foot square, and closed by a pane of ordinary glass. The other end is slightly larger and is open. In using the "glass" the closed end is immersed in the water a few inches below the surface, when the sea bottom is distinctly visible through the glass, the
water being clear as crystal water being clear as crystal.
Having discovered the position of the conch the diver leaps in and obtains it, and in a few moments is back in the boat looking for more. Some of the fishermen use a double pronged hook attached to a long staff, such as is used in sponging, and with this secure the conch instead of by div ing.
When a boat load is secured the conchs are taken ashore to some convenient beach and left to die. When dead the shells are beaten against the soft sand, which loosens the flesh so it may be easily removed.
The meat of the pink conch is carefully examined for pearls, but the other varieties have no pearls.
The shells of the pink conch are scraped to remove the seaweed, serpulæ, or other incrustation, but the others naturally pretty clean and are sold in the roughistate
The length of the cruise varies, of course, but the usual time is three or four weeks. On the return to. Nassan the shells are sold to the conch dealers or merchants, who sort
and pack them for shipment. The finer specimens are packed in cases with sponge clippings, but the ordinary kinds are packed in bulk or shipped loose.
Most of the exports are to England and the United States, though France takes a good many from English consignees.
The four varieties of conch which form the basis for this industry are the common or pink conch, the milk conch, and the king and queen conchs. The first, the Strombus gigas, is the most common, and is the well-known conch used for ornamental purposes. It is also the same formerly used for the dinner horn by many old farmers; indeed, it still does good service in that line in the far West.
The flesh of the animal is edible, making, when cooked and properly dressed, a very fair salad, as the writer can testify from experience.
The shell is used for turning into sleeve buttons and brooches, much in vogue in Naples, Italy, but for some unknown reason they do not take well in the United States. Exquisite pink cameos are cut from this shell, and are often mistaken for coral by novices.
Many tons of this shell are also used in the porcelain manufactories of France and Germany.
The milk conch is also one of the strombs and is much smaller than the pink conch. The name is derived from the milk-white color of its interior. The shell is much less fragile than the other species, and it is used in the United States for ornamental purposes.
The queen (Cassis madagascariensis) is a much more valuable shell than the preceding varieties. Its flat face is egg shaped and of a handsome salmon red color, being of a beautiful brownish black near the teeth. The shell of this and the king conch is very valuable in cameo cutting, and are much used for this purpose in England and France. The king conch is of the same species as the queen, but it differs somewhat from it in having a triangular face of a
brownish yellow, and the interior of the shell and around brownish yellow, and the interior of the shell and around the teeth is of a purple black.

Several very handsome specimens with cameos cut in the
shell may be seen in the Bethnal Museum, London, and
the American Museum of Natural History in New York.
The American Museum of Natural History in New York.
peaken from under the apron of the pink conc are either pink, yellow, or black. The pink are, however the only valuable kind. These are of that exquisite shade of pink which gives the name to the conch from which they are taken. Many of the pearls are beautifully water lined, and this, together with their size and color, determines their worth. The lucky fisherman who has any of these pearls or sale finds a ready market for them in Nassau, where the buyers offer very good prices for the pearls, $£ 20$, or $\$ 100$, is not a very unusual price, though the majority of the pearls lik bring a very much lower figure, of course.
The buyers export them to England, where the demand is good. They may be seen in London set in all sorts of ways, the favorite being in the form of rings, which can be bought from $£ 2$ up.
The value of the pearls annually exported from Nassau was recently estimated at $£ 10,000$, or $\$ 50,000$.
The value of the different conch shells in New York is,
for the pink conch, $\$ 4$ per one hundred shells; milk conch
for the pink conch, $\$ 4$ per one hundred she
$\$ 6.50$; king conch, $\$? 5$; queen conch, $\$ 20$.

NATURAL HISTORY NOTES.

Old Seeds versus Leev.-There is a widespread impression that old seeds of many plants are preferable to new, especially in the production of double flowers. Desirous of putting his view to the test, an experimenter, whose results are recorded in a recent number of the Revue Horticole, undertook a series of experiments with the seeds of the camellia-flowered balsams of varying age. The conclusion arrived at-diametrically opposite to the generally received opinion-is that it is the youngest seeds which give the largest proportion of double flowers.
The Potato Grafted on the Bitter Sweet.-An experiment has been performed by M. Lambotte, the record of which, together with an illustrative woodcut, may be found in a recent number of the Revue Horticole. M. Lambotte tells us that in the spring of the year, while picking out some potatoes for culinary purposes, he remarked one sprouting and more fit for planting than for cooking. He had at the came, close at hand, a plant of the bitter sweet (Solanum dul camara), the stem of which he cut to a sloping point, which Some introduced into a hole in the potato as deftly as possible. and speedily sprouted from the eyes, the principal stem measuring more than sixty centimeters. The tuber became green, excessively hard, and developed little shoots bearing smaller tubers and rootlets. In point of fact there was a tuber growing in the same manner as it would in the ground,
and only differing from an ordinary tuber in its hard conand only differing from an ordinary tuber in its hard con
sistence. Things went on in this manner till the end of Sistence. Things went on in this manner till the end of
September, when suddenly the leaves withered and the shoots became pendent, and the tuber gradually became soft and decomposed after its ten months' sojourn on thestem of the bitter sweet, the latter continuing its growth in the ordinary manner, unaffected by the fate of its quondam associate The Eggs of the Great Auk.-The numerous bones of the great auk found on theshores of Greenland, Newfoundland, Iceland, and Norway attest the former great abundance of this bird, but within the last century it has gradually become more and more scarce, and is now believed to be extinct, none having been seen or heard of alive since 1844, when two were taken near Iceland. There are but three specimens in the United States-one in the Academy of Natural Sciences at Philadelphia, one in the Smithsonian Institution, and one in the Cabinet of Vassar College. The last is the most perfect specimen, and possesses the greatest historical value, as it is the one from which Audubon made his drawing and description. The eggs of this extinct bird are also extremely rare, and it is, therefore, interesting to learn that two specimens have been recently discovered in an old private collection in Edinburgh and sold at auction. The prices realized on these two rarities were $\$ 560$ and $\$ 500$ re spectively. The purchaser was Lord Lilford.
A Case of Apparent Insectivorism.-Professor Baillon, at a recent meeting of the Linnæan Society of Paris, read the following notes on the apparent insectivorism of a plant often seen in cultivation, Peperomia avifolia, of which the variety Argyreia is cultivated in so many greenhouses, has the leaves more or less deeply peltate. I have seen stalks on which the peltation on certain leaves was so exaggerated as to show on cross section a depth of nearly four centimeters. When the concave stalks take a suitable direction, water (principally that from sprinkling) would accumulate and rest in these receptacles, so well prepared to preserve
it. Many small insects would fall into this it. Many small insects would fall into this water and be drowned. Last year, when the season was warm and
when the windows of the house were often open, the number of insects was very considerable, and these, soaking in the water, gradually fell into decay, and it was remarkable that there was during this not the least sign of any putrescent odor. Those who believe in the theory of insecteating plants may perhaps in this be led to find an argument favorable to such doctrines. They will add that the variety of colors so strikingly seen in these leaves constitutes the gent of attraction for the insects to come and be drowned. These reflections, each of a different sort, here present themselves: 1 . Is it not remarkable that the exaggerated peltation of these leaves is in this case accompanied by an appar ent insectivorism, and that the leaves of the plants known up to this time by botanists as carnivorous owe their sac
limb, as we demonstrated in the evolution of the leaves of Sarracenia (Comp. Rend. Ixxi. 630)? 2. How can it be considered as a proof of insectivorism, that plants such as the Utricularia grow better in a fluid containing albuminoid compounds, when other plants grow equally favorably in the same kind of fluid, and which latter are never for a moment thought of as carnivorous? 3. How do the chief priests of our science reconcile the two ideas, that the surface of the leaves of plants is unable to absorb pure water in contact with them, and that the same surface daily absorbs water charged with albuminoid substances and the ke?
Albino Arethusa.-A white flowered variety of this rare and beautiful North American orchid has recently been discovered in Rhode Island by Professor W. W. Bailey. It has the yellow markings of the labellum, as in the ordinary red flowered form. In his "Wild Flowers of America," Professor Goodale states that the plant grows in bogs, with its corm embedded in peat moss, sometimes two or three inches below the surface.

CURIOUS FACTS ABOUT THE ALBATROSS.

The tracts of lower, nearly flat land of Marion Island, skirting the sea, and the lower hills and slopes along the shore, presented a curious spectacle, as viewed from the ship as it steamed in towards a likely-looking sheltered spot or landing. The whole place was everywhere dotted over with albatrosses, the large white albatross or goney (D. exulans). The birds were scattered irregularly all over the green in pairs, looking in the distance not unlike geese on a green in p
common.

The albatrosses were all around, raised from the ground. Their nests are in the style of those of the mollymanks, but much larger, a foot and a half at least in diameter at the much
top.
The
They are made up of tufts of grass and moss, with plenty of adhering earth beaten and packed together, and are not so straight in the sides as those of the mollymanks, but more conical, with broad bases. The female albatross is sprinkled with gray on the back, and is thus darker than the male, which is of a splendid snow white, with the least possible gray speckling, and which was now, of course, seen in his full glory and best breeding plumage; the tails and wings of both birds are of course dark.
The albatrosses one meets with at sea are most frequently birds in young plumage or bad condition, and have a rather dirty, draggled look. The brooding birds are very striking objects, sitting raised up on the nest, commonly with the male bird beside it. They sit fast on the nest when approached, but snap their bills savagely together, making thus a loudish noise. They will bite hold of a stick when it is pushed up against their bills. They need a good deal of bullying with the stick before they stand up in the nest of bullying with the stick before they stand up in the nest
and let one see whether they have got an egg there or no. and let one see whether they have got an egg there or no.
Then the egg is seen to appear slowly out of the pouch in which it is held during incubation. It is nearly fiveinches long, or about as big as a swan's, and is white, with specks of red at the large end. Only one egg is laid. In most of the nests there were fresh eggs; in some, however, nearly full-grown young birds.
At Campbell Island, of the Campbell and Auckland group, the young of Diomedea exulans were found just breaking the shell in February, by an exploring party.*
Charles Goodridge, who was one of a sealing party on the Prince Edward Islands in 1820, and spent two years on the Croyets, says that the albatrosses there lay at about Christmas, and that the period of incubation is about three months (?). The young, he says, were wing-feathered, and good to eat about May, and did not fly off till December. \dagger ,The young albatrosses are dark-gray in plumage. They snap their bills, like the old ones, to try and frighten away enemies. The old birds never attempt to fly, though per sistently ill-treated or driven heavily waddling over the ground.

Very many were killed by the sailors that their wing bones might be taken out for pipe stems, and their feet skinned to make tobacco pouches. The old males tried to run away when frightened, but never even raised their wings.
It is amusing to watch the process of courtship. The male, standing by the female on the nest, raises his wings, spreads his tail and elevates it, throws up his head with the bill in the air, or stretches it straight out forwards as far as he can, and then utters a curious cry, like the mollymanks, but in a much lower key, as would be expected from his larger larynx. While uttering the cry the bird sways his neck up and down. The female responds with a similar note, and they bring the tips of their bills lovingly together. This sort of thing goes on for half an hour or so at a time. No doubt the birds consider that they are singing. Occa sionally an albatross flies round and alights upon the grass, but I saw none take wing. $-H$. N. Moseley. - Challenger Notes.

A Wiscensin cow died not long ago, after a lingering illness, attended by a persistent cough. After her death a veterinary surgeon opened the windpipe to discover the cause of the irritation, and found in the upper part of the lung a live striped frog of ordinary size. The surrounding portion of the lung was much discolored.
Reported by Dr. Hector, F.R.S."一Trans. N. Zealand Inst., vol. zi., 1869 $\stackrel{\text { p. } 75 .}{+\cdots}$

