(23) W.F. asks (1) why an engine in makIng a curve will travel more on the high than on the low side. How do they do it when the wheels on both
sides are making the same number of revolutions? A. sides are making the esame number of revolutions? A.
The face of the tire is generally coned," and the outer wheel runs on a larger diameter; also, the inside wheel slips or slides to a certain extent, depending on the
radius of the curve. 2. On what principle does an in jector work? A. By the velocity and consequent momentum given the water by the effluent steam.
(24) V. V. G. asks: Will a locomotive without train, with a 438 foot wheel disconnected on
one side, be equal to a 9 foot wheel? Will a locomotive one side, be equal to a 9 foot wheel? Will a locomotive
run faster with one side disconnected? A. The locomotive will not travel faster than the wheel travels. Disconnecting one side makes no
the wheels have the same velocity.
(25) R. H. D. asks: What is the best way to irrigate a strawberry field, $/ 1 / 2$ acre, water to be taken
from a lake, highest point 9 feet above low waser: greatest distance 300 feet; time water is wanted, during pread by gravity, or draw with tean and self-filling tank attached under wagon. Is there a better or cheaper plan? A. Put up a windmill to pump into your tank, and spread by gravity.
(26) W. F. H. writes: We had a 40 horse water from a pond covered with ice, boiler was out water from a pond covered with ice, boiler was out
doors; thermometer about 26°, or 6° below freezing,
cloudy day; gave it a pressure of 120 lb, in that condition. How much steam pressure would it be equal to I claim it would be as hard on the boiler as 150 lb . steam orhot pressure. A. It would be harder on the boiler, because the water has no elasticity, while the actual
pressure would be the same. The iron would also be pressure would be the same. The ir
more brittle at the low temperature.
(27) A. B. P. writes: I have a large cistern, and the pipe that feeds my boiler is constantly five feet under water. Would it be injurious to the boiler,
or in any way objectionable, to let the exhaust from the engine into tine cistern at the top of the water, if I use country tallow only in the cylin
(28) G. H. C. asks: 1. What was the depth of girders and what was the width from outside to out-
side of same across the track on the recently destroyed spans of the Tay bridge? A Depth 27 feet, width bespans of the Tay bridge? A Depth 27 feet, width be-
tween girders aboul 12 feet. It was a single track briage. 2. Are hexagonal nuts ever used on bolts in fish plates
in this country, or are they all square? A. They are in this country, or are they all square? A. They are
almost invariably square. 3 . Is a fish plate bolt screwed almost invariably square. 3. Is a fish plate bolt screwed up tight us any other bolt in any piece of machinery, or
is it left moderately loose to admit of expansion and is it left moderately loose to admit of expansion and
construction of rails? A. It is screwed up tight, but the construction of rails? A. It is
fish plate has a little elasticity.
(29) A. O. K. writes: 1. I have charge of a boiler of the locomotive type. I have considerable
trouble with leaks at the bottom of the water legs, trouble with leaks at the bottom of the water legs,
caused by fractures in the cast iron "ring" surrounding the fire box. Calking does no good; I have also tried placing it on the cracks, but that also failed to stop the placing it on the cracks, but that also failed to stop the
leaks. Bran does better, but does not stop them entirely. How can they be stopped effectually? A. First ase coarse Indian meal on the inside, and when it has
worked well into the cracks, fill above it with hydraulic worked well into the cracks, fill above it with hydraulic
cement 1 to 2 inches thick, being careful that the top of the cement issome distance below the top of grate bars. 2. I want to black small casting by dipping. Can you a gloss after becoming dry? A. Use asphattic black varnish.
(30) A. R. B. writes: Riding with a friend recently, he asserted that the wagon brake produced
greater effect in retarding the vehicle when barely greater effect in retarding the vehicle when barely
allowing the wheels to turn, than when it locked them allowing the wheels to turn, than when it locked them
entirely. I said he was mistaken, but could give him no satisfactory reason. Am I right, and if so, please explain why? A. Your friendis correct. It is true also of rail. road brakes when the wheels are locked; the same surface is constantly presented for friction and soon becomes glazed; when allowed to turn, new surfaces are
(31) C. E. B. asks: 1. Of what kind of metal is the rings in an engine cylinder composed of
A. Generally cast iron. 2. How can I run Babbit t A. Generally cast irn. 2. How can I run Babbit t
metal boxes for a saw mandrel or other shafts? A. metal boses for a saw mandrel or other shafts? A.
Fit a mandrel the size of the shaft in the box and cast Fit a mand
around it .
(32) J. H. W. asks for a recipe for a toilet lotion that will improve complexion of ladies, which contains nothing injurious. A. We do not recommend
such lotions. Temperate living, plenty of out-of-door such lotions. Temperate living, plenty of out-of-door
exercise, and frequent bathing impart a clear vigor to the skin attainable by no artificial means.
(33) J. F. P. writes: I have a well that is 20 feet deep, and I have a pump with 1 inch gas pipe; it is common iron piping. The water tastes a little of
theiron. How can I keep it from tasting? A. Use wood tubing instead of the iron pipe.
(34) J. C. S. asks: How can cattle hoofs or horns be melted so as to form a transparent composi-
tion? A. Horns are soaked in hot water until the bone tion? A. Horns are soaked in hot water until the bone
is easily separated, when they are softened in hot -water, slit up, and spread out between warmplates under pressure. From these plates the articles referred to
are cut. Hoofs are usually cold pressed. Neither are are cut. Hoofs are
melted as suggested.
(35) J. A. W. writes: Can you tell me the usual way of covering leadwith powdered chromium for
negative plates, and do you consider such plates equal to carbon? Do you know of an imitation or any subatitute for hard rubber? A. The metallic chromium, according to Beasley, is pressed into the surface of the lead by passing between steel rolls. It compares favor-
ably with carbon in some electrotypes. Celluloid can be ably with carbon in some electrotypes. Celluloid can be
made to closely resemble ebonite or vulcanite.
(36) J. S. writes: I wish to build a small all 25 feet, beam 5 feet, depth $32 / 2$ feet. Boiler 24 inches
diariuter, 36 inches high, 90 or 100 one inch tubes. En-
gine, cylinder 5 inches by 6 inches stroke, work:ng pressure 150 lb . The exhaust steam to be led through the bottom of the boat and along the keel to and around the stern, then forward and empty into a tank 114 inches, length diameter of the exhaust pipe will be $11 / 4$ inches, length about 30 feet under water. Will 30 all the steam: if not, how long ought the pipe be: A. all the steam: if not, how long ought
No; do not use less than 2 inch pipe.
(37) R. E. W. asks: By what process is condensed milk made? A. The fresh milk is pumped into large air tight vessels (vacuum pans) placed over a warm water bath and connected with air pumps, by Under these circumstances the milk boils and parts with its water at a very low temperature. Where the milk so condensed is to be preserved of pure white ugar and put up in hermetically sealed cans.
(38) A. B. F. asks (1) for the dimensions of scow that will carry about 40 tons of freight in addition to her engine, and not draw over 18 inches of water.
A. About 75 or 80 feet long and 15 feet beam. 2 . What would be the power of an engine to drive it at about 4 miles per hour with a stern wheel? A. Two
engines, 6 inches cylinder and 2 feet stroke. A. Which engines, 6 inches cylinder and 2 feet stroke. A. Which
is best for such a boat, an engine with one cylinder or is best for such a boat, an engine with one c
one having two cylinders? A. Two engines.
(39) F. A. S. asks: 1. Is it true that Bessener steel cannot be used for mould boards for plows, or bottoms of road scrapers. A. Yes. 2. Is it because such steel cannot be properly hardened? A. Yes. 3 .
If it cannot be made sufficiently hard, why is it? A.
It contains too little carbon to be materially affected by the ordinary hardening processes
(40) J. B. R. writes: I have a private telegraph line, two wires, $1 / 8$ mile long. The line is annealed wire, such as tin men use in putting up
stoves. The line has been in use three years. It has been brokenseveral times and spliced. I use three cells Watsons battery to charge the line. It works
good for three or four days, then it ceases to work good for three or four days, then it ceases to work
until I cross the wires in the office for a few minutes, then it will work again as stated. Why will it not work all the time? The current is very strong when
I cross the wires in the office. A. Without further data cross the wires in the office. A. Without further data
we cannot explain the action of your line. It is probawe cannot explain the action of your line. It is proba-
ble, however, that the resistance of your line is excessive, however, that the resistance of your line is exces
siver telegraph wire. If you require sive. Use regular teleg
small wire, use copper.
(41) F. H. L. asks if there is any composi tion of brass that can be melted in an ordinary coal
stove that is of sufficient hardness to cast small models from and its composition. A. Common yellow brass may be readily melted in a coal stove, but it is doubtful if brass can be easily made in an ordinary stove, as the
copper, which mist be first melted, fuses at a much higher, temperature than brass. A very good formula for ellow brass is copper 70 parts, zinc 30 parts.
(42) J. A. C. asks how are the teeth put in the small bracket saws not larger than $1-16$ inch wide.
A. A number of steel plates having the thickness of the saws are clamped together and placed in a milling machine, which cuts teeth in the edges of the whole series of plates simultaneously. The saws are then sheared
from the edges of the plates, and the plates are again melted, and so on.
(43) G. D. R. writes: On page 69, current volume, Scientific American, I find an article by G. F. Barker, entitled "Crystalization in Canada Balsam."
I have frequently observed the figures assumed by glass; and they are like the cut in the article referre to. If the gum is thick enough and allowed to cool under pressure, the figures are permanent. I am not prepared
to dispute or discuss anything; but unless I was sure the glass in question had not been exposed to a "prairie fire " or some other source of heat,I should say beat was the cause of the figures instead of crystallization, as a
heat suffictent to boil balsam will not char wood, or if carefully applied, scorch varnish. My proposition can balsam and two small pieces of window glass.
(44) B. T. F. writes; In Scientific AmeriCAN, February 7 , 1880, page 91 . article 4, C. M, K. a\&ks
What will drive away or destroy feas? I reply; Persian insect powder. I tried it and got rid of the terrible (45) G. H. writes: Having discovered traces of silver in several places upon large tracks of
land we own in this region, we should like to have some simple method of testing or assaying specimens of the rock. From tests made in the East of several different specimens, we are led to believe the stuff will yield from $\$ 35$ to $\$ 40 \mathrm{a}$ ton, but wish to try this ourselves, Can you tell us of any simple apparatus? A. Charge into a 6 -ounce crucible (a Battersea F answers
very well) 1 ounce each of the ore and dry bicarbonate of soda, 2 ounces of litharge (free from silver),
ounce of argal, and cover with ounce of argal, and cover with 4 inch of dry salt.
Hear the crucible until the contents are in a quiet state of fusion, remove from the fire, cool, break, and clean the lead button by pounding on an anvil. If the button weighs more than, say, half an ounce, scorify it
down in a scorifying dish in an open muffle. Heat 1/4 nch bone ash cupel in the muffe, drop into it the button, and keep up the temperature of the muffe to a bright red heat until all the lead has been scorified off
and absorbed by the cupel, and the small bead of gold or silver (if the ore contains any) becomes well roundthe whole of it passed through an eighty-mesh sieve.
(46) E. B. L. asks: How to cut up and ork into shape retort carbon. It is very hard, and will turn the edge of evergithing I have tried.
worked in the same manner as glass or stone. It is
To saw it, use a revolving disk of thin sheet iron or copper supase an iron lap supplied with sharp sand or emery and
(47) G. W. H. asks how can I drill
through stone or earthenware vases holes, $1 / 4 \mathrm{in}$. say, to
$1 / 2$ in. diameter? The vases are about $3 / 4 \mathrm{in}$. thick. $1 / 2$ in. diameter? The vases are about 24 in . thick. A.
Use a copper tube for a drill, and supply it with emery Use a cop
and oil.
(48) W. H. P. asks: Who was the first man who had knowledge of the existence of the Ameriean man thus far discovered have been found on this conti nent in formations antedating a portion, if not the whole, of the Glacial Period, history may be pardoned
for not recording the first comer's name. The first white man certainly known to have visited our continent was Leif Ericsson, in the year 1001. There are traditions of earller voyages of Europeans to America, b
the historical evidence of such visits is insufficient.
[OFFICLAL.]

INDEX OF INVENTIONS

Letters Patent of the United States

January 20, 1880,

AND EACH BEARING THAT DATE.

[Those marked (r) are reissued patents.]

A complete copy of any patent in the annexed list, in.
cluding both the specifications and drawings, or any cluding both the speciflcations and drawings, or any
patent issued sincel867, will be furnished from this office for one dollar. In ordering please state the number and
date of the patent desired, and remit to Munn \& Co., 37 date of the patent desired
Park Row, New York city.
.
Air, apparatus for separating the water of con densation from compressed, S. B. Hunt..... pressed, S. B. Hunt

Album clasp, B. Posen...

Animal trap, A. G. Roger
Balcony, portable, H. H. D
Bale tie, cotton, W. D. Field
Bed canopy frame, W. W. Whitehead
Blind slat fastening, Robinson \&
Boiler furnace, steam, H. Cowell
Booik binding, J. J. Hanlon...
boot and shoe edge burnishing machine, H. D
Stone Stone ...
Boot and sh
Boot, rubber. G. Watkinson
Boot, rubber. G. Watkinson
Boot treeing machine, J. E. Crisp (r)
Bow and arrow rack, E. T. Church...
Bow and arrow rack, E.
Bracelet, w. C. Edge
Boiler furnace, L. B. P.
Burial casket, J. Taylor
Butter worker, J. Sattison
Camphor, apparatus for refning, w. V. McKenzi Cane handle, telescopic, Chapling, E. J. Clark ...
ar coupling, E. Sha
Car coupling, c. G. Weidling.
Car door fastening, Buser \& Shaw.
Carb, ventilating and refrigerating, J. B. Eliot..
Capparatus, D. P. Sanders
Caster, fur diture, C. J. Brackebush..
Chain, drive, L. W. Stock well.....
Chain, drive, L. W. Stock we
Check rower, E. A. Morphe
Churn, G. R. Nebinger
Churn dasher, J. E. Finley...................223.642,
Cigar light, E. L. Bryant............
Clock movement, A. E. Hotchkiss
Clothes pounder, H. Howell...................
Cornice, adjustable win
Cotton gin, W. L. Ellis.
Cultivator, J. J. Deal ...
Cultivator, J. J. Deal.
Cultivator, comb'd riding and walking.................................
Currycomb, M. Sweet
Door plates, making,
Door plates, making, H. D. Krame
Drum, heating, W. C. Doddridge.
Exercising machine. O. Duplessis

Fence post, H. M. Beecher .
Fifth wheel, J. Wampach...
Filtering apparatus, M. Lansburgh
Firearm lock, W. W. Wetmore.
Firearm, magazine, W. Tra bue
Firearm, magazine, W. Tra bue ...
Firearm, revolving. P. A. Hoiter.
Fish, preserving, H. Sellman et al.
Flame regulating device, F. Koesewitz
Flour mill dust separator. G. T. Smith
Flour mill dust separator. G. I. Smith
Fruit gatherer. J. P. Eddleman

Glassware, manufacture of
Grain binder, w. M. .iatt
Grain binder, D. Strunk
Grain binder, D. Strunk.
Grain meter, W. H Allen
Grate, J. Colling
Grate, J. Collins
Grinding and polishing implement, T. B. Stone
Horse rake and hay spreader, G. N. Palmer (r).
Horseshoe, D. Hudson.
Hydraulic motor, Class \& Briegleb
Hydraulic press, J. Watson
Hydraulic press, J. Watson.......
Ice cream freezer, C. W. Packer
ice cream freezer, C. W. Packem freezer, T. Scantlin
Inhaler, nasal, J. H. Yates
ron and steel, manufacture of, I. Reese
Jeweler's clamp, A. A. Cowing............
Knitting machines, needle cylinder or bed of,
Cornfield
Lamp regulator, electric, Houston \& Thomson
Lens. optical, L Allen.
Lock, optical, Juhl. \qquad
Loom, J. Lyall (r)
agnetic-electric machines, armature and com-
mutator for, Thomson \& Houston
agneto-electric machines automat
for commutator brushes on, Thomson \&
Houston.
Houston..

Carpet. A. Heald11,608 to 11,610

Key bow, F. W. Mix.. 11,615
Spoon or fork handles, A. Hart.................... 11,614
TRADE MARKS
Cotton fabrics, unbleached, bleached, and colored,
woven, Hill Manufacturing Company......7,766, woven, Hill Manufacturing Company......7,796, 7,797
Flour, wheat, Empire Mill Company.............. 7,95 Flour, wheat, Empire Mill Company

oolen goods, suc
E. Oelbermann

Englis'h Patents Issued to Americans.

rom January 16 to January 2 , inclusive
Car starters, J. Hill, williamsport, Pa.
Ear starters, J. Hinc, W. W. Baldwina, Brooklyn, N.
Gas regulator, M. G. Wilder, Brooklyn, N. Y.
Gas regulator, M. G. Wilder, Brookkn, N. Y.
Paper, compound for, R. A. Fisher, Philadelphia, Pa.
Paper, manufacture of, R. A. Fisher, Philadelphia, Pa
Paraffin, rettning, \mathbb{F}. Bell, New York city.
Photo relief engraving, G. C. Bell, Brooklyn, N. Y.
Photo relief engraving, G. C. Bell, Brooklyn, N. Y.
Puddling furnace, \mathbf{W}. Stubblebine. Bethlehem, Pa. Railroad rails, manuf. of. G. Webb, Johnstown, Pa.
Steam boiler, heating apps.,J. Evans, Philadelphia, Pa
Steel, treatment of, G. Webb. Johnstown, Pa.
PRINCIPLES OF HORSE SHOEING.

