srimutific Amcrican.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors.

PUBLISHED WEEELY AT

NO. 3 ' 7 PARK ROW, NEW YORK.

O. D. MONN.

A. e. beach.

TERIS FOR THE SCIENTIFIC AMERICAN. One copy, one year, postage included...
One copy, six months, postage included
Clubs.-One extra copy of The Scienti..................... 1860 gratis for every club of flve subscribers at $\$ 3.20$ each; additional copies at same proportionatal rate. Postage prepaia.
Remit by postal order. Address

MUNN \& CO., 37 Park Row, New York To Advertisers - The regular circulation of the Scientipio publishers anticipate a still larger circulation.

The Scientific Amorican Supplement Is a distinct paper from the SCIENTIFIC AMERICAN. THE SUPPLEMENT
is issued weekly. Every number contains 16 octavo pages, with handsome is issued weekly. Every number contains 16 octavo pages, with handsome
cover. uniform in size with ScIENTIFTC AMERIPAN. Terms of subscription for SUPPLEMENT, 45.00 a year, postage paid, to subscribers. Single copies ${ }^{10}$ cents. Sold by all news dealers throughout the country. Combined Rates. - The Scievtific american and Supplemment will be sent for one year, postage free, on receipt of seven dollars. B
papers to one address or different addresses, as desired. The safest way to remit is by draft, p
Address MUNN \& CO., 37 Park Row, N.
Scientific Amorican Export Edition.

NEW YORK, SATURDAY, JANUARY 17, 1880. Contents.
(Illustrated articles are marked with an asterisk.)

TABLE OF CONTENTS OF

the scientific american supplement INO. 211,
For the Week ending January 17, 1880.

patent legislators in congress.

Last winter the enemies of inventors and patentees achieved a signal defeat in a general attack upon the patent system. Profiting by that experience, which taught them the futility of attempting by direct assault the destruction of a system so firmly grounded in popular esteem, they have scattered their forces this year for a sort of guerilla warfare, apparently hoping to do indirectly, under the guise of protection to oppressed grangers and the like, the work they failed to do a year ago.
We have before us four bills which prettily illustrate the spirit and the method of the guerilla system. They have been introduced in the House of Representatives by Mr. Baker and Mr. Colerick, of Indiana, and Mr. Converse, of Ohio, and are numbered respectively $2,631,2,633,2,913$, and 3,049.

Of these Mr. Baker is sponsor for two. The first is designed to regulate the costs of suit in actions to recover damages for the infringement of patents; and provides that in cases where it shall appear that the defendant purchased in good faith and without actual knowledge of infringement, and applied the article to and for his own use and not for
sale or for manufacturing a product for sale, if the plaintiff sale or for manufacturing a product for sale, if the plaintiff or over, the court shall adjudge that he pay all the costs of suit, including a reasonable attorney's fee to the defendant; and if the plaintiff shall not recover a judgment in damages of fifty dollars, or over, the court shall adjudge that he pay all the costs of suit.
The propriety of thus punishing the patentee for defending his property rights will be apparent to all who desire to appropriate his property to their own use. The justice of such discrimination in favor of offenders against patent rights solely, however, may fairly be disputed by all the other classes of thieves and plunderers and receivers of stolen property.
Properly named, the bill would be entitled "a bill to facilitate the infringement of patent rights, and to encourage patent litigation." Since a very large portion of all patented for the manufacture of articles for sale, and since damages for individual misappropriation in such cases are apt to be small, the infringer has everything to gain and nothing to lose in standing suit, while the inventor is bound to sue or practically abandon his rights.
But the advantage thus aimed at is not enough to suit Mr. Baker or his employers. Accordingly he hands in another bill to limit the liability of purchasers to actions for damages in cases of infringements. This bill is short enough to quote entire. It provides "that no suit shall be brought or maintained in any court having jurisdiction in patent cases for any alleged infringement of any patented article, device, process, invention, or discovery, where it shall appear that
the defendant, or any person through or from whom he derives title thereto, purchased the same in good faith from the manufacturer thereof, or from any person or firm engaged in the open sale or practical application thereof, and applied the same to and for his own use, and not for sale, nor for manufacturing a product for sale.
Mr. Colerick's bill aims at the same point, and provides that purchase in good faith without knowledge that the purchased article was an infringement of any patent shall be a complete defense against action for damages.
In their best aspect these bills are an attempt to make the United States Courts a sort of patent buffer to guard the purchasers of illegal articles, or articles to which the seller has no title, from the natural and proper consequence of their ignorance and folly. The propriety of thus discriminating in favor of one phase of business imbecility and against one particular class of property owners is as little apparent as is the need of it. The proper way for the complaining farmers to protect themselves against patentswindlers is to buy patent rights and alleged patented articles as they do horses and lands and other property, only after making sure that the seller's title is good. If they will take the risk of buying blindly let them abide the issue manfully, and not call upon Congress to throw the consequences of their
folly upon the shoulders of rightul folly upon the shoulders of rightful owners who have had
no part in the fraudulent sale. But these fraudulent sale
sibly they are put forth to meet a special class of cases in which innocent farmers are said to be the victims of patent sharps. Really, we believe, they are intended to breakdown the defenses by which inventors are now enabled to guard their constitutional rights under the patent laws; and in case they are passed they certainly will have the effect to destroy absolutely and utterly the value of a large class of patent rights.
For example: A, in Maine, invents and patents a device calculated to lessen the cost or increase the safety of railway construction or operation. The foreman of a railway company's shops in Indiana offers the invention as his own to the company which employs him. They buy it and use it. In course of time the inventor hears of the infringement and brings suit. After such delays and multiplications of court expenses, as powerful corporations are so well able to effect, the case comes to trial and the defendants raise the plea that the purchase was made in good faith, for their own use, and not for sale or for manufacturing a product for sale. The defense is complete; the plaintiff gets no damages, and besides suffering the loss incident to the invasion of his rights
fee to the railway company's attorney. An admirable issue truly, for a patent law designed for the advancement of the useful arts, by the encouragement of inventors!
But Messrs. Baker and Colerick are mere bushwhacker compared with Mr. Converse. The latter gentleman enter the lines of the patent defenders, ostensibly in friendship, and quietly drops a match into the magazine, hoping thereby oblow up the entire system. In this way:
" Beit enacted by the Senate and House of Representatives of the United States of A merica in Congress assembled, That it shall be unlawful for any owner, or part owner, or assignee of the whole or any part of ary patent granted or pencing
under the laws of the United States to charge or receive as royalty on such invention or discovery more than an amount equal to the cost of production, and twenty-five per centum to be added thereto for profits of inanufacture in addition to such cost, and twenty-five per centum protit. When ever the invention or discovery or the article pat-
ented, or when patent is applied for, is used for hire in ented, or when patent is applied for, 1 used or or being sold, it shall be unlawful to charge or receive or such use more than the royalty, cost, and profit of manufacture aforesaid. Every owner or part owner, by assignment or otheroise, of any patent heretofore or which may hereafter be granted, or for which applicrtion is pending under the laws of
the United States, shall forfeit to the public all right to said disovery or invention.
That is all; and it is certainly quite enough. At first sight it may seem as though some specific offense should have been named in the final clause. But that is not at all neces sary. The act of applying for a patent for an invention is offense enough, in the eyes of men like Mr. Converse and his anti-patent associates, to justify the forfeiture of all right to the invention; and Mr. Converse is to be commended for frankly and boldly stating precisely what the would-be patent law amenders are driving at.

$\rightarrow-+$

A NEW DEEP SEA SOUNDING APPARATUS

Wellave received from the author. Sr. Henrique de Lima e Cunha, a copy of a paper recently read by him before the Lisbon Academy of Sciences on the subject of a new deep sea sounding apparatus devised by him, and which appears to have some valuable features, in addition to possessing the merit of novelty. In taking soundings at great depths, and in places where there are strong undercurrents, no very great exactitude can be attained by ordinary methods, owing to he fact that the line is carried off by the undertow, and the ength paid out does not represent the vertical distance to which the weight has descended. The apparatus unde consideration is based on the effects of atmospheric pressure. It consists of a cone of sheet copper, having for its base a diaphragm of the same metal, and which screws into the bot tom of the cone so that it may be readily removed when necessary. In this movable base there are six small holes, one millimeter in diameter, which allow the ingress of the ea to the interior of the cone; and to the center of its upper surface there is soldered a vertical wire of pure silver, two millimeters in diameter, and which occupies the axis of the cone.
To prepare the apparatus for use the silver wire is moistened with nitric acid, which results in the production of a thin film of nitrate of silver. The base being screwed on, the cone is suspended by means of a ring at its apex, and sunk by means of two separate weights or stones suspended by cords or chains depending from three rings attached to the perimeter of the cone. To insure a vertical position to the apparatus and to prevent it from being easily turned from its course, a small float is attached just above the sus pension ring at the apex of the cone. As the apparatus sinks into the sea the water penetrates into it through the orifices in the diaphragm and gradually rises in proportion as the pressure increases during the descent. The salt water acts on the thin coating of nitrate of silver on the wire, and turns it perfectly white by the production of chloride of silver as far as immersion has taken place. By this means, therefore is determined to what height the water has risen in the cone, and consequently what the pressure has been; and from these data the depth to which the instrument has descended is easily determined by simple formulæ. The author suggest that by suspending the lower weight by means of an appa ratus which would detach it on striking bottom, the apparatus would ascend to the surface of itself, thus dispensing with the use of a line.

PROSPECTS OF TRADE IN BRAZIL.

The picture of a sturdy negro carrying a wheelbarrow on his head would not be a bad symbol of the force of custom which, in an infinite variety of ways, labor-saving inventions have to overcome in most parts of the world. Our consul general at Rio Janeiro says in his recent annual report that a negro so employed had lately been seen by him in the streets of that city. The rarity of good roads in tropica countries has led to a general custom of carrying burdens.on the head; and even with good wheeling provided the handy wheelbarrow was to the Brazilian porter only so much ad ditional burden.
The overcoming of such deep-rooted and stupidly-followed customs is one of the main tasks to be performed in building p any considerable trade with foreign, more especially ropical countries. For this work the commercial agent and the manufacturer as well needs know by personal study what are the customs of the people he wishes to trade with, how to adapt his wares with the least change to meet their wants, and to avoid sending wares which cannot by any possibility be made available.
In the report referred to Mr. Adamson says that his office is inundated with letters of inquiry, many of them asking
for information which any sckool geography or the nearest public library could furnish. He then goes on to describe conditions of Brazilian climate, productions, social customs, and the like, which make it impossible for many articles of American manufacture ever to find a market there, pointing out at the same time several lines of manufactures which, by proper management, might be sold largely in that part of the world.
A particularly suggestive and valuable part of the report will be found in the comparison made between the methods of German commercial agents and merchants and those of our own country. The mercantile training of the former embraces not only all the details of office work, but a thorough knowledge of geography and of the products of every land, of mercantile law, and of at least two languages besides their own. The first business of the German agent is to master the language of the people he is to trade with, if he has not already acquired it. Similar qualifications are the exception among the ambassadors of American trade. The majority of them have to employ an interpreter to make their business known, and the interpreter can rarely speak so as to compel attention and belief. Under such unfavorable conditions it is not surprising that American agents in Brazil are apt to be less successful than those of German houses. On the other hand, manufacturers of goods suited to the Brazilian market, who have intrusted their business to competent agents, have been very successful.
Speaking generally, Mr. Adamson says that if the present business of an American manufacturer will warrant his spending a thousand dollars to study the Brazilian market, he should personally visit Rio Janeiro to see for himself whether his wares are adapted to the wants of the people, or whether they can be altered to suit that market. If these questions find an affirmative answer he should establish a live man from home as his agent in Rio Janeiro, with capital to tide over the first few months. In the case of American stoves it took years to get them introduced and teach the people how to use them; but with industry and perseverance the field was won, and a large demand for the article is certain. In like manner our sewing machines have made for themselves a splendid marketin Brazil.
In this connection Mr. Adamson's statistical report of the trade of Brazil with different countries, the lines of steamships plying between Brazilian and foreign ports, and so on, will be found especially valuable.

NEW METHOD OF PRODUCCNG PHOTOGRAPHIC PICTURES IN COLORS.

At a recent meeting, in Paris, of the Photographic Society of France, M. Bonnaud exhibited specimens of his new system of colorization, which attracted much attention. The process is as follows: A negative is taken in the usual manner, from which as many prints on paper are made as there are to be colors in the finished picture. If, for instance, it is a portrait of a lady, to be furnished in four colors-blue, orange, red, and green-four paper prints are made. From one of the prints all the parts that are to have the same tint are carefully cut out; for example, the lady's dress and the sky, which are to be blue, are cut out; from the next print the trees and grass are cut out, as these are to be tinted green, and so on. The cut prints being arranged to "register" are now to be used as stencils, and are successively laid upon a sheet of paper and colors thereto applied, through the stencils, by means of a brush-an operation which requires little skill and may be done by girls. The paper with the stenciled figure upon it, in the different colors, is now albumenized and then sensitized in the usual manner in the photo bath; after which the original negative is applied and a photo print made upon the sensitized colored sheet, then developed and toned as usual. Photographs thus made are said to be attractive, the gradations of light and shade in the colors being excellent, and the effects very pleasing.
The process is simple, costs but little, and the pictures, it is said, may be rapidly produced. Where large numbers of the same colored picture are ordered stencil plates are made in sheet brass, the parts taken from the paper print being used as patterns to cut the brass.

the tay bridge disaster.

The most appalling of railway disasters occurred on the evening of Dec. 28, at the bridge over the Frith of Tay, on the railroad between Edinburgh and Dundee, Scotland. At this point an iron bridge two miles long crosses the Frith on 85 spans, ranging from 18 to 88 feet above the water. Of these spans, six were 27 feet, fourteen of 67 feet 6 inches, fourteen of 70 feet 6 inches, two of 88 feet, one of 163 feet, one of 170 feet, and thirteen of 245 feet. The long spans
near the center of the bridge were the highest above the near th
water.
On the evening of the disaster a train from Edinburgh to Dundee, comprising locomotive and tender, four cars of the third class, one of the second, and one of the first class, and a brakeman's van, entered upon the bridge near seven o'clock, a high wind blowing at the time.
In the bright moonlight the train was seen to reach the middle of the bridge over the navigable part of the Frith, then, suddenly, with a flash of fire it disappeared. Subsequent examination found that a section of the bridge half a mile in length, comprising a dozen or more of the longer and highest spans, had fallen, and the train had been precipitated into the gulf. The railway officials report that the falling girders made a very clean break from that portion which regirders made a very clean break from that portion which re-
mains standing. Almost the only signs of the catastrophe
are in the ends of the rails where they were torn asunder. The rails remaining appear wrenched out of their chairs for a few yards.
For some hours the furious gale prevented boats from reaching the scene of the disaster. By that time no vestige of the wrecked train could be found; and for a long quicksands of the bed of the Frith.
The first report of the managers of the railway said that there were nearly three hundred passengers on the train besides the train-men. Not one survived. Later the authorities estimated the loss as low as seventy-five. The exact number will probably never be known.
It is impossible at this writing to obtain any clew to the cause of the disaster. The gale is said to have been the severest experienced in Scotland since 1868. It is most probable that the bridge was blown down. That its fall was occasioned by a derailment of the train by the wind, does not seem likely in view of great length of bridge destroyed. That the foundations of the piers were not undermined seems probable from the circumstance that one report speaks of the piers as still visible. Whatever the cause, the disaster railroading.

A detailed account of the construction of the fatal bridge, with illustrations, was printed in the Scientific American Sopplenent of April 7, 1877, and an account of the completed structure and its inauguration in the Supplement for July 20, 1878.

OUR VENOMOUS SNAKES.

The danger from venomous snakes in the United States, though small as compared with that in warmer countries, is none the less real; and the destruction of such snakes should always be encouraged. But unfortunately the popular notion of snakes, instead of making venomous species the exceptions, makes them the rule. This erroneous notion, coupled with a natural and perfectly proper feeling that no opportunity of destroying a dangerous reptile should be the useful of serpent-kind.
the useful of serpent-kind.
Of course such a wholesale war entails the destruction of many serpents that are not only harmless but useful. And in this connection it may be worthy of notice that nonvenomous snakes, which commonly attain a length of but twenty inches or less, subsist chiefly upon insects, worms, etc., and should be regarded as friendly to the interests of agriculture.

A generally available means of determining at sight whether a snake is venomous or harmless is therefore desirable.

As a general rule, the venomous snakes have thick bodies and broad, triangular heads, which they flatten when they wish to assume a threatening aspect; while the innocuous snakes have slender bodies and narrow heads, which they do not flatten. This rule is often laid down as a sufficient guide in this matter; but it is far from reliable. We have venomous species of colubrine form and of mild disposition, as well as innocuous species with the viperine form and habits.
Nor is there known any infallible external criterion of the nature of a snake. Even the herpetologist, upon discovering a new and apparently harmless species, cannot with certainty pronounce it to be harmless from its external appearance alone.
In order, therefore, to improve every opportunity of destroying those which are venomous, and at the same time to encourage those which are innocent, an acquaintance with some of the more obvious specific characters of certain serpents is indispensable. But if we inquire into the matter, we shall see that the number requiring such an acquaintance is very small.
In North America, including Lower California and Sonora, in Mexico, there are one hundred and thirty-two species of snakes. Of these twenty-two, or exactly one sixth, are venomous. (The ratio of one to five, however, should by no means be taken as the numerical ratio of the venomous snakes to the harmless, since the former are far less numerous individually than specifically.)
It is plain that an acquaintance with the twenty-two venomous species renders a knowledge of the one hundred and ten harmless species unnecessary. But sixteen of the twenty-two are rattlesnakes-belonging to three different genera, it is true, but for our present purpose merely rattlesnakes, since all possess rattles. The nature of the rattle is so well known in districts where these snakes occur that no description of it is here called for; and as this organ is so conspicuous, rendering the rattlesnakes easily distinguishable, these may be stricken from the number of venomous serpents whose recognition requires their specific acquaintnce.
Of the six remaining species, two offer well marked varieties, a knowledge of whose appearance is important. We thus have but eight "kinds" of serpents requiring for their immediate recognition as venomous a knowledge of their form and markings.
But except for those whose pursuits lead them over widely separated localities, it will be unnecessary to know the appearance of even this small number. From one to three of them only will be found in most parts of the United States. In the region west of the Sierra Nevada not one of them occurs, the venomous serpents being represented by rattle-
copperhead. In the mountainous districts of North Carolin and Tennessee four of them may be met with.
Now, as to the method of obtaining a practical distinguishing knowledge of these few snakes. Let adyantage be taken of the first opportunity of killing a snake suspected to be one of them. If, by the presence of the "pit" or of fangs, it is determined to be venomous, note carefully such peculiarities of markings and form as may be most readily observed in other specimens of the same when seen readily obscrved in other specimens of the same when seen
alive in their native haunts. The specimen should then be alive in their native haunts. The specimen should then be
preserved in spirits, so as to be available at any time for comparison with harmless species to which it bears a super ficial resemblance.
Our venomous snakes, exclusive of the rattlesnakes, are comprised in two genera, Ancistrodon and Elaps. In either genus there is but one pair of fangs-long, slender, recurved teeth, situated in the forward portion of the upper jaw. In the genus Ancistrodon the fang is concealed in a fold of the gum, so that it is unsafe to presume upon its absence from a mere inspection. It must be pried out into sight by some sharp-pointed instrument. In this examination the greatest care should be exercised, as the venom continues to be secreted for some time after the death of the reptile, and a wound from the fang would probably at any time cause severe inflammation, if nothing more serious.
The fangs in the genus Elaps are permanently erect, maller, and situated further back than in Ancistrodon.
The "pit," above mentioned, is a small cavity about midway between the eye and the nostril, and a little below the line joining them. While not common to all venomous snakes, it is seen only in those which are venomous; so that its observance will often obviate the necessity of looking for fangs.
To those who lack time for gaining such a practical knowledge of our serpents, the following fact in regard to them may be of interest. All snakes of uniform color upon the upper surface of the body, or marked with longitudinal bands or stripes, are innocuous. F. W. Cragin.

Long Distance Telephoning.

An interesting trial was made with Bell telephones, Dec. 26, between Dayton, Ohio, and Indianapolis, Indiana, a distance of 108 miles. The wires of the American Union Telegraph Company were used, and the experiment proved con. clusively the utility of Bell telephones for distances within 100 miles. Conversation between the exchange offices of the twocities was maintained throughout the day. A circle of 100 miles radius, with New York as a center, includes all the western part of Connecticut as far as New Haven, with its numerous large and growing towns and cities; the Hudson River cities as far as Hudson, taking in Poughkeepsie, Newburg, Sing Sing, and other large places; all the cities and towns of New Jersey; Wilmington in Delaware; and Philadelphia, Reading, Easton, Scranton, and other large places in Pennsylvania. A slight addition to the radius, still without much exceeding the distance between Dayton and Indianapolis, includes Hartford on the northeast and Baltimore on the southwest. All these great centers of population and trade are thus already within possible telephonic reach of New York; and it is quite within the limits of possibility that the end of the current year may see business men in this city dealing directly, by word of mouth, with customers scattered over all this wide reach of country.

South American Exhibition.

The United States Consul at Buenos Ayres, in a dispatch to the Department of State, dated October 21, 1879, announces that a Continental Exhibition will be opened in that city on September 15, 1880, to continue until December 15 of the same year. The Exhibition is to be divided noto six sections. All the nations of South America can coutribute to and compete in the Exhibition; but the United States and Europe are limited to one section for machinery only. This section is divided into eleven groups, consisting of hydraulics, mining, metals, casting of types, bookbinding, agricultural implements, and several other groups. The usual directions to exhibitors have been published in pamphlet form.

Goods for the Melbourne Exhibition.

Mr. Thomas R. Pickering has been named by the Secretary of State, at Washington, as agent for the United States Government to solicit exhibits for the Melbourne Exhibition, to begin October 1, 1880. Mr. Pickering's office is in room 102, Post Office Building, New \cdot York city, where information in regard to the Exhibition can be had. The United States will not assume the expense of shipping goods, but will, through their commissioner, receive goods at Melbourne, find them place in the Exhibition buildings, and publish a list of the exhibitors.

Cactus Fiber.

A spocies of dwarf cactus abundant in Lower California is rich in fiber, said to be excellent for mattresses. It is reported that an experimental machine, costing only $\$ 400$, converts the raw material into white, elastic fiber with great rapidity, and promises to reduce the cost and improve the quality of such goods very materially.

banufactures are Booming.

We learn that the Wheeler \& Wilson Sewing Machine Company, of Bridgeport, Conn., has at present on hand orders for ten thousand sewing machines in a
capabilities of their immense establishment.

