# Srimitit Gmpritan. 

## ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors.
PUBLISHED WEEKLY AT
NO. B' PARK ROW, NEW YORK
O. D. MUNN.
A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN. One copy, one year postage included.
One copy, six months, posta e included
Clubs.-One extra copy of The Scientific American will be supple gratis for every club of five subscribers at $\$ 3.20$ each; additional copies a same proportionate rate. Postage prepaid.
Remit by postal order Address
Remit by postal order $\begin{gathered}\text { Address } \\ \text { MUNN \& CO., } 37 \text { Park Row Néw York. }\end{gathered}$
To Advertisers-The regular circulation of the ScIENTIFIC American is now Fifty Thonsand Cop
publishers anticipate a still larger circulation.

The Scientific American Supplement
Is a distinct paper from the Scientific american. THe supplement is issued weekly. Every number contains 16 octavo pages, uniform in size
with Scientific american. Terms of subscr ption for Supplem 85.00 a y ear, postage paid, to subscribers. Single copies, 10 cents LEMCNT,
all news dealers throughout the country. news dealers thoghout country.
Combined Rates. - The Scievtific American and Suppinmmint will be sent for one year, postage free, on receipt of seven doluars. Both The safest was to remit is br draft, postal order, or re Address MUNN \& CO., 37 Park Row, N. Y.

Scientific American Export Edition.
The Scientific Am erican Export Edition is a large and splendid peri.
dical, ssued once a month large quarto pages, profusely illustrated. embracing: (1.) Most of the plates and pages of the four preceding weekly issues of the Sci CNTIFIC American, with its splendid engravings and valuable information: (2.) Terms for Export Edition, 85.00 a year, sent prepaid to any part of the
world Single copies 50 cents. Manufacturers and others who desire world. Single copies 50 cents. Manufacturers and others who desire to secure foreign trade may have large, and handsomely disp
nouncements publisked in this edition at a very moderate cost.
nouncements publisked in this edition at a very moderate cost.
The Scievtific Ambican Export Edition has a large guaranteed circu The SCIENTIFIC AMRRICAN Export Edition has a large guaranteed circuco.. 37 Park Row, New York.

NEW YORK, SATURDAY, JUNE 5, 1880.


TABLE OF CONTENTS OF THE SCIENTIFIC AMERICAN SUPPLEMENT No. 231 ,

## For the Week ending June 5, 1880 .

 Price 10 cents. For sale by all newsdealers.

From a series of daily observations extending from the early part of February to the latter part of October, 1879, taken at St. Charles, Mo., under the direction of officers of the United States Engineer Corps, it has been ascertained
that the average quantity of earthy matter carried in suspension past that point by the Missouri River, between one foot of the bottom and the surface, amounts to $14,8 \div 8 \mathrm{lb}$. The matter thus carried along weighs, approximately, 100 lb. per cubic foot when dry, giving an average of $12,887,312$ cubic feet of earth transported each twenty-four hours during the entire year, enough to cover one square mile with a depth of nearly six inches.
During the months of June and July the average quantity per twenty-four hours amounted to $47,396,448$ cubic feet, eight inches cover a square mile with a depth of one foot and twenty-four hours was on July ${ }^{2}$ ity twenty-four hours was on July , when it reached the
enormous amount of $111,087,200$ cubic feet, sufficient to cover a square mile to a depth oi four feet. These figures do not take into account the material that is held in suspension within the lowest foot of the depth, or that which is being rolled along the bottom. If these quantities could be ascertained within any reasonable limit of approximation to correctness, there is no doubt but they would show an amoun Missouri Republican

## aNOTHER LOBT FIELD GLASB.

The articles which appeared in this paper some months ago relative to Prof. Barker's paper before the American Science Association on a curious case of crystallization in Canada balsam, have called out a note from Prof. Liversidge, of the University of Sydney, New South Wales, inclosing a printed paper on the same phenomenon read by
him before the Royal Society of New South Wales, December 1,1875 . The paper is illustrated by two fine engravings from photographs, representing "some peculiar and interesting examples of fracture." Prof. Liversidge said:
" They were met with upon the lenses of a field-glass, or, to speak more precisely, between the surfaces of the achromatic combinations of the two object glasses of a fieldglass, which had been lost upon the Liverpool Plains, and there left exposed to the sun and weather for a period of five or six years. The long-continued exposure to alternate heat and cold had evidently caused the Canada balsam, or other material used for cementing the crown and flint glass portions of the lenses together, to contract and crack along certain lines; the contraction and consequent fractures being due to the loss of turpentine from the balsam by gradual volatilization.
Our readers will remember that Prof. Barker's supposed crystallization of gum took place between the lenses of a field glass which had been lost in the Yellowstone country and there exposed to the weather for a number of months. The true explanation of the crystalline appearance was given by Mr. Hopkins in the Scientific American of Jan. 31, 1880.

## Arctic Relief.

Captain Hooper, commanding the revenuesteamer Corsin, has been ordered to leave San Francisco, Cal., May 22, for the relief of ice-bound whalers and to search for the Arctic exploring vessel Jeannette. He will proceed direct to Ounalaska, where he will take in a fresh supply of coal; then go on to Norton's Sound, touching at the seal islands by the way. He is to push through Behring Straits into the Arctic Ocean as soon as those waters are open, and assist such whalers as may need help, making meantime, as his letter of instruction reads, careful inquirles regarding the progress and whereabouts of the steamer Jeannette, engaged in making explorations ueder the command of Lieutenant Commarader De Long, United States Navy, and, if practicable, communicate with and extend any needed assistance to that vessel.

## A FAST RIVER STEAMER.

During her trial trip, May 12, the new iron bull steamboat Albany, for the Hudson River day line to Albany, ran a distance of 16 miles in $371 / 2$ minutes, a speed of nearly 26 miles an hour. The state of the tide was not reported. Her owners expect that she will easily run 24 miles an hour.
The Albany is the largest steamer built thus far for the day service, and will have ample accommodation for 2,000 passengers. The dimensions of the hull are 296 feet in length, 40 feet beam ( $731 / 2 /$ feet over all), and $111 / 2$ feet depth of hold. The engines were made by Fletcher, Harrison \& Co., and are of the vertical beam condensing pattern, with a 73 inch cylinder, a 12 foot stroke, and capable of running up to 3,000 horse power. There are three beilers, 38 feet long each, and 8 feet 10 inches in diameter of shell. The joiner work is being done by Mr. John E. Hoffmeyer. Every recent improvement looking toward increased safety has been provided. The hull, which is of iron, was built by the Harlan and Hollingworth Company, of Wilmington, Del. The engine frame is also of iron, and very compact.
There are three decks, the main, saloon, and upper decks. the main and saloon decks will be for the use of passengers, and the upper deck for the officers. The dining room is on the main deck instead of in the hold, as is usual. The saloon will be elaborately frescoed and upholstered. The forward and after parts are left open on the sides. The after portion is covered by the upper deck. The forward part is entirely open. She will be ready for service about the middle of June.

## IMPROVEMENTS AT COHOES

The importance of Cohoes, N. Y., as a manufacturing city argely depends, as our readers are doubtless a ware, upon the magnificent water power furnished by the falls of the Mohawk River at that point, as improved by the Cohoes Water Power Company. This company owns the entire power of he river from half a mile above the falls to a mile below, the total fall in that distance being 120 feet. The water is used in five successive canals, having falls of 18 to 25 feet, and again from the level of the State dam built below the falls to supply the Erie Canal at this point.
From the Northern Budget we learn that the Cohoes Company have just begun an important extension of their works. The first part includes the cutting of a channel through solid rock from Van Rensselaer street, up Ontario street, to intersect the canal at Lansing's Mill, a distance of 600 feet, the width of the cut being 35 feet, and the depth 20 feet. From the corner of Ontario street à similar canal, 800 feet long, 30 feet wide, and 20 feet deep througb solid rock, is to be cut beside the railway track, to connect will the canal at the Cohoes foundry. Both these cuttings are to be securely arched. The rock removed will be used for filling in land in rear of Root's Mill. The water to feed this canal is now running to waste from the Lansing Mill. The land along the canal will furnish 2,000 feet of mill frontage. The further improvements in contemplation involve an extension f the Rensselaer street canal a distance 1,500 feet. Two lines of canal will be constructed the entire distance, making available a fall of 40 feet. These improvements will give, the Budget remarks, a water power second to node in the world, and will in time no doubt convert the city of spindles into the largest cotton manufacturingcenter on this continent.

## poisonove frying pans.

When our rival tea dealers began to offer badly printed to let down under the boiler, for the boiler to stand and gaudily colored chromos to draw custom, it was thought when in.
that this form of trade debasement had reached its lowest: Another suggestion is that stoves with boiler attachments development. The tea men of Dublin, however, have gone on from æsthetic to physical poisoning, and have distributed throughout that city large numbers of frying pans coated with an alloy of tin and lead, the use of which has resulted in numerous cases of serious poisoning. At a late meeting of the Section of Physical and Experimental Science of the Royal Dublin Society, Dr. Reynolds, the president, exhibited one of these dangerous frying pans, which had been sent to him for analysis. The pan was of the ordinary sheet iron sort, but instead of having the usual coating of tin, was covered with an alloy very rich in lead, making it exceedingly dangerous to public bealth. On inquiry, Dr. Reynolds had found, he said, that large numbers of those pans were being presented with more or less large quantities of tea through the city, and he might tell them that the friend of his who suffered from cooking conducted in one of those pans had nearly lost her life. Her servant-a very much stronger person-consumed very much more of the food that was in the pan, and consumed not only the sausages, he believed, but, foolishly enough, took also of the gravy, or whatever it was, and accordingly took a larger dose of the lead. Not only did she suffer from very serious symptoms, but was obliged to go to the hospital, and he did not know whether or not she had yet left it. Of course, in some cases, a small dose of the lead might do little or no harm, but there were many chances that an amount of lead which must be con siderable, taken up by any acid-producing food, might enter the system, and positively cause symptoms resembling in some respects, as all kinds of irritant poisons did, those of cholera, and it was possible that many cases of death, which might be set down readily enough to ordinary English cholera, might have been produced by the introduction into the system of considerable quantities of lead.
On being asked how to detect the dangerous frying pans, Dr. Reynolds described and experimentally illustrated the following simple method. A little nitric acid diluted with water was boiled in the suspected pan. The mixture was then further diluted with pure water and poured into a clean vessel. The presence of lead was shown by adding a little iodide of potassium, which produced at once a yellow precipitate of iodide of lead.
The tea dealers had probably bought these pans to "give away," because they were cheap, knowing nothing of their dangerous character. Whether any of the sort have reached our markets we do not know. It would be well, however, for buyers to be on their guard. Five cents' worth of iodide of potassium and nitric acid, which can be had of any drug. gist, would suffice for the test.

## CARP CULTURE.

A leather-back carp, weighing $71 / 2 \mathrm{lb}$., bas lately been taken in the government ponds at Washington. It was one of the original fish brought to this country by Mr. Hessel three years and a half ago. This shows a rate of growth far exceeding that of the same fish under similar circumstances in Europe. Several marked advantages are claimed for the German carp for profitable cultivation. Any kind of pond, no matter how restricted, can be used. Difficulties of tem perature or purity of water are scarcely factors in carp culture. Providing the water is not too cold, carp thrive rapidly. In fact, no natural water has yet been found too warm for them. Being vegetable feeders, carp thrive on the plants growing in the water, or may be given offal, like pigs, or boiled grain, like chickens. A large pond may be dug on arable land, allowed to grow carp for two or three years, the fish marketed, and the ground be brought under culture again.
The profitableness of carp culture is shown by the follow ing experience reported in a California paper. A gentleman in that State bought six carp in January, 1876. One of them soon died. From the other five he raised the first year 2,044 fish, and the year after 2,672. In 1878 he sold two of his old fish, and raised 4,000 from the remaining three. He had
four shallow fish ponds, costing $\$ 50$ each, and covering about half an acre of low ground comparatively worthless for other uses. For his original fish he paid $\$ 30$, and $\$ 10$ for food stuff, making a total outlay of $\$ 240$. In four years he sold $\$ 415$ dollars' worth of fish, and had from 4,000 to 6,000 left, after supplying his own table with fisl for eight een months.
There are thousands of small ponds throughout the coun try which might, with little trouble and large profit, be con verted into carp ponds.

## STOVE CASTINGS.

In a communication, too long to print, Mr. L. H: Bingham, of Harmor, Ohio, suggests several possible improvements in stove castings.
As a rule, he thinks too little metal is put into modern castings. He finds the lining of stoves not more than oneeighth of an inch in thickness, when three-eighths would be too little for durability. In one type of cooking stoves-a very pretty, convenient, and popular pattern-the flue divisions are not balf thick enough to stand the heat, and the door frames are equally deficient in weight.
Mr. Bingham notes also that stoves with boiler attachments cannot be used for baking without having the boiler in place and full of water. To remedy this defect he proposes the insertion of a damper so constructed as to shut up be cast with a straight back, so that the boiler may be re moved at pleasure, or used as a fruit drier. This, he thinks could easily be done by casting the back of the stove straight, with the back wall in two parts, the upper section slipping in or out at will. By slightly modifying the pre
sent construction of such stoves and giving them a straight back, they can easily be made to take on any style of back attachments that may be cast for them.

## MUYBRIDGE'S ZOOGYROSCOPE.

Our readers will recall the interesting illustrations of the motions of a trotting horse, drawn from Mr. E. J. Muybridge's instantaneous photographs, which appeared in this paper, October 19, 1878. The suggestion then made that the motions of horses and other animals might be happily exhibited by an arrangement of such photographs in connection with a zootrope has been carried out; and, according to the San Francisco Call, of May 5, a private exhibition of the device had been given by Mr Muybridge in the gallery of the San Francisco Art Association. Mr. Muybridge calls his instrument a zoogyroscope. It is described as a circular glass having a series of photographs of the animal to be represented in motion, the photographs being successively illuminated by an oxyhydrogen lantern, as the glass is turned, throwing a single continuous yet ever-changing picture upon the screen.
While the separate photographs had shown the successive positions of a trotting or running horse in making a single stride, the zoogyroscope threw upon the screen apparently the living, moving animal. Nothing was wanting but the clatter of the hoofs upon the turf and an occasional breath of steam from the nostrils to make the spectator believe that he had before him genuine fiesh and blood steeds. In the views of hurdle leaping the simulation was still more ad mirable, even to the motion of the tail as the animal gathered for the jump, the raising of his head, all were there. Views of an ox trotting, a wild bull on the charge, greyhounds and athletes in various positions.

## NEW YORE ACADEMY OF SCIENCES.

A meeting of the New York Academy of Sciences was held Monday evening, May 17, 1880, President Newberry in the chair.
Prof. Newberry exhibited a specımen of Hübnerite from Dakota. The tungsten in this mineral is replaced in part by manganese. Prof. Egleston remarked that the specimen was not so brown as Hübnerite from other localities, and that. it probably contained less manganese. An analysis would reveal whether Hübnerite is really a distinct species.
NEW PROCESS FOR PROTECTING GOODS FROM MOISTURE.
Prof. Kroeh exhibited some samples of delicately colored ilks, velvets, and other fabrics that had been treated by new process for the purpose of making them shed water. He showed that untreated portions of these goods were quickly wetted through when water was poured upon them, while the water rolled off in drops like globules of mercury from the treated portions. The inventor, Mr. D. M. Lamb, of New York, gives the name of Neptunite to the material by means of which this result is obtained. It appears to be some preparation of rubber dissolved in naphtha, but its ac curate composition or the details of its preparation are not made public. It dıffers essentially from water proofing in that it does not fill up the pores and meshes of fabrics, but impregnates their fiber, leaving the air to circulate freely through them. Wearing materials of all kinds, such as silks, satins, velvets, woolen and cotton goods, kidgloves, ostrich
feathers, furs, carpets, have been treated successfully with feathers, furs, carpets, have been treated successfully with
out injury to the most delicate tints. Arnold's writing fluid, coffee, and claret have been spilt upon delicate silks so pre pared and washed off again without leaving a trace. Ladies attired in such materials may brave the dampness and rain unscathed, and it is whispered that even their crimps may be made to keep their waviness by this means. It is claimed that the wearing qualities of goods are not only not injured but positively improved by the operation of rendering them water repellent. If this prove true, the company formed to introduce the process, under the presidency of the Hon. Hugh McCullough, is likely to reap a rich harvest; for no one will want to wear any other kind of goods It is claimed, furthermore, that water-repellent fabrics will neither sbrink, mildew, decay, nor be attacked by moths. Time alone can show how well founded these claims are.
A communication from the council was read recommend ing to the Academy that the resignation of Dr. Martin be not accepted. A vote was taken, and the
of the council was unanimously sustained.
Prof. Thomas Egleston then delivered an address
on the origin of gold nuggets and of allutial

## GOLD DEPOBITS.

Placer mines, in which gold nuggets are found, consist of alluvial deposits or ancient river beds. By far the greater portion of the gold in them is in a fine state of division. Near the surface the deposit is worth perhaps 30 or 40 cents per cubic yard, while further down it may reach a value as high as a dollar and a half. The commonly accepted ex planation of the occurrence of nuggets in these places is that
they were the result of the breaking down of auriferous
quartzveins. This, Prof. Egleston maintained, could not be the case, because of theirmammellar structure and chemi cal composition. Their structure is not such as would result from the transportation by water of the laminated gold of quartz veins. The latter, too, is often quite impure, being alloyed with silver, sometimes to the extent of 66 per cent, while the gold of nuggets is almost perfectly pure. In view of these considerations, and on the basis of the experi ments directly to be described, Prof. Egleston proposed another explanation, declaring, as be said, with confidence, though not without expecting to be contradicted, that the gold in question was produced by deposition from solution. Gold, he said, had hitherto been considered by chemists as one of the most insoluble substances in nature, but in reality $t$ is quite soluble. Sonnenstadt had shown that every ton of sea water contained 0.9 gramme of gold. This quantity is indeed extremely minute, but it must be remembered that nature is able to compensate for this minuteness by continu ing her operations through thousands and millions of years.
The speaker's own experiments continued during the last five months show that gold is soluble at high temperatures and pressures in a variety of other solvents. Spongy gold exposed to the action of ammonium nitrate during that length of time imparted a distinctly yellow color to the solu tion. Faint traces were also found in solutions of bromide and iodide of potassium. Some of these solutions were exposed in sealed tubes to a temperature of $154^{\circ}$, and then to $214^{\circ}$. With solutions of sodium chloride and sodium car bonate no trace of gold was obtained. In another series of experiments 50 c.c. of water, containing about one-quarter gramme of gold, were exposed in vials, one with 1 c.c. of petroleum, and the others with one-half gramme of leather, leaves, and peat, and one-quarter gramme of cork. After tive months the vial containing petroleum was found to con tain upon the surface of the liquid minute crystals of gold visible in strong sunlight. They are probably hexagonal prisms terminated by rhombic dodecahedra. The leather and cork were found to be entirely pseudomorphed. The action of the peat indicated that the presence of the organic acids of the soil favored the precipitation of the gold. Prof. Egleston believes that these and other experiments now go ng on in his laboratory warrant the conclusion that the gold of nuggets and alluvial deposits is due to chemical solutions filtering through the soil and precipitating their gold. This may account for the tradition prevalent among miners of the Carolinas and Virginia, that an abandoned placer left undis turbed for about twenty years, will yield a new crop of gold that may be even richer than the first.
Prof. Egleston concluded his address by describing some experiments on the nature of the so-called rustiness of cer tain kinds of gold, a property that prevents it from amalga mating readily. In deep placer mining the amount of gold actually obtained is only thirty-three per cent of the amount shown by the assay. Hence the importance of investigating the causes of the loss. Gold heated and cooled slowly will amalgamate at once. if heated and cooled suddenly it will not. A momentary immersion into sulphureted bydrogen or ammonium hydrosulphide prevents amalgamation. To test he statement, that the presence of four-thousandths of anti mony prevented the amalgamation of Callao gold, he alloyed some gold with three or four per cent of antimony, but found that it would readily combine with mercury. He had also succeeded in dissolving out all the mercury from an amalgam, thus showing that it was not a definite compound.
The paper was discussed by Profs. Julian, Leeds, and Newberry. The latter asserted his belief that gold was doubtless extensively deposited from solution, but did not think nuggets were formed in this way They are always found in connection with quartz veins, and do not differ es sentially from them in composition.
C. F. K.

## MILR AND BUTTER PRESERVATIVES.

A high German authority in dairy matters, Dr. De Kleuze, of Munich, says that the preserving compounds so widely advertised are nearly always composed of varying propor tions of bicarbonate of soda, sometimes mixed with common salt, boracic acid, borax, mixtures of borax with common salt, salicylic acid, and of late a mixture containing half of boracic acid and half of sulphate of potassium. Bicarbonate of soda has been in use a long time, and is still largely used. It acts by neutralizing the lactic acid which is formed in the milk, but its action is not satisfactory, as itis liable to give the milk a soapy taste. Salicylic acid is also unsatisfactory as well as expensive. Boracic acid is a powerful antiseptic, and preferable to borax.
For dairy use Dr. De Kleuze finds the above-mentioned mixture of boracic acid and sulphate of potassium superior to all other preservatives, and perfectly harmlers as well as cheap. It can be obtained at any druggist. Sixty grains to a gallon of milk or a pound of butter is sufficient to pre to a gallon of milk or a pour
vent souring or rancidity.

## Electric Lights on Bnoys.

The whistling bucys now in use weigh about fifteen tons each, and in their plunging, even during calm weather, a force of nearly three horse power is evolved. To utilize this waste energy Mr. Edison has devised a small dynamo machine to be carried by the buoy, the current from which will sustain an electric light equal to one gas jet. If successful hese self illuminating buoys must be of great use to mari

