TEE JOZNETON HARVEETER PBIZE.

Our readers are already aware that the field trials of agricultural machinery at the Paris Exhibition of 1878 resulted in an overwhelming victory for American manufacturers. The special prizes for exceptional merit, as displayed in these practical contests, were twelvc objects of art-Sèvres vases-only clevcu of which were awarded, no sufficiently meritorious competitor appearing for the twelfth. Of the eleven awards seven fell to Americans, one to a French exbi bitor of an American machinc, two to French bitor of an Λ merican machine, two to French
exbibitors of Frencb machines, and one to an exbibitors of Fren
In the larvesting tests thirty-five reapers were cntered, but only one award was made to that class of machines-the splendid speci mets of ceramic art shown in the accompany iug engraving-and that fell to the Johaston Harvester Coupany, of Biockport, Monroc couuty, N. Y., who have just received their prize.
The vase, as will be seen from ourr engrav ing, is of the shape called "tazza." It stands teu inches bigh, the bowl having a depth of three inches and a breadth of fourteen and a balf inches across the top. Outside the prevailing colors arc blue and gold; within arc pancls of scroll work, tritons, and trefoils, with circular bands in gold. In the center is a raised medallion representing the city of Paris-a female head with a mural crown. Around the medallion are scrolls, rosettes, fruits, wheat cars, and other agriculturalsym bols. Around the body of the vase is a wreath of fruits, flowers, and grain, with a spiral piuk band beariug the iuscription, spiral piuk band beariug the iuscription,
"Exposition Úniverselle, Paris, 1878," and "Exposition Universelle, Paris, 1878," and
medallions with agricultural symbols. The pillar is in blue and gold, with bands, frets, and festoor:; and the foot has a circular band inclosing quatrefoils on a grecu ground, broken by four panels, severally containing the words "Sevres," "Paris," "Exposition," intrinsic value of the vase is placed at one thousand frane but that is a small matter compared with its actual value as a testimonial to the practical superiority and exceptional merit of the reaper which carned it in a field contested by so mauy able rivala

Jacobsen's Method for Photo Printing.
Prepare a carben picture in the usual manner iupon a sheet of glass, and surround tbe picture with a wooden frame which exactly fits round the sheet of glass. Then pour into the frame a mixture (not too hot) of one part of gelatine, one part of gum arstbic, and two parts of glycerine. When the ulass has stiffened in the frame, carefully remove the latter from the former with a knife, and with equal care irgert the gelatine plate, with which the car bonpicture will now be incorporated. Toink the picture use a ground glass roller, and the inking process proceeds most favorably when done upon a smooth, clastic support likethat used for rolling letter press forms. The printing ink; which must be very thick, is previously diesolved in oil of turpentine or in benzole, and some of this solution, without the additiou of varnish, is poured upon the plate and distributed over it by.the glass roller.
The plate being inked, a sbeet of uncoagulated albumenized paper corrcsponding in size to the picture is laid upon it, and an India-rubber roller is passed softly across the paper, which is then lifted off the plate. The albumenized paper, which absorbs moisture readily, sbould not be allowed to lic too long upon the plate for fear of the albumen disupon the plate for fear of the albumen is-
solving off and dirtying the plate. It is not neccesary to damp the plate with water, as it possesses sufficient moisture to allow of a dozen impressions being taken. Of course this moisture is exbausted at last, but the plate is sufficiently bygroscopic to absorb canugb moisture from the atmosphere in the course of a few hours to allow of printing course of a few
being resumed.
While in other lichtdruck processes the itange is sunk into the plate sud tho ink has to sink into the shadows, this method has the advantage of furnishing a relief which facilitates printing. By this procèss, also, round objects, such as bottlcs and vases, can be printed-possibly even with colors; which could be burnt in."

The Entrance to New York Marbor

Λ bill has been introduced in the House of Representa tives at Washington to create a permapentlydeep, wide, and straight channel through Sandy Hook bar to the port of New York. The bill provides for the construction of sucb works on the seaward or outward side of Sandy Hook bar as may be necessary to effect permanently and beneficiaily the part knowu as the Swash channel "and the fourteen foot channel." The works are not to impede navigation,
and they are to begin not later than one year from the pass age of the act. The works are to be pushed so as to increase the depth six inches annaally until the full depth of thirty oue feet six neches shall be obtained, otherwise the provusions of the act shall be void.
Wbou the full depth is obtaiucd the sum of $\$ 5,500,000$ shall be paid. The sum of $\$ 30,000$ is to be pard annually for the mainteuance of the requisite depth, said payments to be made three months after the expiration of each year. The

Welght Appiled to money.
At a recent meeting of the Bankers' Institute, London, Mr. Barclay V. Head, assistant keeper of coins at the British Museum, read a paper " O n the origin and transmission of some of the principal systems of weight as applied to money from the earliest times to the age of Alexander the Great." Mr. Head stated that a theoretieally perfect system in which all measures and weights were refcrable to one and
the same unit had been attempted (if never uite attained) twice ondy twice only in the whole bistory of mankind; once by the Babylonians in their sexagesimal system, and once again, after a period of
3,000 years, by the French in their decimal systeu. Numismatists were generally agread that the Lydians, about $7 \omega 0$ B. C., were the inventors of the art of coining, and that the earliest coins were compose of electrum-a natural compound of gold and silver found in the washings of the river Pactolus. This coinage lasted about a century and a half, and was then superseded by a hi-metailic currency of gold and silver, instituted by Crossus. Henceforth bi-metallism in the currency became the rule in Asia down to the age of Alexander, being based upon the constant fixed ratio of 1 to $131 / 2$ between gold and silixed ratio of 1 to $131 / 2$ between gold and sil-
ver. The currency of European Grecec, Mr. ver. The currency of European Grecce, Mr.
Head believed to bave been generally monometallic, based upon silver, not upon gold. This continned to the time of Philip of Macedon, in whose reign the rich gold mines of Philippi were discovered, and gold for the first time becameabundapt in Europe. Pbilip thercupon reorganized bis currency, introducing bi-metallism, with the view of artificially kecping up the price of gold as compared with that of silver. This device was futile, and Alexander the Great returned to the ancient system of mono-metallism, based npon silver, though be coined gold. From this time the gold coinage was regarded unerely terms and conditions of the various payments are as follows: \mid as bullion, no attempt being made to regnlate the valne of $\$ 500,000$ to be paid when a depth of 27 fect \boldsymbol{E} inches and a meau width of 200 fect are obtained; $\$ 500,000$ when a depth of 28 feet is obtained; $\$ 500,000$ when a depth of 28 feet 8 inches and a width of 30 feet are obtained; $\$ 500,000$ when a depth of 29 fect is obtained; $\$ 625,000$ when a depth of 29 feet 6 inches is obtained and a width of 400 feet; $\$ 625,000$ when a depth of 30 feet is obtained; $\$ 625,000$ when a depth of 30 feet 6 inches and a width of 450 feet are obtained ; $\$ 825,000$ when a depth of 31 feet is obtained; the final payment in full' of $\$ 1,000,000$ when the full depth of 31 feet 6 inches and a width of 500 feet arc obtained.
The persons engaged in the work are not to shut off the one metal by the other. Mono-metállism heneeforth became universal, even in Asia. Tbis change from a double to a single standard in Λ sia was facilitated, in Mr. Head's opinion, by the sudden depreciation of gold (for the first time in history) consequent upon the dispersion by Alexan der of the long-hoarded treasures of the Kings of Persia

The "Kohinoor" Pearl.

Some months ago the pearl fisheries of the Miauni River, Ohio, were described at considerable length in this paper. The past season has been signalized by the discovery of an gatized pearl, weighing forty-six and a balf grains. The

SEVRES VASE-TOP VIEW.

How of water through any of the channels over the bar by damming up, by the erection of jetties, or by impeding or controlling in any way the natural flow of the water, nor resort to dredging, blocking, or any stirring up process, for the purpose of more quickly achicving the required depths, but shall make the channel permanently deep.

willian A. Drown.

Mr. William $\boldsymbol{\Lambda}$. Drown, oue of the largest umbrella mauufacturers in the world, died in Philadelphia, Saturday, Dccember 13, is the seventicth year of bis age. He was bork groundwork is beautifully agatized with the pearly iridescence shining through. It is the only pearl of the kind in pearl history, a his. tory which dates back at least two thousand years, for the Ceylon fishery bas been known for quite that length of time. Being the first of its kind, its value cannot be estimated. It is singular, too, that it was found curbedded in the flesh of the musecl; all others taken from this river were found between the fiesb and the shell, or embedded in the shell:
The prosecution of this industry is due largely to Mr. Isracl Harris, a banker of Waynesville, Obio, who bas slready a collection of over a thousand Miami pearls of all sizes and valucs, some of them of odd and irregular forms. Some rescomble buman hands; one is a small sbell to which a coating of pearl has been added. His latest important acquisition, the agatized pearl, be calls the "Kohinoor."

A Large Constgnment of silkworgis

 Eggs.A consignment of silkworms' eggs, filling six freight car8, and valued at $\$ 850,000$, ar rived in this city December 19, from Yokohama, by way of San Francisco. The eggs were from Japanese nurseries, and bad been collected aud consigned to silk growers in France and Italy by their agents at Yokohana. The route followed was chosen in preference to that by the Indian Occan and the Suez Canal owing to the lower temperaturc. Great care has always been necessary by the Indian Ocean route, and, cven when that was excrcised, consignments were often spoiled by the high temperature in doubling the southern points of Hindostan. The increased number of transfers slightly injures the eggs, but the aggregate damage is considerably lese by way of New York than by way of the Suez Canal. The egge arc packed incases measuring three fect in length by about one foot in width and depth. Erch case contains about $600,000 \mathrm{cggs}$, gummed to strips of cardboard separated by layers of tissue paper. From twenty to twenty five strips arc placed in cach case, cach strip containing from 30,000 to $35,000 \mathrm{cgga}$ With this siuple packing and with due precsutionsagainst moisture and high temperature these delicate structuresare transported threc-fourths of the
distance round lie earth in perfect safety, provided always that a moderately cold fresh air is given free access to the quarters in which they arc stored. Heat. it is stated, produces an immediate effect upon the development of the larvæ, thus readering it impossible to deliver them in good condition for growing.
The partial failure of the European silk crop the past year has made an unusual demand for Japanese eggs, and -ther large consignments are anticipated

EDISON'S LATEST ELECTRIC LIGHT

It is somewhat strange that carbon, the only substance of any value for the contact surfaces of telephone transmitters, should also prove to be the only substance suited to the lightgiving purtion of electric lamps. The production of an clectric light by the incandescence of platinum is, for the present at least, Jaid aside by Mr. Edison for the mere pro mising and more satisfactory carbon. Not the carbon so familiarly known in connection with electric lighting, but a new article having differest qualities, and remarkable bo! h for the simplicity of the process by which it is made, and its efiiciency as a light-giving body when raised to incandescence by the passagc of an electrical current.
The discovery of this new form of carbon was partly accidental, but more the ra sult of Mr. Edison's faculty of seizing upon the slightest suggestion and following it as long as it invites investigàtion.

The first carbon prepared by Mr. Edison for this purpose was formed of a thread enveloped in a paste made of lampblack and tar, and carhonized at a high tempera. ture. 'This carbon thread, although not remarkably successful, gave sufficient encouragement to warrant further investigation in the same direction. After the trial of a number of other substances it was determined that the best of all was paper, simple plain paper, without lampblack or other applications. In making these carbons the quality of cardboard or paper known as Bristolborre is used.
The completed carbon is shown full size in Fig 1; the blank from which it is made is shown full size in Fig. 2. It will ht: ohserved, by comparing Fig. 1 with Fig. 2, that the paper shrinks enormously during the process of carbonization.
The manufacture of these lit:le carbun " horseshoes," hs they are called at Mr. Edison's laboratory, is very simple. The ps,per blanks, after being cut by dies in the form shown in Fi.5. 2, arc subjected to heat sufficiently strong to drive off by destructive distillation all volatile matters. The paper horseshows thus prepared are placed with alternate layers of tissue paper in shallow iron boxes, and weighted down with thin plates of ordinary carbon. Thesc boxes are closed by tight-fitting covers, and placed in a muffle, when they are raised to a high temperature, which is maintained for a considcrable time. The only index of the completion of the process is the crackling of the oxide formed on the exterior of the iron boxes. After cooling the carbons arc removed from theiron boxes and placed between the jaws of small platimum vises, αa, which are supported on thin platinum wires blown in the glass base and forming the electrodes. Λ portion of the glass hase and the carbon and its supports are inclosed by aglass bulb, from which the air is so completely exhausted by means of a Sprengel pump that oaly a millionth part of the original volume remains
Mr. Edison has improved the Sprengel pump so that high vacua may be produced in 20 minutes instead of the 45 hours consumed in the nperation by some of our physicists. The vacuum is so nearly perfect that none of the tests to which the lamps have been subjected so far, indicate the prescnce of the slightest trace of air.
For making his Sprengel pumps and other vacuum apparatus, Mr. Edison fortunately secured the services of an ex-

pert glass worker, who was formerly engaged in the labora-

 ory of the famous Geissler, of Bohn.The electrical resistance of the slender carbon horseshoe is 100 ohms, and, while the lamp shown in Fig. 3 is intended to afford a light equivalent to a single four foot gas jet, it may be forced to give a light aqual to that of 8 or 10 such jets. We saw a single lamp of this kind giving a light that enabled us toread the Scientific Amekican 100 feet away. This was certainly an extraordinary performance for a piece of carbou baving a surface no larger than that shown in F'ig. 1
One of the most remarkable experiments connected with the exhibition of these lamps was that of connecting one of them with the main eelectrodes by means of a yard of No. 36 copper wire, no larger than a horse hair. The light was maintained without heating this very small conductor. Of course a wire of this size is tor small to use in regular praclice, but it strikingly exhibits the advantage of baving a ght-giving body of high resistance.
The carbon is very tough and fiexible, and not liable to be broken or injured by jars. We saw one of the carbon horse-
does not make the slightest difference, sofar as the lampsare concerned, whether one or fifty of them are in use; it doce make a difference, however, in the power consumed at tbe generator. The regulation of the cnrrent is reduced to the simple matter of varying the intensity of the magnetic field in which the armature of the generator revolves.
The entire lighting apparatus of a house, store, office, or actory, consists in the lamps and a few wires. There arc no regulators, no complicated switches, no resistance eoils to replace the lamps when the latter are not in use. The lamp, in its present form, is as simple as a candle, and, can-dle-like, it may be taken from its secket and replaced. This may be done while the current is on.
The construction of the secket which supports the lamp will ie understood by reference to Fig. 4.
The lamp has attached to its electrodes slips of copper, which arc bent upward against the sides of the glass, and ouch two springs at opposite sides of the socket. One of thescsprings is connected with one of the electrical conduct ors; the other spring merely touches the copper strip, and does not form a part of the electrical conductor nntil it does not form a part of the electrical conductor nntil it
is touched by the thumb screw, b, this screw being screw, b, this screw being
connected with the second electrical conducting wire. To start the light it is only necessary to turn the screw , until it touches tbe spring To stop the light the screw is turned in the reverse direc tion. From this it will b seen that the electric lamp is managed easier than a gas burner, as it requires neither lighting nor regulating
On the evening of our visi to Mr. Edison's laboratory, be had more than thirty of these simple lit.tle lamps in operation, the current being supplied from one of his machines. Eacb lamp gives a clear, soft light equal te tbat of a four foot gas burner. These lamps had already been in.continued operation for more than 48 hours, and they had seen altogether as mnch use as they would in 30 days of ordinary domestic or business service. The ight certainly leaves nothing to be desired so far as its efficiency is concerned, and we are assured by Mr. Edi on that, on the score of cheapness or economy, his system of illumination is far in advarice of any other, not excepting gas at lhe chespest rates. It seems thet the sub ject of general electric light ing is now reduced to a mere question of time. If $\mathbf{M r}$ Edison's lamps withsfand the test of time, he has unques tionably solved the vexed question and has produced what the world has long waited for: that is, an economical and practical system of electric lighting adapted to the wants of the masses.
The details given abov were obtained hy us direct from Mr. Edison and his assistants during a recent visit to the Menlo Park laboratory.

Nitrolin.

A new explosivecompound, known as nitrolin, is rom ounded is follows: From o 20 parts of sugar or sirup re mixed with from 25 to 30 not only withstands rough mechanical usage; it is ale $/$ parts of nitric acid in a wooden or gutta percha vessel proof against injury by the sudden turning on and Of this compound 25 to 30 parts are mixed with 13 to 35 nff of the electric current. One of thase carbons has been subjeeted to the severe test of applying and removing the electric current a number of times equivalent to 36 year of actual
impaired.
Thc horseshoe form of the carbon has a great advantage over the straight pencil or the voltaic arc, the light being more diffused, and therefore softer and mellower, casting ao sharp black shadows, nor giving such an intense light ss to be painful to thecyes. The light resembles that of gas jet excepting in the matter of stea
ghe perfectly uniform and steady.
Thc lamps are connectod in multiple arc, i.e., the two wires leading from the electrical generator run parallel to press and expand the packing rings alternately to pack the each other, and the lamps are placed hetween and connected |with a concal sleeve of novel construction, which sits within with each wire. As Mr. Edison has his circuit arranged it \mid the stufing box aid around the piston rod.

