stronomical Notes.

Observatory of Vassar College.
The computations in the following notes are by students of Vassar College. Although merely approximate, they will enable the observer to recognize the planets.
M. M. positions of planets for may, 1880.

Mercury.
On May 1 Mercury rises at 4b. 10 m . A.M. On the 31 st Mercury rises at 4b. 23m. A.M.
Mercury, Venus, and Saturn rise nearly at the same time on May 1, in the bour preceding sunrise, Venus being farthest north.
Mercury and Neptune will be in close proximity on the 18th, but they rise so nearly with the sun that Mercury is not likely to be seen.

On May 1 Venus rises at 4b. 18m. A.M. On May 31 Venus rises at 3 b .57 m . A.M.
Although Venus rises so nearly with the sun during May its brightness will make it conspicuous.
Saturn and Venus rise nearly at the same time on May 1. Saturn is south of Venus.

Mars.
Mars is the only planet to be seen in the evening sky of May.
On May 1 Mars rises at 8b. 35m. A.M., and sets at 11 h . 47m. P.M.
On May 31 Mars rises at 8 b . 6m. A.M., and sets at 10 h . 52m. P.M.

On May 1 Mars is west of the star Delta Geminorum, at a declination 2° farther north; it passes this star on May 9 at a distance of 112° north. On the 15 th Mars has the right ascension of Castor, but is nearly 9° south of that star. The crescent moon may be seen to move toward Mars on the evening of the 13th.

Jupiter.
Jupiter will be brilliant in the early mornings of May. On the 1st Jupiter rises at 3 h .41 m . A.M.; on the 31 st at 1b. 57 m . A.M.
Jupiter may be seen south of the waning moon on the morning of May 5.
Saturn, Venus, and Mercury rise nearly at the same time on May 1, Saturn being about 1° south of Venus.
On May 31 Saturn rises at 2h. 31m. A.M., following Jupiter after about balf an hour, and making its diurnal path $31 / 2^{\circ}$ north of Jupiter. The waning moon and Saturn bave nearly the same right ascension on the morning of the 7th. Saturn is nearly 8° south of the moon.

Uranus.

Uranus rises on May 1 at 1 h .9 m . P.M., and sets at 2 b . 25 m . A.M. of the next day.
On the 31st Uranus rises at 11b. 12m. A.M., and sets 27 m . after midnight.
Uranus is still very near the star Rho Leonis. On May 31 it is half a degree east and balf a degree north of this star, when on the meridian.

Sun Spots.
A large group of spots, inclosing three of more than ordinary size and some ten or twelve small ones surrounded by faculæ, was seen on the sun's disk on April 12. These spots passed out of sight by the motion of the sun on its axis between the 14th and 15th of April.
If this group reappears, as is probable, it will be well advanced upon the sun's disk early in May. A telescope of low power (with a colored glass) will enable an ordinary observer to watch the changes of these spots, as caused by the sun's turning, and also those variations which belong to the violent action on the sun's surface.

A Dangeroas Amusement.

As out-door sports begin the girls are sure, this spring, to take their usual turn at rope jumping. Scarcely a season passes without several reports of girls dropping dead after some long continued effort, as in trying to skip the rope a thousand times; and even when not so carried to excess the practice is decidedly bazardous. Dr. Peck, of the Surgical Institute at Indianapolis, pronounces it a prime cause of Institute at Indianapolis, pronounces it a prime cause of
cripples among girls. Speaking of a recent operation in which the bones of both legs of a little girl had been removed owing to necrosis caused by rope jumping, Dr. Peck says that similar cases are of frequent occurrence, though the mischief more commonly shows itself in necrosis of the spine. Not a month passes but cases are brought to the institute to be treated for injuries brought on by the continuous concussions upon the bones in this amusement. He advises parents and teachers to probibit the "pernicious pastime" at all times and under all circumstances.

The New York International Exhibition of 1883.
The Senate bill (No. 1160) to provide for an International Exbibition in this city in 1883 was passed by the House of Representatives April 19. It had already been passed by the Senate, but having been slightly amended by the House it was returned to the Senate for the concurrence of that body. The chief amendment consisted in the addition of the names of the members of what is known as the Hilton committee to the originallist of incorporators. The changes were concurred in by the Senate April 20. It is to be hoped that the differences between the rival committees will be promptly and amicably settled, and that nothing will occur to hinder the prosecution of the enterprise.

THE GREAT SOUTHERN COMET.

The event which is creating a considerable sensation in the outhern hemisphere is the nightly appearance in the southwestern heavens, shortly after sunset, of a large and luminous body, supposed by those conversant with the aspects of such celestial visitants to be a comet of no ordinary kind.
It is remarkable that astronomers throughout the British colonies and in England have not given the least intimation or prediction as to its coming.

The appearance of the present comet is what astronomers designate "a beam." Its continuance is, uncertain, though it may remain visible for some time, especially as it has not yet attained its peribelion and the nucleus bas not been seen, though; doubtless, it will be at the Cape, France, England, and other countries. In brilliancy and grandeur it is vastly inferior to the comet which appeared in the early days of the colony.
Our illustration represents the comet asit appears nightly; that it is wonderful and awe-inspiring, we admit, but the absence of superstition from our minds, and a belief in the opinions of scientific men as to the cause of such phe nomena, has banished all dread as to the baneful results which are expected to follow its appearing. The most not able comets of modern times are those of $1843,1847,1853$, 1858, and 1861. That of 1843 is still regarded as the most marvelous of the present age, having been observed in the day-time before being visible at night-passing very near the sun-exbibiting an enormous length of tail of a fiery char acter, and arousing interest in the public mind as deep as it was unprecedented. Whether the comet now visible to us has anything to do with the beat of the atmosphere we cannot say, but it is a fact that for days prior to its coming the temperature was higher than usual.-Frearson's Weekly, Adelaide, Australia.

WHAT IS THE TIME OF JOPITER'S ROTATION?

The great red, elliptical spot on the visible surfac of Jupiter is so long that could the earth be placed at one

Jupiter seen through a 9 in. telescope.-Power 350.-7h. 49m., Oct. 20, 1879
end of it and rolled it would make nearly a complete revolu tion before arriving at the opposite end; and so wide at the widest part that the earth would overreach it on either side by but little more than balf the diameter of our moon, and stands in such contrast to the surrounding dish as to be visi
ble with large telescopes when the planet is but three hours from the sun in right ascension, and the sun on the meridian.
The authorities, 'Sir William Herschel, Beer, Mädler, and others, give for the time of Jupiter's rotation $9 \mathrm{~h} .55 \mathrm{~m} .26^{\prime \prime}$. The red spot was estimated central on the disk, October 3, $8 \mathrm{~h} .55^{\prime}, 1879$; on January 10, $5 \mathrm{~h} .40 \mathrm{~m} ., 1880$, it was again estimated central, having in 98 d .20 h .45 m . made 239 appa rent revolutions about the axis of Jupiter-approximate real time of rotation, $9 \mathrm{~b} .55 \mathrm{~m} .37^{\prime \prime}+$
It has been suggested that this spot affords an excellent opportunity for determining the time of Jupiter's rotation; and the attention of amateurs bas been called to this work by a note from abroad.
It is generally believed by scientists that no considerable portion of a planet's atmosphere is likely to move much faster in the direction of the planet's rotation than the planet beneath travels; that any considerable motion must be in a direction opposite to the planet's rotation.
If this red spot represents the time of Jupiter's diurnal rotation that planet presents to us the remarkable phenomenon of the whole equatorial atmosphere moving in the direction of the planet's rotation 6,500 miles farther in 24 bours than the surface of Jupiter beneath it travels in the same time.
Most of the cloud forms in the equatorial belt are far from permanent, either in location or outline; some of them change so much in a few days as to be unrecognizable; but a well defined light spot was observed about central on the disk of Jupiter, September 27, 1879, at 8 b . 5m., which, after maling nearly 356 revolutions about the planet's axis, was last seen, unchanged to any great extent, just coming on the disk, February 20, 1880, at 4h. 55 m .-approximate real mean rate, $9 \mathrm{~b} .50 \mathrm{~m} .+$.
On September 28, 1879, it was noticed that the red spot and the markings on the equatorial belt were separating at a rate which would bring them again together in about 43 days. Since then it has been observed that when the red spot has made 105 to 109 revolutions about Jupiter's axis the equatorial belt will have made one more.
When Jupiter rises on the morning of May 22, 1880, the red spot will probably be on the disk, and that portion of the equatorial belt above mentioned north of the spot. At 4 h .10 m ., Washington mean time, it is estimated that the red spot will have passed the center of the disk, and the planet will be high enough for observation in the eastern part of the United States.
Accepting 9 b .50 m . as the time of Jupiter's rotation, the spot is traveling rapidly westward. Suppose it to have an independent rotary movement, in the direction taken by the bands of a watch, which on the circumference is not less than 250 miles an hour, sometimes much more, and it will account for about all the observable phenomena in the region
H. G. Frtz.

of the spot.
 of the spot.

.

The Geodetic Union of Europe and Africa.

The important work of connecting the systems of triangulation covering Western Europe and Northern Africa was consummated in the latter part of October last. Preparations for it bad been going on for several years under the direction of General Ibañez and M. Perrier, acting respectively for the governments of Spain and France.
Four mountain beights were selected for signaling opera tions, namely, Mulbacen and Tetica, in Spain (the former being the bighest in that 'country), and Filhaoussen and M'Sabiba, between Oran and the frontier of Morocco. It was decided not to trust alone to solar signals, but also to employ the elentric light at night, and the event fully justi fied this resolve, for the solar signals totally failed, being seen neither in Spain nor Algeria. The difficulties of the enterprise, then, will be obvious on consideration, for to produce the electric light with sufficient intensity it was necessary to bave recourse to electro-magnetic apparatus driven by steam engines, and the problem was that of bauling up Gramme machines, engınes of six borse power, and various instruments, to summits of 1,000 to 3,550 meters beight, making roads on these desert mountains, organizing supplies of water and fuel, and finally providing accommodation and sustenance at each station for twenty to one bundred men and fifteen or twenty beasts. There was a military guard attached to each station (in Algeria especially this was necessary), and the soldiers worked in roadmaking, etc. The time open for operations was short between the intense beat and the early snows. On August 20 all were at their posts-Colonel Barraquer on Mulbacen, Major Lopez on Tetıca, Captain Bassot on Filhaoussen, and M. Perrier on on Tetıca, Captain Bassot on Filhaoussen, and M. Perrier on
M'Sabiba. But in vain were solar signals sent by day and electric by right; the vapors from the Mediterranean proved impervious to the beams. At length, however, on Septem ber 9, after twenty days' feverish expectation, M. Perrier perceived the electric light of Tetica, visible sometimes to the naked eye, like a round reddish disk, as bright as Alpha in Arcturus, which appeared near the horizon. On the 10th he perceived the electric light of Mulbacen. The Spaniards also perceived the French signals, and a period of definite observation was entered upon, extending rrom September 9 to October 18. The geodetic junction of the two continents was at length realized. The numerical results arrived at with regard to those four immense triangles of some seventy leagues length of side are given in a communication by. M . Perrier to the /French Academy, and are shown to have satisfactory accuracy.
By this work the geodetic operations in the British

Islands, France, Spain, and Algeria, were united into on grand system of triangles, reaching from the Sahara ($34^{\circ} \mathbf{N}$ L.) to the northernmost of the Shetland Islands ($61^{\circ} \mathrm{N} . \mathrm{L}$.) giving a meridian arc of 27°, the greatest hitherto measured on the earth.

NEW LIFE PRESERVER

The engraving shows a novel life preserver recently patented by Mr. Rufus E. Rose, of Gretna, La., which maybe combined with different garments wornupon the person, or it may be made as a separatearticleand worn independently of the clothing.
The invention consists in several air chambers, A, provided with inwardly opening valves, C, which may be operated independently, and an air supply tube, B, communicating with the several chambers through separate valves.
Fig. 1 shows the life preserver inflated and ready for use; Fig, 2 gives a good idea of the size of the life preserver when rolled up and out of use, and Fig. 3 is a transverse section showing the arrangement of the valves.
The chambers are inflated by blowing through the supply tube, which is provided with a suitable mouthpiece. The great advantage of this form of life preserver lies in the separatechambers. One or more of the chambers may be punctured without destroying the efficiency of the device, as the remaining chambers will retain their charge of air.
This life preserver when uninflated is so light and compact that it may with convenience be com bined with some of the garments worn by the user, when it willalways be in position for use. The form shown in the engraving is fitly called a " pocket life preserver," as it may be rolled into so small a package as to be conveniently carried in the pocket, occupying no more space and weighing less than an ordinary diary or memorandum, and when it is inflated it is sufficiently buoyant to sustain two persons.
The inventor informs us that this invention was suggested by an article in the Scientific AmeriOAN some time since which pointed out the neces sity for such an invention.
Furtherinformation in regard to this life preserver may be obtained by addressing the inventor as above.

Endurance of Boilers.

Some idea of the difficulties encountered, in the use of the impure water in locomotives in some of the Western States, may be formed from the fol: lowing extract from a letter from a master mechanic in that region to the Railroad Gazette:
" At this end of the road, where we have so much alkali water to contend with, we are obliged to change the flues every six months to get the scale out of the boiler and from around the fire box. Along with this we wash our engines thoroughly the best we can for every four bundred miles run, with a force pump and seventy pounds pressure, taking out the blind flues, mud drum head, and all the washout plugs in the sides and in the legs of the boilers, and even with this constant work our flues will not last longer than six months without giving us a great deal of trouble from leaking on account of the mud and scale."

NEW BOILER CLEANER

The operation of removing the sediment and loose scale from beneath the tubes of locomotive boilers, when conducted in the usual way, is laborious, expensive, and damaging to the boller, as no means of access to this part of the boiler is provided, and the steam pipes and exhaust nozzles have to be removed and the ends of the tubes cut off before the bottom of the boiler can be reached. This being the case the examination of the boiler is often deferred, so that a great mass of scale and sediment accumulates and hardens so that it can be removed only by means of the hammer and chisel.

The invention shown in the annexed engraving is intended to overcome these difficulties, and to furnish a convenient and effectual means of loosening and moving the scale so that it may be easily removed. The invention is applicable to all kinds of tube boilers, but is more especially useful on boilors of the locomotive type.
It consists of two tubes, A B, provided with jet openings or tubes, and having external connections leading to a boiler for supplying steam or to a supply of water under pressure. The inventor prefers to make these jet tubes of brass, and to place them in the positions indicated in the engraving. The jots of the tube, A, are directed across the crown sheet, and the jets of the curved tube, B, point toward the water leg of the boiler, and in the upper surface of the curved tube, B, there are jets pointing upward. When jets of steam are
admitted to the boiler through the tubes, A B, the scale is loosened.and moved to the water leg, from which it may be easily removed through the hand holes. The inventor states that steam removes the scale from the tubes with surprising rapidity, so that they are left in good condition for generating steam. When two or more stationary boilers are used in one locality the steam from one may be used to clean the other. Where there is only one boiler a well jacketed steam drum may be used to store up a sufficient quantity of steam to clean the boiler. In the case of large round houses the inventor proposes to apply a large stationary boiler to this purpose, placing it centrally and proviting it with suitable connections for conveying the steam to the cleaner in any of the empty locomotives. By an arrangement of this kin

Practical and Usefal inventors.

In almost every community is to be found at least one man who professes to have given the first hint toward the perfection of some invention that has brought its introducer fame and fortune, neither of which the suggester shares. It may be that in some instances this claim is correct, but usually the sympathies of the people are with the man who does rather than with the visionary who dreams; for there is generally a hard road to travel between the conception of an improvement and its practical adaptation and final success.
There was a time when the inventor was essentially a dreamer; When he environed himself with mystery and was with the homage of the ignorant. No paternal and wise government extended over him the protection of letters patent; the people did not want his improvement; the world was not ready for him. Che mistry was used to discover the transmutation of metals or the elixir of life, and mechanical knowledge to construct a toy with which to amuse and astonish the ignorant. These men, who thought and wrought in the twilight of science and the dawn of the arts, undoubtedly contributed something to us of the after ages, although in many cases they left their records in ambiguous puzzles. The shadows of the great minds who walked in the slant rays of the rising sun are projected across the plane on which our inventors travel.
But such men as Watt and Arkwright and others diverged from the secluded paths of these impractical thinkers and essayed the broad road of utility. Under their hands the scientific toys of the philosophers became the useful adjuncts to man's needs. 'This is the true secret of the inventor's success. Utility should be his guide and aim. It is not enough either that he conjectures and speculates: he must demonstrate by actual experiment, on a scale sufficiently large to prove the value of his invention, before he is legally or even properly entitled to the distinction or the reward of the inventor. One may sit and dream day after day of a conjectured improvement, and even feel assured of its value, but it will avail him nothing unless by experiment he builds a foundation better than "the baseless fabric of a vision." While he dreams it may be another is working out a similar dream. It cannot be doubted that many valuable improvements, now in general use and yielding handsome incomes, would have borne another's name and enriched another's pocket if the original inventor had wrought out his discovery to a practical result.
The work of the inventor is not, then, as the Boston Journal of Commerce further adds, merely to devise and calculate-to dream and imagine-but to demonstrateand prove by experiment. The true inventor is not a mere visionary, seeing the road and pointing to it, but is a moving, animated man, clearing obstructions from his path and leading the way. If he is independent enough to strike out a new path to a result, he must not be content merely to survey it, but must lay out the road, grade it, and propel himself and his improvement over it, before he can expect to levy toll on those who travel after him. I

Testing Rallway Employes for Color Biindness.
The work of examining the 5,000 employes of the Pennsylvania Railroad Company to discover their capacity to distinguish colors and forms, was begun in Jersey City, April 1. Acuteness of vision was tested by means of printed cards placed at a distance of about twenty feet; also by means of small open ings in a screen illuminated on the further side. Many who success fully passed these ordeals failed signally on the color tests. Three skeins of woolen yarn were used, one being light green, the second rose, and the third red, and were marked respectively $1,2,3$. Each of these was placed on a table in front of the person examined at a distance of three feet, and, with the vision of either eye obstructed by a spectacle frame, the man under examination was requested to name the color. He was also directed to pick out a similar shade to the one in question from different skeins of woolen yarn, numbered from 1 to 36. One young man correctly designated the test skein as red, but on being told to select a similar shade from the skeius before .bim he picked three shades of blue, two of yellow, and one of red. He could

TITCOMB'S BOILER CLEANER

projecting pin that enters into the slots of a wheel provided with a sleeve, upon which the brake chain is wound, which sleeve can be moved on the axle by means of a lever that is actuated by a rod passing into a helix connected with a battery on the locomotive. A pawl tooth that is held in place by a slide prevents the unwinding of the brake sleeve until the slide is removed by a lever actuated by a rod passing into red.
a helix likewise connected with the battery on the loeomotive. \quad It is said that the offlcers of the road were greatly impressed

