THE OLD FIVER BEDS OF CALIFORNIA

In the current number of the American Journal of Science and Arts, Professor Joseph Le Conte discusses the subject of the old river beds of California, which, in several respects, present features that are entirely unique. In most countries, as, for example, in Europe and the Eastern United States, the new or present river beds occupy the same position as the old; while in Middle California the rivers have been displaced by lava flows from their former position and compelled to cut entirely new channels.
Again, in certain portions of Europe and the Eastern United States, the old river beds are broad, deep troughs, filled sometimes several hundred feet deep with detritus, into the upper parts of which the present much-shrunken streams are cutting their narrower channels on a higher level; while in California the displaced rivers have cut their new channels 2,000 to 3,000 feet deep in solid slate, leaving the old detritus-filled channels far up on the dividing ridges. In the Northeastern United States the drainage system has remained substantially unchanged since early tertiary, or even earlier times; while in Middle California the tertiary drainage system seems to have been obliterated, and the streams have been compelled to carve out new and indedependent drainage systems, to a much deeper level and having the same general direction, but often cutting across the former. Furthermore, in Californa, the detritus which fills the old river beds is nearly always capped with lava, clearly indicating the cause of the displacement. Finally, the contrast is further marked in the fact that the detritus filling of the old Caiifornia river beds usually consists of large pebbles and bowlders; while the old channels of the Eastern coast are filled with fine silt.
This peculiar relation of the old to the new river beds does not characterize the whole Pacific slope, but only the auriferous slate belt of Middle California. It is not found in the coast range, nor in the region of the granite axis of the Sierra range. Neither is it found in any marked degree in extreme Northern California, nor in Oregon, nor in Southern California. It seems to be confined mainly to the slate belt of the western slope of the Sierra from Plumas county on the north to Tuolumne county on the south, inclusive, a distance of about 250 miles, and from the San Joaquin and Sacramento plains on the west to about 4,000 feet elevation on the Sierra slope on the east, a breadth of about 35 miles. There are many difficult and important questions sug gested by these phenomena. How were the old river beds fille with detritus? How were the streams displaced? Why have the new channels been cut so much deeper than the old? When did these events occur?
In answer to the first question, Professor Le Conte first points out the fact that rivers either erode or build up by deposit. Every current has a certain amount of energy, and can do a certain amount of work, increasing with the velo city. This energy is divided between the work of transport ation and that of erosion. If the load of transported matter be moderate, a large amount of energy is left for erosion; but if it be very great, the whole energy may be expended in transportation and none left for erosion-the limit is reached at which erosion ceases and deposit begins. All that is necessary, therefore, to cause any stream to deposit, is to increase its load beyond the limits of its energy. If rivers build, they almost always do so very rapialy. Now,
the phenomena of the old river gravels are precisely those of deposits made by the turbulent action of very swift, shifting, overloaded currents, which must have been far swifter and more heavily loaded than any existing ones Therefore the process of filling must have been exceptionally rapid. It may have occupied years, or even centuries; but, geologtcally, it must have been a very speedy process. And these conditions must have been fulfilled by the rapid meltring of extensive fields of ice or snow. The reason the detritus was not carried away again was because immediately after the filling the detritus was protected and the rivers displaced by the lava flood. This brings us to the cause of the displacement of the rivers.
Midale Californialies on the southern skirt of the great lava flood of the Northwest. The center of the great out flow (which came from fissures and not from craters) was the Cascade and the Blue Mountains. In Oregon the lava is 3,000 feet thick; in extreme Northern California it is still several hundred feet thick, and the old river beds are hopelessly concealed. In Middle California it is reduced by erosion to ridges and patches. Immediately after the obliteration of the previous drainage system, the rivers began cutting a new system having the same general trend (de termined, of course, by the mountain slope), but independ ent of, and therefore often cutting across the older system. From all the facts of the case the conclusion seems inevitable, that the subterranean heat of the impending lava flow was the cause of the rapid melting of the snow and ice, and the consequent rush of the overloaded waters, which filled the channels with detritus. Before the melting was completed the ash eruptions had already commenced, and mud streams, foll
obliteration.
It is alm.
It is almost certain that, coincident with the outflow of lava in California, there was an increase in the elevation of the Sierra range. The inevitable effect of this would be the cutting of new channels below the level of the old, and thus, finally, the singular relation between the old and the new channels which now exist. Professor Le Conte believes that these general phenomena of the gravels and their accumula. ion are wholly those of the Quaternary period. They can
hardly be explained except by the existence of glacial conditions. Also the gentle movement of elevation which he supposes to have preceded and attended the lava flow is characteristic of the Quaternary everywhere. On the other
hand, it is certain that the Pliocene passed insensibly into hand, it is certain that the Pliocene passed insensibly into the glacial epoch, and therefore that glacial conditions com-
menced in the Pliocene. Furthermore, it is certain that here in California, placial conditions continued and reache their acme after the lava flow; for glaciers occupied all the present cañons, and swept awoay all the lavas from the granite axial region, exposing their roots in the form of dikes. In conclusion, therefore, it seems best to make both the accumulation of the gravels and the lava flow which protected
them the dividing line between the Pliocene and Quaternary, although it is probable that glacial conditions had already commenced when these events occurred.

arizona shellac.

At a recent meeting of the California Academy of Sciences Professor Stillman read a paper on the gum and coloring matter found on the Acacia Greggii and the Larrea Mexicana or creosote plant. The gum which exudes from these plants is very abundant, and is the product known to commerce a shellac. The same plants produce lac dye. Professor Stillman suggested that California might compete with British India in supplying this valuable product. Mr. B. B. Red ding said that these lac-yielding plants were as plentiful as age-brush from Southern Utah to New Mexico, and from Colorado Desert to Western Texas.
The lac is most abundant around stations on the Mojave nd Colorado deserts, and exudes as the result of an insect's sting. Calcutta exports a million pounds sterling in value annually of shellac, selling at 25 to 35 cents a pound, and almost as much more of lac dye, selling at 30 to 40 cents a pound. In 1876 the United States imported 700,000 pounds of shellac alone. To collect this is simple work for boys, nd will prove an important industry. It will require little or no capital. The twigs are boiled in hot water, and the gum rises to the top, is skimmed off, strained and dried on smooth stones, and hand pressed into flakes, ready to make
sealing wax or varnish. The residue, when allowed to settle, makes lac dye. The plants live on a rainfall of three inches a year.
In vol. vi. (Botany) of the Reports of the U. S. Geographi cal Surveys west of the 100th meridian we find the follow. ing information relative to these two plants, which would seem to be worthy the attention of commercial men and manufacturers:
P. 108-Acacia Gregeit, Gray--A small tree, 10 to 20 feet high, pubescent or glabrous, unarmed or with scattered stout recurved prickles; pinnæ 2 or 3 pairs, on a slende petiole; leaflets 4 or 5 pairs, oblong or oblong-ovate, 2 or 3 ines long, rounded or truncate above, narrower at base ather thick, and with 2 or 3 straight nerves; flowers in cylindrical spikes an inch or two long, the peduncles equaling or exceeding the leaves; pods thin, coriaceous, flat, 3 or or 4 inches long by 5 to 7 lines broad, shortly stipulate, acute, curved, glabrous, and reticulated, more or less constricted between the seeds; seeds half an inch long.-From Western Texas to Southern California; collected in Western A rizona, 1872.
P. 41-Larrea Mexicana, Moricand, Creoosote bush.Common from Western Texas to Kern County, California,
and southward to Mexico. Dr. Loew's examination proves and southward to Mexico. Dr. Loew's examination proves
that the reddish-brown exudate on the branches, caused by an insect, will yield a red coloring matter showing all the reactions of cochineal. "The alcoholic extract of the leaves, on evaporation, yields a greenish-brown residue of a specific and somewhat disagreeable odor, more strongly perceptible on boiling the extract with water. This residue is only to a small extent soluble in water, and the solution has an acid reaction. It yields a light yellow precipitate with acetate of lead. The part of the alcoholic extract that is insoluble in water is easily soluble in alkalies. It also dissolves in nitric acid at a moderate heat, whereby oxidation takes place On addition of water a yellow brittle mass is precipitated." The Mexicans are said to use an infusion of the leaves for bathing in with good effect in rheumatic affections. (Also vol. iii., Wheeler's Reports.)
P. 80-Larrea Mexicana, Moric (L. glutinosa, Engel mann), Valley of the Gila, Arizona.-This shrub is especially common on the hills bordering the Gila, also on the sandy wastes adjacent to Tucson and Camp Lowell, in Arizona even imparting its strong odor to the air.
In the third volume of these reports this plant is also alled stinkweed and etiontio.

The Non-examination of Engineers in Chicago.
Chicago is waking up to the necessity of regulating the employment of engineers and the establishment of a system of official boiler inspection. The Inter-Ocean says:
"There seems to be an impression that any one, after a boiler, or boilers, and the result is that the man or boy who will work cheapest gets the place. Most of the engines in the business and office blocks in the city are in charge of did feeble men or mere boys, and there are actually cases where women do the work. Many of the large factories,
rolling mills, blast furnaces, foundries, rolling mills, blast furnaces, foundries, grain elevators, implement and machine shops have men in charge of the is noes, but how competent these men are as engineers there is no means of learning, and boy engineers are to be found even in some of these great establishments. In some places,
too, the engineer does not put in his whole time about the engine and boiler, but is called out by the foreman every engine and boiler, but is called out by the foreman every
now and then to do other work, and engine and boiler have now and then to do other work, and engine
to take care of themselves for long periods."
The natural consequence of this sort of carelessness is a frequency of explosions, with loss of life and limb, that is positively alarming. Chicago has no city inspectors of boilers, the only inspections being by the insurance companies where they have risks.

ANOTHER SIX WEEKS OF SUSPENSE.

Five drops of water for the sawing of ten cords of wood is a liberal allowance compared with the originally promised propulsion of steamships across the Atlantic with a pint or so; still it will be an achievement worth recording when it comes off "about six weeks from now." That is the way with Mr. Keely; his marvelous motor is always on the point of being completed, but the finishing touch is always delayed. It is gratifying, however, to know just how the matter stands, and for this information the world is indebted o a correspondent of the New York Times who has ately been favored with a "private exhibition" at Mr. Keely's workshop in Philadelphia. The correspondent says of the new engine:

All the machinery is contained in a cylinder which re sembles an ordinary drum. Through this runs a double shaft, one revolving in a sleeve. It is upon this shaft that the difficulty at present exists. The negative and positive motions are nearly equal, and Mr. Keely is engaged in the graduation of these so as to cause them to harmonize. When he accomplishes this, which he says is a tedious operation, then the Keeley motor will be completed.

- The Times correspondent has seen the machine turn an 18 nch wheel with force enough to break a rope, but he does not say what fraction of a drop of water sufficed to generate the exhibited power. The new generator is pronounced a curiosity. It occupies a space about six feet by ten feet, with a height of five feet.

There are numerous small pipes, of mysterious appearnce, of the thickness of telegraph wire, bored to the fine ness of a cambric needle. One of these leads from the generator to the engine, and it is claimed that all the power is secured through this medium, and the regularity of motion secured by the vibratory apparatus contained inside the drum cylinder. People who expect to learn all about the engine, generator, and the secrets of the hing, will probably be discouraged when they take thing, will probably be discouraged when they take
into their mind what Mr. Keely says. "After I have secured my letters patent, it will require at least a year of ecturing to demonstrate the secret of this generator and engine," remarked Mr. Keely. "The apparatus will be in use some twenty yearsbefore the thing is fully understood." The public exhibition of wood-sa wing is promised "somewhere about July 1," year not stated. The Times corre spondent does not say whether he or his friends have any tock to dispose of, or what ground there is for believing that the tedious harmonizing process above mentioned will ever be accomplished. Mr. Keely's facility in the invention of plausible excuses and catch phrases for the gulling of the simple is scarcely less remarkable than the capacity of some people to be gulled.

The East River Bridge.

The New York approach to the East River Bridge is finshed with the exception of about four blocks, and the property through to Chatham street has been appraised by the bridge authorities. Should this not be accepted by the owners, a commission, acting under the railroad law, will be appointed to value the land. Upon this portion of the work 90,000 bricks are being laid daily. But one block of the Brooklyn approach remains unfinished. The cities still hold about $\$ 1,000,000$ of interest accruing from the sale of bonds. The first one hundred tons of the recently a warded contract for steel have been sent from the Cambria Iron Company at Midvale to be rolled; from there they will be aken to the Edgemoor Iron Company, who do the drilling, fitting, etc. The bill for the final appropriation- $\$ 2,250,000$ now pending in the Legislature, has passed the Senate, with an amendment, and is in the House, where it is favorably received.-Engineering Aniss.

International Exhibition of Steam Thrashing

 Machines.The Italian Minister of Agriculture, Industry, and Commercehas arranged to hold aninternational exhibition of steam thrashing machinery at Perugia, in Umbria, Italy, to begin July 1, 1880. Only machines from one to four-horse power will be admitted. Four prizes of gold, silver, and bronze will be bestowed by the government. Public tests of the competing machines will be made under the direction of a commission. Applications must be made before May 31st next, to Signor Alessandro Raspi, Secretary of the Agrarian Committee, Perugia, who will furnish any desired information with reference to the competition.

The enormous advancein the cost of paper may be in part attributed to its extensive use in the various arts and mana factures not connected with printing. The last application of paper is the construction of an astronomical tower twentyN. Y.

