2rintitic Ampriran.

ESTABLISHEID 1845

MUNN \& CO., Editors and Proprietors.

publismed werkly at
NO. B' PARK ROW, NEW YORK.
o. D. MUNN.
A. E. beach.

TERMS FOR THE SCIENTIFIC AMERICAN.
One copy, one year postage included...
One copy, six months, postage included
Clubs.-One extra copy of THE Scientific American will be supplied
gratis for every club of five subscribers at $\$ 3.20$ each; additional copies at same proportionate rate. Postage prepaid.

Remit by postal order. Address
Mess
MUN \qquad
UNN \& CO
Tor Advertisers.-The regular circulation of the Scientific American is now Fifty Thousand Copies weekly. For 1880 the The Scientific American Supplement

NEW YORK, SATURDAY, MARCH 13, 1880.

TABLE OF CONTENTS OF
the scientific american supplement No. 219.

For the week ending Mareh 13, 1880

Price 10 cents. For sale by all newsdealers.
ENGINEERING AND MECHANICS.--Gas Fired Steam Boilers. PA Critical history of European experiments in gas fring. 16 figures.
Sectional views of gas fred steam boilers.................... Sectional Views of gas fred steam boilers
Pumping Engines at Newent Collieries. Engines...
 Sectional views. Chase. 8 figures to scale..................................... Crase. 8 figures to scale.
Portable Garden Ladder.
II. ELECTRICITY, LIGHT, SOUND, ETC.-Laying the Marseilles Algiers Cable. Recent improvements in methods of making and laying submarine cables. 5 figures $\ldots .$.
Statistics of Telegraphs in 1879 . An in
of the telegraph systems of the world.
Niaudet's New Chloride of Lime Pile.
New Phoneidoscopic Experiments. 1 figure.
mercury.
A New Phoneidoscopic Process by Meang of ..
 Phoneidoscopic diagrams of the ten principal (French) sub-vowels
III. TECHNOLOGY AND CHEMISTRY.-The New Photo Proce The Argento-iron process of M. Poitevin. .

Painting upon Glass. Hints for amate
The Centrifugal Milk Tester. 1 figure..
by E. BaUdrimont.
By E. BAUDRIMONTI...
On Regenerative Gas Lighting. Lecture by HElRI F. SIEMENS, with discussion by Dr. W. Siemens. and others. A highly inter-
esting account of Siemens'devices for increasing the illuminating The Pbyslcal Functio.
MEDICINE Functions of Leaves. By E. Ch rutreut
IV. MEDICINE. HYGIENE, ETC.--Our Domestic Poisons. By Honry Carr, M. Inst. C. E. An elahorate critical revisw of the the great poison. Cases of arsenical poison fabrics. Arsenic Arsenicalpoisoning in industrial estahlishments. ['oisonous Artiffecal flowers. Why arsenic is used in fabrics. Pneumonia. Two lectures hy Dr. Aloszo Ci
v. ARChitecture, ETC.-Lichfield Cathedral. 1 full page illustration....
The Po
 tive review of the dangers attending the domestic water cisternc
VI. miscellaneous.-A Sportsman of the Landes, France. Full page illustration..
South-Western France, and the stiit-using inhabitants
An Englishman on America
The Moss Indust
Canned Meats..
 exhibits. Large illustration. Bird's-eye view of the Exhibition s

WHO SHALL HOLD THE SURPLUS?

A large New York drygoods house recently made a calculation as to what effect it would have on their year's trade should every one of their customers purchase, for the year 1880, only $\$ 100$ worth more of goods than he had bought in 1879; they afterward enlarged the scope of their inquiry and estimated the increased volume of trade should every retail dealer in the country buy $\$ 100$ worth more than he had bought last year. It is hardly necessary to say that the aggregate amuount reached by the figures made on this basis was something which at first appeared to them almost fabulous, representing, as it did, sufficient increase in the demand for goods to make it certain that, with only this seemingly moderate enlargement of trade, every loom and sj,indle in the country would be pushed to the utmost to supply what would be wanted.
It is very common for men every where to base their calcula tions as to the probable increase in the demand for manufac tured goods this year entirely upon the greater ability of consumers to purchase. This cnlarged purchasing power of the final customers has been very conspicuously manifested in the agricultural sections, on account of the bounteous crops, coming at a time when there was urgent need and a ready market for them;and in manufacturing communities the increased demand follows because the agriculturists are better off, even more than from the fact that we are now liberal exporters of manuf actured articles. But, although these are the true causes of a comparatively permanent improve ment in trade, he who would look to them solely for an explanation of the great activity which we have seen in most branches of business during the past six months, and which it now appears more than probable will continue for some time to come, would leave out one of the most important of the factors necessary to a correct judgment. This factor is to be found in the one word, " confidence," which is now general, as against fear and distrust, which every where prevailed from the early fall of 1873 to the summer. of 1879 . How much this means it requires but little to show, so as to bring home the impossible to fully measure the extent of the change wrought

From 1873 up to last summer, no matter how cheaply a dealer or an investor might have bought goods, or how great a "bargain" was obtained, each subsequent purchaser could buy at even lower figures. Prices were on an inclined scale throughout; it seemed as though they would never touch bottom. The natural effect of this was that the jobbers and retailers, the army of middlemen who stand between the producer and the consumer, were compelled, as a inatter of self-protection, to hold steadily diminishing stocks of goods. They bought only as they actually needed supplies, and then purchased as sparingly as possible, forcing back upon the manufacturer, or into "first hands," all the surplus in the country which the then limited requirements of consumers did not seem to be making an immediate demand for.
Now all this is changed, and, over and above the quantities of goeds which every dealer feels sure he will be able to find ready sale for, all are desirous of having something in stock, or, in other words, to help the manufacturers and the first owners "hold the surplus." The reason is obvious; whereas, heretofore, prices steadily declined, and the demand was always sluggish, the tendency now seems to be invariably upward, the call always active, and most kinds of merchandise, with the present comparatively low rates of intersurplus mean

This confidence of dealers, based on the guarantees they have in hand of the ability of consumers to purchase libe rally, may, without anything like enthusiasm, be relied upon to maintain the energy and givelengthened vitality to the period of business enterprise upon which we seem to have so auspiciously entered. And in no one of the general divisions of business activity does this renewed life seem to run so high or hold forth such large promise as in those connected with metal working. Iron and steel especially, in all the various forms through which they are made to serve the purposes of man, are now so eagerly sought for, notwithstanding prices have advanced 100 per cent, that our
furnaces and foundries and machine shops can hardly begin to satisfy the demand. Railroad building is being pushed with great energy, calling not only for vast quantities of rails, but the locomotives and cars for equipment; factories of all kinds are enlarging their production, and need new machinery; agricultural implements are in greater demand than ever before; the thousands of ingenious devices which the modern residence calls for from the dealer in builders' hardware cannot be supplied fast enough to meet the wants of those who now find themselves able to build; and, above all this, the middleman now seeks to hold an ample supply of each kind of goods as much as he dreaded having a "sur "plus" before.

REGULATION OF SHIFTING RIVER CHANNELS.

The shifting character of the channels of the Missouri

 other Western rivers is well known. With strong currents flowing through beds of light alluvium, the erosion of the banks is constant and frequently very rapid. Under this action, where the circumstances are favorable, bends are formed, not unfrequently taking the shape of loops, with narrow strips of land separating two portions of the river that are several miles apart when measured along the chan-take place, which shorten the course of the river, change its take place, which shorten the course of the river, change its
slope, increase its velocity, and otherwise disturb its regi. slope, increase its velocity, and otherwise disturb its regi.
men for many miles both above and below. Increased ero. sion takes place, navigation is impaired, interests along the banks are jeopardized, a different course is given to the river, new bends are formed, and the foundation laid for a repetition of the same series of events at some future day.
The most destructive crosions take place during the falling stages of the water. The foot of the bank is first at tacked, and when the material, usually sand, is washed away, the upper portion, being unsupported, tumbles into the water. This eroded material is carried down either in suspension or rolled along the bed of the river. As the current from time to time is checked either by a diminution of the slope or by mecting some obstacle in its course, the ma terial in transitu is deposited and for a time at least brought o rest.
These depositions, in their turn, change the course of the river, and cause its current to impinge against the bank in some new locality further down. Thus the operation goes on day after day and year after year.
As the commerce of these rivers increases in magnitude and value, and the lands along their valleys are converted into valuable farms or the sites of towns and cities, it becomes a matter of great importance to prevent such erratic washings of the shores and changes of the channels. To keep the rivers within regular bounds the yielding banks have to be protected, the velocity of the current diminished in certain places, and the channel held in place by building up or solidif ying its sides.
The different means employed in this sort of work are de scribed by Captain Hanbury, of the Engineer Corps, in a recent report on the condition of the Misson^{2} river near Omaha. For causing deposits to take place, and for de flecting the current in localities that are to be built out floating brush obstructions have been applied with marked success. The most successful of these is the floating brush dike, made by taking saplings from 20 to 30 feet long and from 4 to 6 or 8 inches in diameter, and nailing, or fastening to them with wire, scraggy brush of any kind obtainable in the locality. This forms what is known as the "weed." Instead of the saplings rope may be used to hold the brush. To one end of this "weed" is attached an anchor of sufficient weight to hold it in position against the current; to the other a buoy to hold up the downstream end and prevent it from going to the bottom under the pressure of the current against it. These "weeds" are placed from 10 to 20 feet apart, thus forming the floating dike.
Their action is to check the current gradually without producing that scouring effect to which the solid dike gives rise. This done, a portion of the material that is rolling along the bottom or being carried down in suspension is de posited, and causes a rise in the bed of the river, which changes its channel to the direction desired. The rapidity with which these deposits take place is truly wonderful. One season is often sufficient to raise the river bed up to the limits of ordinary high water.
Another form of obstruction that has been tried with success is the willow curtain. This, as its name indicates, is made of willows about an inch in diameter or larger, fast ened parallel with each other, and from 6 to 8 inches apart by means of wire. The curtains can be made of any desired length and width. They are anchored in position by weights attached at intervals along the lower edge and held in an upright or inclined position in the water by floats made fast to the upper edge. Their action is similar to that of the weeds."
Another form that has been experimented with and which bids fair to give good results, is a screen made totally of wire something after the fashion of a seine. It is anchored and buoyed like the willow curtain. The rootlets and small vegetable fibers that float in large quantities in the water accumulate upon the wires, and form obstructions sufficient to check the velocity of the current.
For resisting the impact of the current and preventing the crosion of the banks, a variety of devices have been tried with more or less success. Among the most satisfactory of these are the woven brush revetment, the continuous mat, or brush blanket, made of brush, sewed together with wire, and the willow screen, made as above described, for the willow curtain, excepting that the willows, instead of being placed some inches apart, are as nearly as possible in juxtaposition. The manner of using all of these devices is the same. The bank to be protected should first be graded to a slope of about 2 upon 3 or less, an operation that can be very cheaply performed by the use of hydraulic force pumps, after which the revetting should be put on so as to extend from the ordinary high water limit down the bank and out along the river bed sufficiently far to protect the slope should any unusual scour take place. The total width is usually in the neighborhood of 100 feet. To sink that portion which is under the water, a small quantity of rock is sometimes necessary, but usually the current itself and the sediment that collects on the brush will suffice for this. The effect of this revetment is to thoroughly protect the bank over which it is placed, and to cause a deposit of sediment over itself that crowds the current away from the bank toward the middle of the stream.
In proportion to the results obtained on the Missouri, these devices are the cheapest that have yet been tried for the improvement of sediment-bearing rivers. The brush dikes cost about $\$ 1$ a running foot; the revetment of the i banks from $\$ 2.25$ to $\$ 2.50$ a foot.

